Система определения расхода жидкости и газа при помощи ультразвука и ее конструктив

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Система определения расхода жидкости и газа при помощи ультразвука содержит источник и приемник ультразвука, устройство управления и блок измерения. Дополнительно в систему введены две пьезоячейки, блок автоматического контроля взаимных позиций первичных преобразователей, блок коммутации преобразователей, усилитель, АЦП, блок обработки и анализа сигналов и толщиномер со следующими соединениями: входы/выходы пьезоячеек через информационную шину М соединены с блоком коммутации преобразователей, который через усилитель и АЦП соединен с информационным выходом блока обработки и анализа сигналов, выход последнего при помощи двухсторонней шины связан с блоком автоматического контроля взаимных позиций первичных преобразователей. Первая пьезоячейка состоит из четырех обратимых пьезопреобразователей, расположенных по два на разных концах сечения, перпендикулярного продольному направлению трубопровода. Вторая пьезоячейка состоит из шести обратимых пьезопреобразователей, расположенных: два в общей точке хорд и четыре - по два на каждой хорде и смещенных друг относительно друга по вертикальной оси на определенную величину. Расстояние между двумя пьезопреобразователями с каждой стороны трубопровода строго ориентировано и определяется углами раскрытия диаграммы направленности. Технический результат - повышение точности измерения и удобства системы в эксплуатации. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой.

Изобретение может быть использовано во многих областях промышленности и жилищно-коммунального хозяйства (ЖКХ), в том числе там, где требуется измерение расхода на коротких прямых участках трубопровода.

Общей проблемой измерения жидкости и газа является их бесконтактный контроль, особенно это относиться к контролю в сложных конфигурациях трубопроводов.

Общеизвестны расходомеры жидкостей и газа, применяемые в ЖКХ для измерения расходов горячей и холодной воды, см. П.П. Кремлевский «Расходомеры и счетчики количества веществ». СПб, Политехника, 2004, стр. 5-36.

Недостатки: нужна врезка в трубопровод, замена раз в 3-4 года, погрешность измерения до 3,5%.

Известен патент РФ «Расходомер жидких и газовых сред в напорных трубопроводах» №2411456 С1, в котором измерение расхода жидкости и газов производится при помощи накладных расходомеров и оба преобразователя размещены на поверхности трубы в диаметрально противоположных точках. Излучающий преобразователь содержит элемент излучения объемных ультразвуковых волн, выполненный в виде упругого стержня (или трубки, заполненной жидкостью), с изгибом в плоскости осевого сечения трубы по форме дуги, кривизна которой пропорциональна скорости потока в заданном диапазоне скоростей. К концам элемента излучения подключены управляемые линии задержки ультразвуковых импульсов, идущих от генераторов сигналов, размещенных в электронном блоке. Приемный преобразователь выполнен из пьезоэлемента, который имеет звуковой контакт с трубой в точках выхода ультразвуковых импульсов, проходящих через среду в трубе, а также по стенке трубы в поперечном ее сечении. Причем используется вертикальное зондирование двух лучей, которое в случае отсутствия течения попадает на приемный элемент после прохождения через контролируемую среду. В случае присутствия потока времена между излучениями источником двух волн варьируются так, чтобы результирующее колебание после прохождения через среду оказалось в точке входа приемного устройства.

Недостатком является то, что измерения с заявленной точностью могут быть проведены только на достаточно длинных прямых участках трубопровода. Принцип работы устройства не позволяет учитывать неравномерный профиль потока, что ведет к снижению точности устройства в условиях сложных конфигураций трубопровода. Данный недостаток обусловлен отсутствием возможности реализации многоплоскостной расходометрии.

Наиболее близкое из известных устройств ультразвукового измерения расхода, принятых за прототип, связано как минимум с двумя обратимыми электроакустическими преобразователями, каждый из которых имеет диаграмму направленности с углом раствора не менее 60° в разных плоскостях сечения и расположен таким образом, чтобы ось диаграммы направленности была перпендикулярна к продольной оси трубопровода. Причем внешняя излучающая поверхность каждого электроакустического преобразователя совмещена с внутренней поверхностью трубопровода. Измерения расхода проводят как минимум при помощи двух электроакустических преобразователей. Преобразователи могут быть расположены как друг напротив друга, так и иным образом, например таким, чтобы ломаная линия проходила от одного преобразователя до другого с точками излома на внутренней поверхности трубопровода (см. патент РФ №2264602 «Ультразвуковой способ измерения расхода жидких и/или газообразных сред и устройство для его осуществления», кл G01F 1/66 от 20.11.2005. Бюл. №32).

Недостаток прототипа в том, что предполагается контакт излучающей поверхности преобразователя с контролируемой средой. Это не позволяет применять его в качестве переносного, так как при использовании накладных преобразователей возникла бы неконтролируемая погрешность их взаимного позиционирования, величина которой зависит от их количества. Также это бы сказалось на времени и сложности монтажа.

Другой недостаток состоит в том, что из-за использования врезных датчиков возникают ограничения на область применения устройств, не позволяя применять способ в случае высоких температур контролируемого вещества или, например, агрессивных сред.

Технической задачей изобретения является повышение точности измерения и удобства системы в эксплуатации.

Технический результат достигается за счет использования бесконтактных ультразвуковых многоплоскостных пьезоячеек (обратимых пьезопреобразователей), что позволяет автоматически учесть в расчетах диаметр трубопровода, скорость звука в среде, взаимные позиции пьезопреобразователей друг относительно друга при простоте реализации.

Для решения поставленной задачи предлагается система определения расхода жидкости и газа при помощи ультразвука, содержащая источник и приемник ультразвука, устройство управления и блок измерения, отличающаяся тем, что в нее введены две пьезоячейки, блок автоматического контроля взаимных позиций первичных преобразователей, блок коммутации преобразователей, усилитель, АЦП, блок обработки и анализа сигналов и толщиномер со следующими соединениями: входы/выходы пьезоячеек через информационную шину М соединены с блоком коммутации преобразователей, который через усилитель и АЦП соединен с информационным выходом блока обработки и анализа сигналов, выход последнего при помощи двухсторонней шины связан с блоком автоматического контроля взаимных позиций первичных преобразователей, причем первая пьезоячейка состоит из четырех обратимых пьезопреобразователей, расположенных по два на разных концах сечения, перпендикулярного продольному направлению трубопровода, вторая пьезоячейка состоит из шести обратимых пьезопреобразователей, расположенных: два в общей точке хорд и четыре - по два на каждой хорде и смещенных друг относительно друга по вертикальной оси на определенную величину, а расстояние между двумя пьезопреобразователями с каждой стороны трубопровода строго ориентированно и определяется углами раскрытия диаграммы направленности.

На фиг. 1 показана структурно-электрическая схема системы, фиг. 2 и фиг. 3 - электрические схемы первой и второй пьезоячеек.

На чертежах изображены:

1-4 - обратимые пьезоэлектрические преобразователи (ПЭП);

5 - трубопровод;

6 - поток жидкости;

7 - первая пьезоячейка;

8 - устройство управления;

9 - задающий генератор;

10 - блок коммутации ПЭП-ов;

11 - усилитель;

12 - АЦП;

13 - блок обработки и анализа сигналов;

14 - блок контроля позиционирования;

15 - толщиномер;

16 - ПЭП толщиномера;

17 - вторая пьезоячейка, состоящая из 6 ПЭП-ов 18-23;

М - информационная шина.

На фиг. 2, кроме того, показано:

Δ - смещение ПЭП-ов на одной стороне трубопровода относительно другой;

В - расстояние между ПЭП-ами (входной параметр);

D - внутренний диаметр трубопровода;

с - скорость звука в среде;

v - скорость потока,

также показаны направления излучения между обратимыми ПЭП-ами 1-4.

На фиг. 3-также показаны: 18-23 ПЭП-ы, α и β ход лучей между ПЭП-ами в разрезе по хордам, направления излучения между обратимыми ПЭП-ами (вид по А и Б) 18-23; также показан ПЭП 24 толщиномера; блок и шины питания условно не показаны.

Система работает следующим образом.

Также показаны направления излучения между обратимыми ПЭП-ами в ту и в другую сторону при попеременном переключении функций источника излучения и приемника (t13 - t31; t14 - t41; t32 - t32; t24 - t42, при размещении 1-4 ПЭП-ов по диаметральной плоскости) и t17 - t19; t19 - t17, t17 - t20; t20 - t17; t18 - t19; t19 - t18; t18 - t20 и t20 - t18 (при размещении ПЭП-ов в хордовой плоскости).

Система имеет следующие соединения.

Вводы/выходы пьезоячеек 7 и 17 через информационную шину М соединены с блоком коммутации преобразователей 10, который через усилитель 11 и АЦП 12 соединен с информационным выходом блока обработки и анализа сигналов 13, выход последнего при помощи двухсторонней шины связан с блоком автоматического контроля взаимных позиций первичных преобразователей 14.

На фиг. 3 показано поперечное сечение трубопровода и размещенные на нем пьезопреобразователи по хордам, на котором показано:

17-22 шесть обратимых пьезопреобразователей;

α и β - хорды по линиям которых происходит обмен ультразвуком между пьезопреобразователями.

Система работает следующим образом (рассмотрим на примере первой пьезоячейки (фиг. 2) и структурной схемы (фиг. 1)).

Преобразователи 20-23 расположены так, чтобы каждый из них попадал в диаграмму направленности друг друга, и таким образом, чтобы в их диаграммы направленности попадали преобразователи 18 и 19. Линии, проведенные от преобразователей 18 и 19 до преобразователей 20-23, являются хордами, относительно сечения трубопровода, перпендикулярного его продольной оси. Выбор излучающего и принимающего преобразователя происходит в блоке управления (8), который отправляет соответствующую команду в блок коммутации (10) и подает сигнал о старте импульса на генератор (9) и о старте работы усилителя (11) и аналого-цифрового преобразователя (12). Усиленный и оцифрованный сигнал подается в блок обработки и анализа сигналов (13), в котором с корректировкой, введенной блоком автоматического учета позиционирования (14), вычисляются скорость потока, внутренний диаметр трубопровода, скорость звука в измеряемой среде и расстояния между преобразователями, а также смещение их друг относительно друга. Данный вариант реализации может опционально содержать канал измерения толщины (18), состоящий из преобразователя (16) для измерений толщины внутренней стенки трубопровода (5), и блок толщинометрии (15), либо эта величина задается в измерениях как известная заранее. Информация о толщине стенки трубопровода учитывается в блоке обработки сигналов (13).

Таким образом, предлагаемая система реализует новый метод многоплоскостной бесконтактной расходометрии, основным преимуществом которого является значительное снижение влияния внешних факторов, таких как неидеальность профиля трубы, его шероховатость, отложения на стенках трубопровода, флуктуации скорости звука в контролируемой среде, влияние внешних температуры и давления как таковых, а также неточность в учитываемом значении угла ввода колебаний, а также система позволяет рассчитывать расстояние между каждыми из преобразователей и таким образом рассчитывать их взаимные позиции на трубопроводе, учет взаимных позиций преобразователей на трубопроводе позволяет использовать несколько плоскостей измерений без контакта с контролируемой средой.

Эффект снижения влияния внешних параметров на точность показаний достигается за счет использования увеличенного количества пьезопреобразователей, образующих независимые каналы измерений. Таким образом, образуется система уравнений, решением которой являются значения расстояния между преобразователями в пьезоячейке, смещение одной пьезоячейки относительного другой вдоль продольной оси трубопровода, скорость звука в среде и скорость течения самой контролируемой среды. Если пьезоячейки расположены в диаметральной плоскости, то расстояние между ними равно диаметру трубопровода.

Автоматический учет взаимных позиций преобразователей достигается вычислением расстояния между ними в плоскости, перпендикулярной оси трубопровода, а также учетом смещения одной пьезоячейки относительно другой в продольной плоскости трубопровода, как это было описано выше.

Автоматический учет взаимных позиций преобразователей на трубопроводе позволяет убрать ошибку, связанную с неточной установкой накладных пьезопреобразователей вручную. Это позволяет размещать их в неограниченном количестве на внешней стенке трубопровода в производственных условиях, не снижая точности определения расхода. Данный эффект в совокупности с использованием пьезопреобразователей с широкой диаграммой направленности и направлением акустической оси перпендикулярно продольному направлению трубопровода позволяет реализовать бесконтактной многоплоскостной расходомер.

Техническими следствиями описанных эффектов, реализованных в предлагаемой системе, является снижение влияния внешних условий измерений на точность показаний и снижение минимально требуемой длины прямого участка для измерений в случае использования нескольких плоскостей измерений.

Пьезоячейка, показанная на фиг. 2, работает следующим образом. Вычисляемыми параметрами в системе являются D, Δ, с и v. Соответственно для их вычисления требуется наличие 4-х уравнений типа:

где αij - угол, образованный продольной осью трубопровода и линией, соединяющей соответственно i и j ПЭП. Само значение угла зависит от многих факторов, в том числе температуры и давления контролируемой среды и трубопровода, материалов трубопровода и т.п., таким образом, точное его значение заранее рассчитано быть не может, однако угол может быть выражен через искомые величины следующим образом:

В предложенной системе уравнений типа (1) может быть 8 уравнений, соответствующих восьми измерениям, однако t13 = t24; t31 = t42, поэтому независимых уравнений шесть. Таким образом, все четыре искомые величины могут быть вычислены из трех систем уравнений типа:

Расчету подлежат все три системы уравнений, при помощи которых усреднением определяются искомые величины и затем рассчитывается само значение расхода потока.

Расход потока на исследуемом участке трубопровода определяется по следующей формуле:

где k - поправочный коэффициент, зависящий от числа Рейнольдса для потока, а также от конфигурации трубопровода; S - площадь сечения трубопровода; v - скорость потока, d - внутренний диаметр трубопровода.

Преимуществом предложенной системы измерений является автоматический учет таких факторов влияющих на погрешность показаний, как:

- изменение скорости звука в среде, вызванное колебаниями температуры и иными внешними условиями;

- автоматический учет внутреннего диаметра трубопровода в направлении измерений, который может отличаться от паспортных данных из-за наличия отложений на стенках трубопровода, неидеально круглая форма в сечении, шероховатость поверхности;

- автоматический учет взаимных позиций пьезопреобразователей друг относительно друга, что позволяет снизить влияние неточности монтажа (учет Δ в расчетах) и время на установку в переносных расходомерах, основанных на данном способе измерений, а также возможности реализации многоплоскостного бесконтактного расходомера.

Ошибка измерения в предложенной схеме зависит только от точности определения расстояния между первичными преобразователями с каждой стороны и от точности измерения времен прохождения сигналов.

Таким образом, предлагаемая система полностью отвечает основному экономическому критерию «стоимость - эффективность».

1. Система определения расхода жидкости и газа при помощи ультразвука, содержащая источник и приемник ультразвука, устройство управления и блок измерения, отличающаяся тем, что в нее введены две пьезоячейки, блок автоматического контроля взаимных позиций первичных преобразователей, блок коммутации преобразователей, усилитель, АЦП, блок обработки и анализа сигналов и толщиномер со следующими соединениями: входы/выходы пьезоячеек через информационную шину М соединены с блоком коммутации преобразователей, который через усилитель и АЦП соединен с информационным выходом блока обработки и анализа сигналов, выход последнего при помощи двухсторонней шины связан с блоком автоматического контроля взаимных позиций первичных преобразователей, причем первая пьезоячейка состоит из четырех обратимых пьезопреобразователей, расположенных по два на разных концах сечения, перпендикулярного продольному направлению трубопровода, вторая пьезоячейка состоит из шести обратимых пьезопреобразователей, расположенных: два в общей точке хорд и четыре, расположенных по два на каждой хорде и смещенных друг относительно друга по вертикальной оси на определенную величину, а расстояние между двумя пьезопреобразователями с каждой стороны трубопровода строго ориентировано и определяется углами раскрытия диаграммы направленности.

2. Система по п. 1, отличающаяся тем, что в нее введен канал толщиномера, состоящий из дополнительного обратимого пьезопреобразователя со связями с блоком коммутации преобразователей и непосредственно с толщиномером, причем обратимый пьезопреобразователь канала толщиномера расположен на верхней точке трубопровода.



 

Похожие патенты:

Устройство и способы для проверки измерений температуры в ультразвуковом расходомере. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит канал для потока текучей среды, датчик температуры и ультразвуковой расходомер.

Изобретение в целом относится к расходомерам для измерения расхода жидкости и газа. Более конкретно, оно относится к устройству и к системе для защиты кабелей, отходящих от ультразвуковых расходомеров.

Изобретение относится к акустическим расходомерам для неинвазивного определения потока или интенсивности расхода в проточных для сред электропроводящих объектах, прежде всего в трубах или трубопроводах.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах.

Изобретение относится к области измерительной техники и может быть использовано для измерения прохождения сигналов через контролируемую среду в трубопроводе. Способ прохождения сигналов через контролируемую среду заключается в том, что формируют исходный сигнал, обеспечивают его передачу в прямом направлении через контролируемую среду, как минимум, по одной передающей электрической цепи, принимают сигнал, прошедший в прямом направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, обеспечивают передачу сформированного исходного сигнала в обратном направлении через контролируемую среду, как минимум, по одной приемной электрической цепи, принимают сигнал, прошедший в обратном направлении через контролируемую среду, как минимум, по одной передающей электрической цепи и обеспечивают, таким образом, прохождение сигналов через контролируемую среду.

Изобретение относится к измерительной технике и может быть использовано в устройствах для измерений расхода газа в трубопроводах. Заявлен способ измерения расхода газа в трубопроводах и устройство для его осуществления.

Изобретение относится к измерительной технике, а именно к способам измерения расхода жидкостей и газов в трубопроводах без контакта с контролируемой средой. Изобретение может быть использовано во многих областях промышленности и жилищно-коммунального хозяйства (ЖКХ), в том числе там, где требуется измерение расхода на коротких прямых участках трубопровода.

Использование: для измерения расхода высокотемпературной текучей среды. Сущность изобретения заключается в том, что ультразвуковой датчик содержит пьезоэлектрический вибратор, выполненный из ниобата лития и имеющий в качестве поверхности выхода поверхность, полученную путем поворота поверхности, перпендикулярной оси Υ кристалла ниобата лития, на угол 36°±2° вокруг оси X; демпфер, выполненный из титана; и соединяющий слой для соединения одной поверхности демпфера с поверхностью выхода; при этом соединяющий слой выполнен из серебра и стеклянной фритты, причем стеклянная фритта имеет коэффициент линейного расширения в диапазоне от 5×10-6 K-1 до 15×10-6 K-1.

Использование: для измерения потока. Изобретение относится к измерению потока, в частности к системе измерения потока путем пространственного пересечения множества путей приема-передачи друг с другом внутри трубопровода.

Предложены система и способ ультразвукового измерения расхода. В одном варианте реализации ультразвуковая измерительная система для измерения расхода содержит канал для потока текучей среды и множество ультразвуковых расходомеров.

Изобретение относится к ультразвуковым расходомерам-счетчикам для безнапорного потока сточных вод и может быть использовано в других безнапорных потоках. Ультразвуковой расходомер-счетчик включает коллектор, датчики скорости и глубины потока, установленные на вершине перекатной вставки, закрепленной на дне коллектора. Перекатная вставка сжимает безнапорный поток снизу, и на вершине переката поток становится чистым от илистых частиц, и результаты измерения расхода потока существенно повышаются. Перекатная вставка с датчиками на вершине легко устанавливается в коллекторе и легко перемешивается по дну коллектора при необходимости в любые сечения его. Технический результат - повышение точности измерения скорости потока с погрешностью менее 1%. 1 ил.

Изобретение относится к системе и способу ультразвукового измерения расхода. В одном варианте реализации измерительная система для ультразвукового измерения расхода содержит множество ультразвуковых расходомеров. Каждый из ультразвуковых расходомеров содержит устройство обработки данных потока. Устройство обработки данных потока выполнено с возможностью сохранения множества интервалов скорости, каждый из которых соответствует диапазону скоростей потока расходомеров. Устройство обработки данных потока также выполнено с возможностью сохранения, в пределах каждого из интервалов, значения, характеризующего предыдущую среднюю скорость потока текучей среды через данный расходомер из расходомеров, связанный с данным интервалом из указанных интервалов. Устройство обработки данных потока дополнительно выполнено с возможностью определения, в качестве реакции на неисправность одного из расходомеров, ожидаемой средней скорости потока текучей среды через систему на основании значений, сохраненных в интервалах. Технический результат - улучшение точности измерения потока и защита от неисправностей. 3 н. и 27 з.п. ф-лы, 7 ил., 3 табл.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока. Технический результат - возможность использования системы для решения задач по диагностике расхода воды. 4 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя, и первый направленный ответвитель, основной выход которого соединен с первым входом циркулятора, а дополнительный выход соединен с первым входом смесителя. При этом второй вход смесителя соединен со вторым выводом циркулятора, а третий вывод циркулятора соединен с приемо-передающей антенной. Дополнительно устройство содержит второй и третий направленные ответвители, фазовый детектор, выходом соединенный с управляющим входом генератора СВЧ, выход которого соединен со входом второго направленного ответвителя, основной выход которого в свою очередь соединен с входом третьего направленного ответвителя, дополнительный выход которого соединен с первым входом фазового детектора, устройства ввода и вывода электромагнитной волны в трубопровод, соединенные соответственно с основным выходом третьего направленного ответвителя и со вторым входом фазового детектора, умножитель частоты, входом соединенный с дополнительным выходом второго направленного ответвителя, а выходом с входом первого направленного ответвителя. Технический результат заключается в повышении точности измерения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны и выделяют доплеровский сигнал их разности со средней частотой. При этом радиоволну подают с выхода умножителя частоты, на вход которого поступает радиоволна с частотой ƒk, которую образуют путем перестройки частоты задающего генератора до обеспечения нуля разности фаз между введенной в трубопровод радиоволной и выведенной из нее на расстоянии L. В то же время под углом α к направлению движения потока возбуждают акустическую волну с частотой . Принимают отраженную волну и выделяют акустическую доплеровскую частоту путем смешивания с частью падающей волны, а массовый расход определяют по радиоволновой доплеровской частоте и отношению между радиоволновой и акустической доплеровскими частотами. Технический результат заключается в повышении точности измерения. 1 ил.

Группа изобретений относится к способу и устройству для контроля и/или оптимизации процессов течения, в частности процессов литья под давлением. В способе контроля и/или оптимизации процессов течения колебания, возникающие вследствие течения материала, регистрируются и оцениваются, причем спектр колебаний регистрируется и подвергается многомерному анализу в различные моменты времени или (квази) непрерывно. Оценку колебаний осуществляют на основе распознавания образов, являющихся характерными для соответствующего процесса литья под давлением. Устройство для контроля и/или оптимизации процессов литья включает акустические датчики, размещенные на узлах экструдера, для осуществления процесса литья под давлением. Технический результат, достигаемый при использовании способа и устройства по изобретениям, заключается в обеспечении точности контроля и оценки процесса литья под давлением. 2 н. и 15 з.п. ф-лы, 1 ил.

Предложенный способ модернизации диафрагменного расходомера включает обеспечение тела диафрагменного фитинга, имеющего канал и выполненный с возможностью размещения в нем диафрагмы, множество выпускных отверстий и множество датчиков давления, установленных в указанном множестве выпускных отверстий. Способ дополнительно включает удаление диафрагмы и множества датчиков давления из тела диафрагменного фитинга и установку множества преобразователей в указанное множество выпускных отверстий. По меньшей мере два из множества преобразователей выполнены с возможностью генерирования сигнала, и по меньшей мере два из множества преобразователей выполнены с возможностью приема сигнала. Кроме того, способ включает измерение расхода текучей среды, протекающей через канал, на основании выходного сигнала каждого из множества преобразователей. Технический результат - обеспечение возможности усовершенствования существующих диафрагменных расходомеров для использования более новых технологий. 3 н. и 15 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к способам и устройствам изучения смешанного потока газа, жидкости и твердых частиц. Газ и жидкость могут быть представлены водой, паром и различными фракциями углеводородов. Область применения предлагаемого технического решения - нефтегазовая промышленность. Способ определения параметров скважинного многофазного многокомпонентного потока включает пропускание через поток оптического сигнала в диапазоне длин волн от 850 до 2000 нм, регистрацию сигнала после его взаимодействия с потоком и компьютерную обработку получаемых результатов. Сигнал подают на не менее чем двух различных длинах волн, предварительно разделив его на оптическом делителе на две части, одна из которых является эталонной, производят параллельную регистрацию эталонного сигнала, а обработку получаемых результатов проводят на основе сравнения обоих сигналов по интенсивности и фазе. В заявляемом способе обработку получаемых результатов возможно проводить на основе расчета скорости компонентов потока, получая голографическую картину потока. Устройство для определения параметров скважинного многофазного многокомпонентного потока содержит измерительную камеру в форме трубы, а также дополнительно содержит как минимум один источник оптического сигнала, как минимум один детектор оптического сигнала, расположенный с его источником на одной оси, оптический делитель, оптическую систему доставки эталонного сигнала на детектор в обход измерительной камеры и блок обработки, при этом источник и детектор отделены стенками измерительной камеры, выполненными из материала, прозрачного для оптического сигнала. Техническими результатами изобретения являются возможность определения концентрации различных фаз многофазного потока в исследуемой области, построение пространственного распределения флюидов в исследуемой области, оценка динамики движения и получение данных об объемных долях компонент потока. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к ультразвуковым расходомерам, которые могут быть использованы для измерения объемного расхода жидкостей, газов, газожидкостных смесей и жидкостей, содержащих нерастворенные твердые частицы. Ультразвуковой расходомер содержит измерительную камеру, установленную в потоке текучей среды, N пар входных и выходных датчиков, установленных на измерительной камере, возбудитель, первое коммутирующее устройство, соединенное с датчиками и возбудителем и установленное между датчиками и возбудителем с возможностью выборочного соединения датчиков с возбудителем, причем возбудитель поочередно возбуждает каждый входной и выходной датчик, приемник, соединенный с первым коммутирующим устройством, первое коммутирующее устройство, установленное с возможностью соединения каждого датчика с приемником, и второе коммутирующее устройство, соединенное с возбудителем и приемником. Коммутирующие устройства выполнены в виде ключей Т- или Г-образной структуры, непосредственно с выходом возбудителя соединено согласующее сопротивление (Z1), непосредственно к входу приемника включено согласующее сопротивление (Z2), приблизительно равное (Z1), сопротивление любого ключа (Rкл) много меньше согласующих сопротивлений (Z1, Z2), причем согласующие сопротивления по величине не превышают утроенное сопротивление датчиков согласно соотношению Rкл<<Z1≈Z2<3|Zдатчика|, первое коммутирующее устройство выполнено в виде 2N ключей, количество которых равно количеству датчиков и каждый ключ соединен последовательно с одним датчиком, все последовательно соединенные с датчиками ключи включены (соединены) в одну точку, которая является точкой соединения еще по меньшей мере двух ключей второго коммутирующего устройства, первый из которых подключен к выходу возбудителя с согласующим сопротивлением (Z1), а второй - к входу приемника с согласующим сопротивлением (Z2). Согласующее сопротивление (Z1) соединено последовательно с выходом возбудителя и первым ключом второго коммутирующего устройства. 2 з.п. ф-лы, 5 ил.

Предложены устройство и способы проверки результатов измерения температуры в ультразвуковом расходомере. Ультразвуковая система измерения расхода содержит канал для протекания текучей среды, датчик температуры, ультразвуковой расходомер и устройство обработки данных о расходе. Датчик температуры размещен для выдачи значения измеренной температуры текучей среды, протекающей в канале. Ультразвуковой расходомер выполнен с возможностью измерения времени прохождения ультразвукового сигнала через текучую среду. Устройство обработки данных о расходе выполнено с возможностью: 1) вычисления скорости звука через текучую среду на основании времени прохождения, 2) расчета вычисляемой температуры текучей среды на основании скорости звука, 3) применения поправки, на основании предыдущей разницы между вычисленной температурой и измеренной температурой, к параметру проверки температуры и 4) определения, на основании параметра проверки температуры, находится ли текущая разница между измеренной температурой и вычисленной температурой в пределах предварительно определенного диапазона. Технический результат - обеспечение проверки приборов для измерения температуры в ультразвуковой системе измерения расхода без необходимости в использовании дополнительных приборов и/или без простоя системы для осуществления испытания. 4 н. и 21 з.п. ф-лы, 8 ил.
Наверх