Способ окраски тромбоцитов после ультразвукового воздействия


G01N1/30 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2589680:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К. И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К. И. Скрябина) (RU)

Изобретение относится к ветеринарии и медицине и может использоваться при неинвазивном исследовании крови животных с помощью ультразвуковых волн. Способ окраски тромбоцитов после ультразвукового воздействия включает обработку образцов крови ультразвуком от 30 с до 45 с, интенсивностью 0,4 Вт/см2, частотой 880 кГц, бегущей ультразвуковой волной, режим непрерывный, с последующим приготовлением мазков крови и их окраской дифференциальными красителями. Изобретение обеспечивает возможность равномерной глубокой дифференциальной окраски всех форменных элементов крови, включая тромбоциты. 2 ил.

 

Изобретение относится к ветеринарии и медицине и может использоваться при неинвазивном исследовании крови животных, предварительно обработанной ультразвуком.

Тромбоциты - красные кровяные пластинки (бляшки Бицецеро); полиморфные бесцветные клетки, образующиеся из мегакариоцитов, диаметром 2-5 мкм, живут 8-11 дней. В норме (200-400)·109/л. У новорожденных концентрация тромбоцитов такая же, как у взрослых; к 7-9 дню снижается до (164-178)·109/л; к концу второй недели - как у взрослых. Увеличение количества - тромбоцитоз, уменьшение количества - тромбоцитопения.

Несмотря на распространение в последнее время в лабораториях счетчиков форменных элементов крови, наиболее часто подсчет тромбоцитов осуществляется в мазках крови, приготовленных с использованием трилона Б. Метод основан на подсчете числа тромбоцитов в окрашенных мазках крови на 1000 эритроцитов с пересчетом на 1 мкл крови исходя из содержания в этом объеме количества эритроцитов.

Реактивы:

6%-ный раствор ЭДТА (этилендиаминтетраацетат Na);

раствор эозин-метиленового синего по Май-Грюнвальду;

раствор Романовского-Гимзы.

Окраска. Кровь смешивают с 6%-ным раствором ЭДТА. Для этого реактив, взятый капилляром Панченкова до метки «75», вносят в пробирку, затем добавляют кровь, взятую тем же капилляром, до метки «0». Содержимое пробирки перемешивают и готовят тонкие мазки. Высохший мазок должен быть равномерно тонким, желтоватого цвета, достаточной величины, т.е. располагаться на 1-1,5 см от краев, занимать 2/3 длины стекла и оканчиваться «метелочкой». Толстые, густо-розового цвета мазки не следует использовать, т.к. в них морфология клеток плохо различима.

Мазки фиксируют раствором Май-Грюнвальда 2-3 мин. Окрашивают раствором Романовского-Гимзы 30-45 мин (разведение из расчета примерно 1 капля на 1 мл дистиллированной воды: должно устанавливаться опытным путем для каждой новой партии красителя).

Высохшие мазки микроскопируют с иммерсионным объективом, подсчитывая количество тромбоцитов в тонких местах препарата (эритроциты должны быть расположены изолированно). Тромбоциты в мазках выглядят в виде фиолетовых округлых образований размером 2-4 мкм с отчетливо видимой центрально расположенной зернистой частью - грануломером и более светлой периферической незернистой зоной - гиаломером. Подсчет производят следующим образом: в каждом поле зрения микроскопа считают число эритроцитов и тромбоцитов, передвигая мазок до тех пор, пока не будут просчитаны не менее 1000 эритроцитов.

Известно приготовление мазков и подсчет количества тромбоцитов в периферической крови человека. Оснащение: смесь Никифорова, предметное и покровное стекла, марлевые салфетки, донорская кровь, капилляр, краска Романовского-Гимза, микроскоп, иммерсионное масло, счетчик 11-клавишный. Мазок готовится на обезжиренном стекле с помощью покровного или предметного стекла. Чистые стекла хранятся до употребления в смеси Никифорова (эфир со спиртом в отношении 1:1) в банке с притертой пробкой. Перед взятием крови стекла вынимают пинцетом и тщательно протирают салфеткой. На палец, обработанный спиртом, наносится капля 14% раствора MgSO4, через которую делается прокол скарификатором. Большим и средним пальцами левой руки берут предметное стекло за ребро и наносят каплю крови на край стекла. Правой рукой берут покровное стекло, ставят его узким краем рядом с каплей крови так, чтобы она растеклась в углу, образованном двумя стеклами. Покровным стеклом под углом 45° проводят по предметному стеклу, растягивая каплю тонким слоем (не толкать ее вперед, иначе кровь не ляжет ровным слоем). Хорошо сделанный мазок должен быть достаточно тонким, немного уже и короче предметного стекла, иметь желтоватый цвет и просвечивать. Высушивают мазок на воздухе, не подогревая. Затем фиксируют в смеси Никифорова 10 мин, после чего вынимают и сушат в вертикальном положении.

Высушенный мазок окрашивают краской Романовского, причем для подсчета тромбоцитов концентрация краски применяется вдвое больше, чем для окраски мазка для подсчета лейкоцитарной формулы. При этом морфологические особенности тромбоцитов изучать остается невозможно. Мазок покрывают тонким слоем краски и оставляют на 45 мин. Затем мазок промывают под проточной водой и сушат.

Смотрят под микроскопом при увеличении 90 с иммерсионным маслом, используя окошечко по Fonio. Подсчет количества тромбоцитов производится на 1000 эритроцитов.

В известных методах окраски тромбоциты отдельно окрашивают крайне редко, поскольку в таком случае остальные форменные элементы учитывать невозможно или крайне затруднительно. Одномоментной окраски форменных элементов, включая тромбоциты, без дополнительных затрат красителей в известных способах не происходит.

Наиболее близким аналогом изобретения является метод быстрого дифференциального окрашивания биопрепаратов ДИФФ-КВИК: мазки фиксировали в абсолютном метаноле 15 с, выдерживали в растворах красителей в течение 10 с, промывали в забуференной воде, высушивали и микроскопировали (микроскоп «Микмед-5», объектив 100х/1,25, окуляр 10х/18) (Любин Н.А., Конова Л.Б. Методические рекомендации к определению и выведению гемограммы у сельскохозяйственных и лабораторных животных при патологиях. - Ульяновск, ГСХА, 2005, 113 с.).

Однако данный способ не обеспечивает глубокую и равномерную окраску тромбоцитов всех размеров, независимо от их видовой принадлежности какому-либо животному, возможность подсчета и выявления морфологических особенностей кровяных пластинок. В результате данного этапа работы была отработана методика одновременной глубокой окраски всех форменных элементов крови, в то время как в известных способах окраски при окраске лейкоцитов невозможно всегда равномерно окрасить тромбоциты животного любого вида для изучения морфологии и диагностики изменений клеточных мембран. Найденный диапазон интенсивности ультразвука (УЗ) и времени озвучивания обеспечивает гарантированно качественную окраску тромбоцитов во всех случаях (независимо от особенностей конкретных клеток, условий взятия и хранения крови, состояния животного, наличия патологического процесса), не влияя отрицательно на окраску других форменных элементов.

Окрашивание ДИФФ-КВИК с УЗ позволяет хорошо визуализировать тромбоциты и может быть использовано в качестве модификации для подсчета именно тромбоцитов любого размера и вида и для одновременного изучения морфологических и цитологических особенностей всех окрашенных клеток, показывает наличие клеточных деформаций, анизоцитоза, повреждений цитоплазматических мембран тромбоцитов. Дает возможность визуализировать границы тромбоцитов.

Целью изобретения является разработка способа дифференциальной окраски всех клеток крови одним стандартным набором красителей в одной и той же концентрации.

Техническим результатом изобретения является возможность дифференциальной окраски всех форменных элементов крови, включая тромбоциты, после УЗ воздействия на образцы крови непосредственно до приготовления мазков. Возможность одинаково равномерной и глубокой окраски всех клеток крови одним стандартным набором красителей без дополнительных средств (красителей, спиртов) и затрат времени.

Указанный технический результат достигается тем, что окраску тромбоцитов проводили после ультразвукового воздействия. Образцы крови in vitro обрабатывали ультразвуком от 30 с до 45 с, интенсивностью 0,4 Вт/см2, частотой 880 кГц, бегущей УЗ волной, режим воздействия непрерывный. После ультразвукового воздействия готовили мазки крови и окрашивали их дифференциальными красителями.

Заявленный способ осуществляется следующим образом.

Воздействовали ультразвуком in vitro на образцы крови. Экспозиция УЗ: время от 30 с до 45 с, ISATA - средняя по пространству и времени интенсивность - 0,4 Вт/см2, частота 880 кГц. Аппараты: УЗТ-1-01Ф; УЗТ-5 и УЗТ-1.02С. Бегущая УЗ волна, режим непрерывный. Кровь брали из подкожной вены предплечья у кошек, собак, кроликов, яремной вены лошадей натощак в утренние часы. Кровь забирали в ветеринарной клинике во время ежегодного контроля здоровья. Для каждого объема крови подбиралась экспозиции таким образом, чтобы получались сопоставимые результаты. Образцы крови от 0,5-1,5 мл озвучивались в абсолютно одинаковых условиях. УЗ воздействие на клетки крови осуществлялось с помощью терапевтического излучателя. Результат сразу же наблюдали в световой микроскоп. Число клеток в единице объема крови определяли с помощью камеры Горяева и светового микроскопа. Делали мазки и окрашивали по методу быстрого дифференциального окрашивания биопрепаратов ДИФФ-КВИК: мазки фиксировали в абсолютном метаноле 15 с, выдерживали в растворах красителей в течение 10 с, промывали в забуференной воде, высушивали и микроскопировали (микроскоп «Микмед-5», объектив 10071,25, окуляр 10x/18).

На рис. 1 изображен образец крови кошки, обработанный ультразвуком, интенсивностью 0,4 Вт/см2, время 30 с, воздействие непрерывное.

На рис. 2 образец крови собаки, обработанный ультразвуком, интенсивностью 0,4 Вт/см2, время 35 с, воздействие непрерывное.

В результате данного этапа работы была отработана методика окраски всех форменных элементов крови, в то время как в известных способах окраски при окраске лейкоцитов невозможно одновременно глубоко и эффективно прокрасить тромбоциты всех размеров. Найденный диапазон интенсивности и времени обеспечивает окраску тромбоцитов, не влияя отрицательно на окраску других форменных элементов. Используемый диапазон ультразвукового воздействия является терапевтическим и безопасным для экспериментатора.

Способ окраски тромбоцитов после ультразвукового воздействия, включающий предварительную обработку образцов крови ультразвуком in vitro от 30 с до 45 с интенсивностью 0,4 Вт/см2, частотой 880 кГц, бегущей ультразвуковой волной, режим непрерывный, с последующим приготовлением мазков крови и их окраской дифференциальными красителями.



 

Похожие патенты:

Изобретение относится к медицине, а именно к акушерству, и может быть использовано для прогноза риска развития гестационного сахарного диабета. При постановке на учет до срока 24 недели беременности оценивают: возраст, прегестационный индекс массы тела, количество беременностей и родов, наличие регрессирующей беременности, уровень гликемии венозной плазмы, наличие рождения крупных плодов.

Изобретение относится к медицине, а именно к инфекционным болезням, и может быть использовано для прогнозирования тяжести течения трихинеллеза. Определяют максимальную температуру тела, наличие миокардита, отеков лица, боли при движении языка, уровень эозинофилии.

Изобретение относится к медицине и предназначено для прогнозирования гематогенного метастазирования при двухсторонней синхронной инвазивной карциноме неспецифического типа молочных желез.
Изобретение относится к медицине и предназначено для прогнозирования исхода заболевания у больных метастатическим раком почки. Проводят морфологическое и иммуногистохимическое исследование операционного материала.

Изобретение относится к медицинской микробиологии и может быть использовано в гастроэнтерологии. Предложен способ определения чувствительности Helicobacter pylori к антибактериальным препаратам.

Изобретение относится к медицине и представляет собой способ дифференциальной диагностики стадий гонартроза, включающий исследование крови и определение в ее плазме концентрации мочевой кислоты (МК), в мкМ/л, отличающийся тем, что в мононуклеарной фракции крови также определяют активность миелопероксидазы (МПО), в у.е./мин·мг, и активность ксантиноксидоредуктазы (КОР), в МЕ/г, после чего рассчитывают суммарный коэффициент диагностики К по формуле: при выполнении условия 3.1≤К<3.4 диагностируют I стадию; при выполнении условия 3.4≤К<3.9 диагностируют II стадию; при выполнении условия 3.9≤К<5.2 диагностируют III стадию; при выполнении условия К≥5.2 диагностируют IV стадию гонартроза по шкале Kellgren-Lawrence.
Изобретение относится к медицине и может быть использовано для оценки тяжести больных с постнекротическими кистами поджелудочной железы. Проводят исследование в крови больного субпопуляционного состава лимфоцитов.
Изобретение относится к области медицины, а именно к способу диагностики хронического эндометрита у женщин с аномальными маточными кровотечениями. Сущность способа состоит в том, что исследуют биологическую жидкость, проводят количественное определение уровней церулоплазмина в супернатанте менструальных выделений иммунотурбидиметрическим методом.

Группа изобретений относится к области проточной цитометрии. Проточный цитометр содержит лазерный луч, установленный для освещения частиц пробы в зоне обнаружения, щель, которая направляет поток частиц пробы через зону обнаружения, а также систему фильтрации.

Изобретение относится к области медицины и касается способа дифференциальной диагностики in vitro специфической сенсибилизации пациента к бактериальным аллергенам.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для окраски тромбоцитов после воздействия ультразвуком. Для этого проводят предварительную обработку образцов крови in vitro модулированным ультразвуком со скважностью 2, интенсивностью 0,05 Вт/см2 в течение 30-40 с, или интенсивностью 0,2 Вт/см2 в течение 20-35 с, или 0,4 Вт/см2 в течение 15-30 с, или 0,7 Вт/см2 в течение 15-20 с с любой частотой модуляции в диапазоне частот модуляции от 10 до 30 Гц или с частотой модуляции 800 Гц и несущей частотой 880 кГц, а также УЗ с несущей частотой 2,64 МГц, интенсивностью 0,4 Вт/см2 в течение 15-30 с в импульсном режиме с последующим приготовлением мазков крови и их окраской дифференциальными красителями.

Изобретение относится к нефтяной промышленности и предназначено для отбора проб из манифольда арматуры устья нефтедобывающей скважины, а также при отборе проб жидкости из трубопровода.

Группа изобретений относится к области экологии и воздухотехнического оборудования и предназначена для измерения качества воздуха. Для измерения качества воздуха осуществляют отбор проб воздуха с первой частотой выборки, чтобы получить множество проб качества воздуха при использовании первого датчика.

Изобретение относится к определению моющей способности синтетических моющих средств (CMC) и может быть использовано при товароведной оценке непродовольственных товаров.

Группа изобретений относится к авиационной технике, а именно к устройствам для обнаружения условий обледенения летательных аппаратов. Устройство содержит систему с датчиками и детектор условия обледенения.

Изобретение относится к животноводству. Предложенное устройство для отбора пробы молока из емкости 7 с уровнем молока Н содержит молокозаборную трубку 1 с фиксированным диаметром сквозного канала 9±1 мм и длиной L1.

Группа изобретений предназначена для избирательного переноса проб биологического материала или материала биологического происхождения. Контейнер содержит корпус (2), имеющий по меньшей мере отсек (3), подходящий для содержания по меньшей мере текучей среды или жидкости и/или для содержания по меньшей мере участка (16a) устройства (16) отбора для биологических проб.

Изобретение относится к области биохимии. Предложен микрофлюидный чип для создания клеточных моделей органов млекопитающих.

Группа изобретений относится к промораживанию и отбору проб донных осадков при поисково-разведочных работах на твердые полезные ископаемые в океане на глубинах до 6000 м и более, и подъема значительных масс как донного грунта, так и металлов, например затонувших судов.

Изобретение относится к конструктивным элементам микробиореакторов. Предложен порт введения тестируемого химического соединения и отбора жидкости из ячейки для культивирования клеточных моделей.

Изобретение относится к системам аналитического контроля пульповых продуктов, растворов или суспензий в потоке, применяемых в горно-обогатительной и других отраслях промышленности. Автоматическая система включает автоматический пробоотборный комплекс 1, автоматический комплекс 10 циркуляционной пробоподачи и транспортные магистрали 30. Система дополнительно снабжена автоматическим комплексом 5 пробоподготовки, автоматическим комплексом 14 подготовки и подачи порошковых проб, аналитическим комплексом 20, комплексом 24 сетевого оборудования, центральной станцией 27 управления системой, серверами 28 системы, информационными магистралями 31. Выход пробоотборного комплекса 1 соединен с входом комплекса 5 пробоподготовки, который имеет два выхода, соединенные с комплексом 10 циркуляционной пробоподачи и комплексом 14 подготовки и подачи порошковых проб. Выходы комплекса 10 циркуляционной пробоподачи и комплекса 14 подготовки и подачи порошковых проб соединены с входами комплекса 20. Система управления каждого комплекса объединена в единую информационную сеть с центральной станцией 27 управления автоматической системой аналитического контроля и серверами 28 данной системы через комплекс сетевого оборудования. Комплекс 14 подготовки и подачи порошковых проб состоит из оборудования 15 подготовки порошковых проб, оборудования 16 шифровки/дешифровки порошковых проб, оборудования 17 перемещения порошковых проб, оборудования 18 хранения порошковых проб и устройства 19 управления комплексом. Комплекс 20 состоит из многокюветных поточных пульповых и порошковых анализаторов 22 и 21 физико-химических свойств проб и устройства 23 управления комплексом. Обеспечивается повышение эффективности системы путем повышения достоверности получаемой аналитической информации и расширения функциональных возможностей системы аналитического контроля пульповых продуктов. 2 з.п. ф-лы, 1 ил.
Наверх