Способ получения нанокапсул рибофлавина в геллановой камеди

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина характеризуется тем, что в качестве оболочки для нанокапсул используют геллановую камедь, при этом 100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую 100, 300 или 500 мг геллановой камеди в присутствии 0,01 г Е472с, затем перемешивают при 1300 об/мин, после приливают 5 мл бутилхлорида, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре. 1 ил., 1 табл., 4 пр.

 

Изобретение относится к области нанотехнологии.

Ранее были известны способы получения микрокапсул.

Известен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования (патент РФ 2173140, МПК А61К 009/50, А61К 009/127, опубл. 10.09.2001).

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук действует разрушающе на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

Известен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин (патент РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009). Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ (патент РФ 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999), при котором в воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул рибофлавина, согласно изобретению в качестве оболочки нанокапсул используется альггеллановая камедь, а в качестве ядра - рибофлавин при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование геллановой камеди в качестве оболочки частиц и рибофлавина - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул рибофлавина.

Пример 1. Получение нанокапсул рибофлавина, соотношение ядро:болочка 1:3

100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 2. Получение нанокапсул рибофлавина, соотношение ядро:оболочка 1:1

100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

Пример 3. Получение нанокапсул рибофлавина, соотношение ядро:оболочка 1:5

100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую указанного 500 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

Пример 4. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length : Auto, Min Expected Size : Auto длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул рибофлавина, характеризующийся тем, что в качестве оболочки нанокапсул используют геллановую камедь, при этом 100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую 100, 300 или 500 мг геллановой камеди в присутствии 0,01 г E472c, затем перемешивают при 1300 об/мин, после приливают 5 мл бутилхлорида, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к полупроводниковой микроэлектронике и наноэлектронике и может быть использовано при создании логических интегральных схем с элементами нанометровых размеров.

Изобретение относится к медицине. Описан состав для биологически активной гелевой повязки, включающий смесь, содержащую альгинат натрия и порошок природных цеолитовых пород, предпочтительно клиноптилолит-смектитовых, с крупностью, предпочтительно, 10-100 мкм, но не меньше 200 нм, при этом в составе смеси содержание природных цеолитовых пород составляет 60-70% от ее массы, остальное порошок альгината натрия в пересчете на объем состава.

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах.
Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии.

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (99Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (99mTc).

Изобретение относится к области фундаментальной физики и может быть использовано при исследовании теплофизических свойств сверхтекучих квантовых жидкостей. Платина-платинородиевые термопары 1 и 2 погружают в расплав чистого борного ангидрида 5.

Изобретение относится к оптике и может быть использовано при определении фазового состава нанопорошков из оксида иттрия. В способе определения моноклинной метастабильной фазы оксида иттрия по сдвигу полос оптического поглощения ионов Nd3+ или других редкоземельных элементов в нанокристаллитах для определения степени поглощения излучения в диапазоне длин волн 200-1100 нм изготовлены образцы из нанопорошка оксида иттрия в моноклинной и кубической фазах круглой формы диаметром 15 мм и толщиной 200÷600 мкм путем прессования под давлением 50-150 МПа без добавок.

Изобретение относится к области оптических измерений и касается способа определения оптических свойств наночастиц. Измерения проводят с использованием фотометрического шара.

Настоящее изобретение относится к составу композиционного смазочного материала на базе масла МС-20, являющегося смазочной основой, и дисперсной присадки, при этом в качестве данной присадки используют продукт, представляющий собой нанодисперсные частицы диселенида вольфрама пластинчатой формы размером 60×5 нм, полученные методом газофазного синтеза, формула которых WSe2, где W - вольфрам, Se - селен; в данном масле концентрация нанодисперсных частиц составляет 0,5-4% по массе.

Изобретение относится к области физико-химического анализа материалов, более конкретно к установлению зависимости поверхностного натяжения двухкомпонентной наночастицы сферической формы, находящейся в собственной двухкомпонентной матрице в зависимости от радиуса наночастицы и состава матрицы и наночастицы.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из ксантановой камеди.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков - цефтриаксона или цефотаксима.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются цефалоспориновые антибиотики, в качестве оболочки - полудан при соотношении оболочка:ядро 3:1, при этом к водному полудану добавляют порошок цефалоспоринового антибиотика и препарат Е472 с в качестве поверхностно-активного вещества, при перемешивании после растворения компонентов реакционной смеси по каплям приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется L-аргинин или норвалин, в качестве оболочки - альгинат натрия при соотношении оболочка:ядро 3:1 или 1:5, при этом L-аргинин или норвалин медленно по порциям добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1000 об/с, далее приливают гексан, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина в оболочке из альгината натрия осуществляют физико-химическим методом осаждения нерастворителем, при этом рибофлавин диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472с.

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученный осадок отфильтровывают и сушат при комнатной температуре, при этом флавоноиды шиповника и альгинат натрия берут в соотношении 1:3, 1:1 или 5:1.

Изобретение относится к нанотехнологии, в частности к растениеводству, и заключается в способе получения нанокапсул 6-аминобензилпурина, который характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, а в качестве ядра используют 6-аминобензилпурин, при осуществлении способа к альгинату натрия в бутаноле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, порошок 6-аминобензилпурина по порциям добавляют в суспензию альгината натрия в бутаноле, после образования самостоятельной твердой фазы очень медленно по каплям добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, соотношение 6-аминобензилпурина : альгинат натрия составляет 1:3.

Изобретение относится к нанотехнологии, в частности к пищевой промышленности, и представляет собой способ получения нанокапсул флаваноидов шиповника, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра используются флаваноиды шиповника, при осуществлении способа флаваноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты при перемешивании, приливают этилацетат, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение флаваноиды шиповника : альгинат натрия составляет 1:3, или 1:1, или 5:1.

Изобретение относится к медицине и представляет собой способ получения нанокапсул лозартана калия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра используется лозартан калия, при осуществлении способа лозартан калия диспергируют в суспензию альгината натрия в гексане в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты при перемешивании, приливают 1,2-дихлорэтан, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение альгинат натрия : лозартан калия составляет 3:1.

Изобретение относится к медицине, а именно к лечению вертеброгенных болевых синдромов. Для этого проводят комплекс мероприятий, включающий: ограничение двигательного режима пораженного сегмента и фармакотерапию.
Наверх