Устройство для создания переменного магнитного и электрического полей

Изобретение относится к генерированию электромагнитных полей для исследований их воздействия на биоорганизмы. Предложенное устройство содержит две электрические цепи, первая из которых включает генератор переменного напряжения, который входом подключен к сети напряжением 220 B и выходом соединен с одним из входов усилителя переменного напряжения, снабженного встроенным реостатом, при этом усилитель переменного напряжения вторым входом подключен через выключатель к сети напряжением 220 B и выходом соединен через амперметр с обмоткой соленоида, вторая электрическая цепь включает высоковольтный источник переменного напряжения, который входом подключен через выключатель к выходу лабораторного автотрансформатора, причем лабораторный автотрансформатор входом подключен к сети напряжением 220 B, при этом высоковольтный источник переменного напряжения имеет два выхода, одним из которых подключен к металлическим пластинам, встроенным в соленоид, причем клеммы подключения пластин снабжены резисторами, а другим выходом - к вольтметру переменного напряжения, причем максимальное напряжение на входе высоковольтного источника переменного напряжения может составлять 240 B. Техническим результатом является создание переносного устройства для генерирования электромагнитных полей с заданными параметрами этих полей для исследования их воздействия на биоорганизмы. 4 ил.

 

Изобретение относится к генерированию электромагнитных полей для исследований их воздействия на биоорганизмы.

Электромагнитные поля создаются большинством электрических машин, аппаратуры и оборудования и оказывают воздействие на человека и на другие живые организмы.

Известно воздействие на человека и на другие живые организмы электромагнитного поля, создаваемого, например, электродвигателем переменного тока АОМ-32-4 (Авдеев М.М. и др. Электропоезда переменного тока. - М.: Транспорт, 1973, с. 139), содержащим герметичный корпус, внутри которого закреплен статор, имеющий обмотки, внутрь которого вставлен короткозамкнутый ротор с лопастями охлаждения, установленный на валу, закрепленном в подшипниках корпуса.

Известно воздействие на человека и на другие живые организмы электромагнитного поля, создаваемого, например, генератором типа 37.3701 (Вершигора В.А. и др. Автомобиль ВА3-2108. - М.: ДОСААФ, 1986, с. 195), содержащим, в частности, статор с обмоткой, якорь, включающий ротор и обмотку возбуждения, шкив, щеточные узлы, подшипниковые узлы.

Но образование данных электромагнитных полей является сопутствующим фактором работы этих устройств. Параметры полей определяются рабочим напряжением, конструкцией и геометрией устройств, классом и состоянием изоляции. И искусственно изменять или регулировать эти параметры каким-либо образом не представляется возможным.

Задачей предлагаемого технического решения является создание переносного устройства для генерирования электромагнитных полей с заданными параметрами этих полей, для исследования их воздействия на биоорганизмы.

Решение указанной технической задачи достигается тем, что устройство содержит две электрические цепи.

Сущность изобретения заключается в том, что оно содержит две электрические цепи, первая из которых включает генератор переменного напряжения, который входом подключен к сети напряжением 220 B и выходом соединен с одним из входов усилителя переменного напряжения, снабженного встроенным реостатом, при этом усилитель переменного напряжения вторым входом подключен через выключатель к сети напряжением 220 B и выходом соединен через амперметр с обмоткой соленоида, вторая электрическая цепь включает высоковольтный источник переменного напряжения, который входом подключен через выключатель к выходу лабораторного автотрансформатора, причем лабораторный автотрансформатор входом подключен к сети напряжением 220 B, при этом высоковольтный источник переменного напряжения имеет два выхода, одним из которых подключен к металлическим пластинам, встроенным в соленоид, причем клеммы подключения пластин снабжены резисторами, а другим выходом - к вольтметру переменного напряжения, причем максимальное напряжение на входе высоковольтного источника переменного напряжения может составлять 240 B.

На фиг. 1 представлена схема устройства для создания переменного магнитного и электрического полей, на фиг. 2 изображено взаимное расположение витков обмотки соленоида и металлических пластин, встроенных в соленоид, на фиг. 3 - то же, вид сверху, на фиг. 4 - то же, вид сбоку.

На фиг. 1 представлена схема устройства для создания переменного магнитного и электрического полей, включающая генератор переменного напряжения 1, усилитель переменного напряжения 2, амперметр переменного тока 3, соленоид 4, лабораторный автотрансформатор 5, высоковольтный источник переменного напряжения 6, вольтметр переменного напряжения 7, металлические пластины 8, сеть 9 напряжением 220 B, выключатель 10, выключатель 11.

Предлагаемое устройство работает следующим образом.

С помощью генератора переменного напряжения 1, подключенного к сети 9 напряжением 220 B, осуществляется получение переменного напряжения заданной формы и частоты. Сигнал с генератора переменного напряжения 1 подается на один из входов усилителя переменного напряжения 2, который вторым входом через выключатель 10 подключен к сети 9 напряжением 220 B. К выходу усилителя переменного напряжения 2 через амперметр переменного тока 3 подключена обмотка соленоида 4. Таким образом, в обмотке соленоида 4 протекает ток заданной величины, который приводит к образованию переменного магнитного поля внутри соленоида 4. Величина тока определяют с помощью амперметра переменного тока 3.

Необходимую величину тока в обмотке соленоида определяют по соотношению I=Н/n, которое получается из соотношения Н=I·n (Ландсберг Г.С. Элементарный учебник физики. Т. 2. Электричество и магнетизм. - М.: Наука, 1985, с. 290), где Н - напряженность переменного магнитного поля внутри соленоида, A/м, I - ток в обмотке соленоида, A, n - число витков обмотки, приходящихся на единицу длины соленоида, n=N/1, где N - полное число витков соленоида, 1 - длина соленоида, м.

Регулирование тока производится с помощью изменения напряжения на выходе генератора переменного напряжения 1, а также с помощью переменного реостата, встроенного в усилитель переменного напряжения 2.

Для получения электрического поля служит высоковольтный источник переменного напряжения 6, который входом подключен через выключатель 11 к выходу лабораторного автотрансформатора 5. Лабораторный автотрансформатор 5 входом подключен к сети 9 напряжением 220 B. С помощью лабораторного автотрансформатора 5 осуществляют регулирование напряжения на входе высоковольтного источника переменного напряжения 6. Высоковольтный источник переменного напряжения 6 имеет два выхода, одним из которых подключен к металлическим пластинам 8, а другим - к вольтметру переменного напряжения 7, с помощью которого измеряют напряжение на выходе высоковольтного источника переменного напряжения 6. При подаче напряжения на металлические пластины 8 в пространстве между ними образуется электрическое поле.

Необходимое значение напряжения на выходе высоковольтного источника переменного напряжения определяют по соотношению U=E/d, которое получатся из соотношения Е=U/d (Ландсберг Г.С. Элементарный учебник физики. Т. 2. Электричество и магнетизм. - М: Наука, 1985, с. 69), где Е - напряженность электрического поля в пространстве между металлическими пластинами, В/м; U - напряжение на выходе высоковольтного источника переменного напряжения, B; d - расстояние между металлическими пластинами, м.

Высоковольтный источник переменного напряжения 6 содержит клеммы (на схеме не представлены) для подключения вольтметра переменного напряжения 7 и металлических пластин 8. Для повышения безопасности работы клеммы подключения металлических пластин 8 соединены с высоковольтным источником переменного напряжения 6 через резисторы (на схеме не представлены).

Максимально допустимое напряжение на входе высоковольтного источника переменного напряжения 6, подаваемое с лабораторного автотрансформатора 5, равно 240 B.

Металлические пластины 8 размещены внутри соленоида 4 таким образом, что переменное магнитное поле, создаваемое обмоткой соленоида 4, и электрическое поле, создаваемое между металлическими пластинами 8, совпадают или пересекаются в своей большей части, создавая в этой области пространства электромагнитное поле с заданными параметрами.

Таким образом, предлагаемое устройство позволяет генерировать как электрическое поле, так и переменное магнитное поле, а также электромагнитное поле, задавать необходимые параметры этих полей в зависимости от исследуемых биоорганизмов, является мобильным и может быть подключено к сети переменного тока напряжением 220 B.

Устройство для создания переменного магнитного и электрического полей, отличающееся тем, что оно содержит две электрические цепи, первая из которых включает генератор переменного напряжения, который входом подключен к сети напряжением 220 В и выходом соединен с одним из входов усилителя переменного напряжения, снабженного встроенным реостатом, при этом усилитель переменного напряжения вторым входом подключен через выключатель к сети напряжением 220 В и выходом соединен через амперметр с обмоткой соленоида, вторая электрическая цепь включает высоковольтный источник переменного напряжения, который входом подключен через выключатель к выходу лабораторного автотрансформатора, причем лабораторный автотрансформатор входом подключен к сети напряжением 220 В, при этом высоковольтный источник переменного напряжения имеет два выхода, одним из которых подключен к металлическим пластинам, встроенным в соленоид, причем клеммы подключения пластин снабжены резисторами, а другим выходом - к вольтметру переменного напряжения, причем максимальное напряжение на входе высоковольтного источника переменного напряжения может составлять 240 В.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано для измерения коэффициента отражения радиоволн от радиопоглощающих покрытий (РПП) при малых углах облучения.

Способ повышения точности определения угла прихода радиоволн относится к области техники электрических измерений и может быть использован при исследовании распространения радиоволн на открытых трассах. Цель изобретения - достижение высокой точности измерений угла прихода радиоволн. Новым в способе повышения точности определения угла прихода радиоволн является первоначальное генерирование высокочастотных колебаний с первой частотой в первом канале интерферометра и колебаний со второй частотой во втором канале интерферометра.

Изобретение относится к исследованию электромагнитного излучения от различной аппаратуры в закрытом пространстве, например в безэховой камере. Устройство для электромагнитного испытания объекта содержит сеть электромагнитных зондов (2), конструкцию (3) для поддержки сети зондов (2) и опору (4) для поддержания испытываемого объекта.

Изобретение относится к технике СВЧ, а именно к способам измерения отражательной характеристики - эхо-коэффициента участков боковых стен безэховой камеры (БЭК). Способ включает излучение СВЧ-сигнала в безэховую камеру, рассеивание его металлическим зондом и прием мощности сигналов, рассеянных зондом и освещенным участком боковой стены безэховой камеры.

Способ проведения объектовых исследований электромагнитного поля радиочастотного диапазона в помещениях, оснащенных средствами радиоэлектронного подавления беспроводных систем связи, предусматривает измерение значений модулей вектора напряженности электрического поля, создаваемого средствами беспроводной связи при наличии и отсутствии электромагнитного экранирования помещения, а также создаваемого средствами радиоэлектронного подавления.

Устройство для исследования побочных электромагнитных излучений (ПЭМИ) от технических средств (ТС) относится к области радиотехники, а именно к разделу «Измерение электрических и магнитных величин, измерение характеристик электромагнитного поля», и может быть использовано для исследования побочных электромагнитных излучений при определении информационной безопасности технических средств (ТС), объектов информатизации в рамках решения задач технической защиты информации в результате побочных электромагнитных излучений и наводок (ПЭМИН).

Изобретение относится к области радиосвязи. Устройство содержит генератор тактовых импульсов, формирователь спектра излучения, коммутатор антенн, приемо-передающую антенную систему, адаптивный преобразователь, формирователь информации излучения вторичных излучателей, преобразователь частотного спектра, блок фильтров, блок анализа спектра излучения, блок исследования спектра вторичного излучения.

Изобретение относится к технике СВЧ и может быть использовано для измерения уровня вносимых потерь, фазовых характеристик и коэффициента эллиптичности электромагнитной волны волноводных устройств.

Изобретение относится к технике СВЧ и может быть использовано для измерения уровня вносимых потерь, фазовых характеристик и коэффициента эллиптичности электромагнитной волны волноводных устройств.

Изобретение относится к области радиотехники, а именно к разделу «Измерение электрических и магнитных величин, измерение характеристик электромагнитного поля» и может быть использовано для исследования ПЭМИ при определении информационной безопасности ТС, объектов информатизации в рамках решения задач технической защиты информации в результате побочных электромагнитных излучений и наводок (ПЭМИН).

Способ увеличения дальности действия и увеличения точности измерения расстояния системы радиочастотной идентификации и позиционирования может быть использован, например, при идентификации управлении движением подвижных объектов. Новым в способе измерения дальности является использование в измерительной станции двух антенн круговой поляризации, работающих одна на излучение, другая на прием. При этом циркулятор, разделяющий излучаемые и принимаемые сигналы, из состава измерительной станции исключается. Пространственное разнесение антенн измерительной станции позволяет повысить развязку между каналами приема и передачи, что позволяет излучать сигналы повышенной мощности и дополнительно усиливать принимаемые сигналы. Дальность действия системы при этом повышается. Направление вращения плоскости поляризации приемной антенны измерительной станции выбирается противоположным направлению вращения плоскости поляризации волны, отраженной от поперечной площади рассеивания объекта, на котором установлен транспондер, что обеспечивает подавление этого мешающего сигнала и повышения таким образом точности определения расстояния. Кроме того, использование в транспондере антенны линейной поляризации позволяет ликвидировать замирания сигнала, возникающие при движении объекта и изменении таким образом взаимной ориентации антенн транспондера и измерительной станции.

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L. Одна пара электродов размещена в приповерхностном слое земли, а другая пара электродов находится с первой парой в одной плоскости, но уже на глубине h. При этом потенциал первой пары, соответствующий напряженности электрического поля, вычитают из потенциала заглубленной пары для получения соответствия напряженности магнитного поля. Технический результат: повышение точности измерения магнитотеллурического поля. 1 ил.

Изобретение относится к области радиосвязи и может быть использовано при решении проблемы электромагнитной совместимости радиоэлектронных средств, а также исследованию параметров вторичного излучения различных сред. Устройство содержит генератор тактовых импульсов, формирователь спектра излучения, коммутатор приемо-передающих антенн, приемную антенную систему, верхнюю и нижнюю части высоковольтной облучающей системы, источник высокого напряжения, адаптивный преобразователь, формирователь информации излучения вторичных излучателей, преобразователь частотного спектра, блок фильтров, блок анализа спектра излучения, блок исследования спектра вторичного излучения. Технический результат заключается в автоматизации анализа частотных свойств поля вторичного излучения исследуемых объектов и их уровней. 17 з.п. ф-лы, 23 ил.

Изобретение относится к области радиолокации и предназначено для измерения эффективной площади рассеяния (ЭПР) радиолокационных целей на уменьшенных моделях. Установка содержит передатчик, разделитель излучаемого и принимаемого сигналов, комплексную переменную волноводную нагрузку, приемник сигнала поля вторичного излучения модели и приемно-передающая антенну, безэховую камеру (БЭК), в окне торца которой установлена антенна электрической осью соосно продольной оси БЭК. Подъемник опоры модели закреплен на полу под зоной безэховости БЭК с возможностью перемещения опоры вдоль диагонали куба с размером ребра, равным четверти длины волны излучаемого антенной сигнала. Разделитель излучаемого и принимаемого сигналов выполнен в виде двойного волноводного тройника. Выход передатчика соединен с входом одного H плеча волноводного тройника, выход другого H плеча соединен с входом аттенюатора, выход которого соединен с входом-выходом комплексной согласованной нагрузки, кроме того, выход E плеча волноводного тройника соединен с входом приемника. Технический результат заключается в возможности измерения ЭПР модели при амплитуде помехи больше амплитуды сигнала измеряемой модели. 4 ил.

Изобретение относится к технике измерений, в частности к измерению интенсивности электромагнитного излучения с пространственным и поляризационным разрешением. Пироэлектрический детектор миллиметрового излучения выполнен на основе пироэлектрической пленки с системой считывания сигнала, в котором на поверхности пироэлектрической пленки размещен ультратонкий резонансный поглотитель, состоящий из диэлектрической пленки, с одной стороны которой, обращенной к падающему излучению, выполнен металлизированный топологический рисунок, образующий частотно избирательную поверхность и обеспечивающий поглощение на заданной длине волны миллиметрового излучения, а с обратной стороны нанесен сплошной слой с металлической проводимостью, который имеет с пироэлектрической пленкой надежный физический контакт, обеспечивающий эффективную передачу тепловой волны от поглотителя к пироэлектрической пленке. Технический результат заключается в повышении быстродействия детектора. 3 н. и 8 з.п. ф-лы, 5 ил.

Установка для измерения эффективной площади рассеяния радиолокационных целей на моделях содержит: передатчик, приемник, двойной волноводный тройник, комплексную переменную нагрузку, приемно-передающую антенну, опору модели и компенсационную опору. Компенсационная опора выполнена тождественно опоре модели, устанавливают ее на платформе в измерительной зоне полигона жестко, как единое целое с опорой модели цели и параллельно ей на расстоянии больше диаметра опоры со сдвигом вдоль электрической оси антенны на нечетное число четвертей длины волны падающего на модель поля. Технический результат изобретения - увеличение точности измерения ЭПР моделей целей путем подавления помехи, вызванной отражением падающего поля от опоры модели. 1 ил.

Изобретение относится к радиотехническому испытательному оборудованию, предназначенному для проведения стендовых испытаний ракетных двигателей космических аппаратов, в частности для измерения электромагнитного излучения. Реверберационная камера содержит корпус, источник электромагнитного излучения, измерительную антенну, экран, выполненный из электропроводящего материала, узлы крепления элементов конструкции камеры к корпусу камеры, переизлучатель электромагнитного излучения, выполненный с возможностью вращения, и узел вращательного движения переизлучателя. Экран расположен в полости камеры между источником электромагнитного излучения и измерительной антенной. Переизлучатель выполнен в виде цилиндрической обечайки с расположенными на ее поверхности щелевыми отверстиями. В качестве источника электромагнитного излучения использован ракетный двигатель, генерирующий направленный поток заряженных частиц, а в качестве корпуса - осесимметричный корпус вакуумной камеры. Выходной канал ракетного двигателя ориентирован в направлении продольной оси симметрии корпуса вакуумной камеры. Переизлучатель расположен со стороны выходного канала ракетного двигателя, выполнен с возможностью вращения относительно продольной оси симметрии и соединен с узлом вращательного движения. Внутренний диаметр переизлучателя превышает поперечный размер ракетного двигателя, а продольная ось симметрии переизлучателя ориентирована вдоль направления движения генерируемого ракетным двигателем потока заряженных частиц. Изобретение позволяет повысить достоверность и точность измерения возбуждаемых ракетным двигателем электромагнитных колебаний в процессе испытаний на электромагнитную совместимость с радиотехническим оборудованием космического аппарата. 14 з.п. ф-лы, 4 ил.

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны. Достигаемый технический результат – повышение точности измерения сверхмалых значений эффективной площади рассеяния радиолокационных объектов. Функционирование устройства основано на измерении значений эффективной площади рассеяния дифракционных максимумов сигналов, отраженных от решетки, составленной из этих объектов, и содержит передающий и приемный блок, соединенный с регистратором, опорно-поворотный блок, на котором вдоль оси вращения параллельно закреплены на одинаковом расстоянии друг от друга линейные эквидистантные решетки из одинаковых и одинаково ориентированных радиолокационных объектов, образующих двумерную решетку, при этом осуществляют изменение по определенному закону шага размещения объектов в линейных эквидистантных решетках. 7 ил.

Изобретение относится к области определения радиолокационных характеристик объектов - эффективной поверхности рассеяния (ЭПР) в режиме экспресс-анализа в условиях естественной фоновой обстановки штатными (принятыми в эксплуатацию), например, корабельными радиолокационными средствами и штатным надувным радиолокационным отражателем в реальных морских условиях. Устройство содержит радиолокационную станцию (РЛС); стандартный аттенюатор, встроенный в каскады усилителя промежуточной частоты, не подверженные воздействию временной регулировки усиления; эталон в виде штатного надувного радиолокационного отражателя и металлическую или металлизированную сетку. Достигаемый технический результат – проведение экспресс-измерения ЭПР объектов и ложных целей на естественном фоне, проведение тренировки и учения как на стоянке, так и в море, а также обеспечение подготовки и расстановки мишенной обстановки при оценке приоритетности выбора целей головками самонаведения противокорабельных ракет. 2 н.п. ф-лы, 2 ил.

Устройство предназначено для измерения плотности потока энергии электромагнитного излучения в миллиметровом диапазоне длин волн и может быть также использовано в качестве образцового приемника для калибровки средств измерения. Приемник представляет собой тонкопленочный, с известным коэффициентом поглощения излучения, выполненный из полуметалла резистивный микроболометр, расположенный на тонкой мембране. Сущность изобретения заключается в том, что тонкопленочный резистивный элемент с известным коэффициентом поглощения и температурным коэффициентом сопротивления одновременно является термочувствительным элементом и поглотителем, что позволяет независимо калибровать устройство синусоидальным электрическим током для определения его вольт-ваттной чувствительности. Технический результат состоит в том, что предлагаемое устройство позволяет измерять плотность потока измерения в широком диапазоне длин волн ММ области спектра с повышенной чувствительностью и заданным быстродействием без применения эталонных средств калибровки по излучению. 1 ил.

Изобретение относится к генерированию электромагнитных полей для исследований их воздействия на биоорганизмы. Предложенное устройство содержит две электрические цепи, первая из которых включает генератор переменного напряжения, который входом подключен к сети напряжением 220 B и выходом соединен с одним из входов усилителя переменного напряжения, снабженного встроенным реостатом, при этом усилитель переменного напряжения вторым входом подключен через выключатель к сети напряжением 220 B и выходом соединен через амперметр с обмоткой соленоида, вторая электрическая цепь включает высоковольтный источник переменного напряжения, который входом подключен через выключатель к выходу лабораторного автотрансформатора, причем лабораторный автотрансформатор входом подключен к сети напряжением 220 B, при этом высоковольтный источник переменного напряжения имеет два выхода, одним из которых подключен к металлическим пластинам, встроенным в соленоид, причем клеммы подключения пластин снабжены резисторами, а другим выходом - к вольтметру переменного напряжения, причем максимальное напряжение на входе высоковольтного источника переменного напряжения может составлять 240 B. Техническим результатом является создание переносного устройства для генерирования электромагнитных полей с заданными параметрами этих полей для исследования их воздействия на биоорганизмы. 4 ил.

Наверх