Способ получения детального радиолокационного изображения ограниченного участка земной поверхности

Изобретение относится к области радиолокации и может быть использовано для решения задач радиолокационного мониторинга ограниченных участков земной поверхности, представляющих интерес. Достигаемый технический результат - упрощение возможности получения высокодетального изображения ограниченного по площади участка земной поверхности и снижение затрат на его получение. Указанный технический результат достигается за счет того, что осуществляют прямой синтез апертуры при когерентной обработке выходных откликов по меньшей мере четырех приемопередатчиков. Приемопередатчики неподвижно установлены по окружности вокруг исследуемого объекта. Главные лучи диаграммы направленности реальной антенны направлены в центр наблюдаемого участка. При этом выходные отклики формируются в течение времени tобр, отводимого на работу отдельно взятого приемо-передающего элемента при последовательном их электронном переключении. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к области радиолокации и позволяет получать детальное радиолокационное изображение ограниченных по площади участков земной поверхности в интересах решения народохозяйственных задач.

Радиолокационное изображение (РЛИ) земной поверхности будет высоко детальным, когда линейный размер элемента его разложения δlx,δly (элемента разрешения радиолокационной системы (РЛС), которая его получает) не больше характерного линейного размера la наблюдаемого объекта земной поверхности: δlx, δly≤la.

В настоящее время для обеспечения высокого разрешения РЛС по дальности δД=:δlx используют сложные зондирующие сигналы [Бакулев П.А. Радиолокационные системы. Учебник для вузов. - М.: Радиотехника, 2007]. Для обеспечения высокого линейного разрешения РЛС по азимуту δlаз=δlx используют режим синтезирования искусственной апертуры [Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. - М.: Радиотехника, 2005]. В то же время, при небольших дальностях радиолокационного наблюдения получение высокодетального РЛИ наблюдаемой земной поверхности возможно только за счет процедуры синтезирования искусственной апертуры антенны [Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. - М.: Радиотехника, 2005]. Традиционно, при использовании процедуры синтезирования апертуры обычно полагают, что фазовый центр (ФЦ) реальной антенны РЛС, установленный на подвижном носителе, перемещается по прямолинейной траектории со скоростью носителя, радиолокатор облучает поверхность земли и обеспечивается когерентная обработка принимаемого сигнала, отраженного от наблюдаемой поверхности [Бакулев П.А. Радиолокационные системы Учебник для вузов. - М.: Радиотехника, 2007]. При этом для обеспечения процесса синтеза главный луч (ГЛ) реальной антенны должен быть отклонен относительно линии пути носителя в пределах ± (10…90) градусов (фиг. 1). Радиолокатор, установленный на носителе, может работать как в непрерывном, так и импульсном режимах излучения. В результате данного способа синтезирования обеспечивается линейная разрешающая способность по азимуту, равная [Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. - М.: Радиотехника, 2005]

где λ - длина волны зондирующих колебаний РЛС; Д - дальность до объекта зондирования; Vc - скорость подвижного носителя; Тн - время обработки отраженного сигнала (время синтезирования); φа - угол установки ГЛ диаграмм направленности (ДН) реальной антенны относительно линии пути в плоскости азимута. При этом за счет синтеза искусственной апертуры в плоскости угла места на малых дальностях также обеспечивается высокое линейное разрешение, однако оно будет хуже, чем в плоскости азимута, определяемое выражением (1).

В [Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. - М.: Радиотехника, 2005] также утверждается, что при полете носителя вокруг наблюдаемого объекта по круговой траектории за счет синтеза апертуры искусственной антенны обеспечивается линейное разрешение равное 0,18 λ.

Получение высокодетального РЛИ возможно также за счет процедуры синтеза искусственной апертуры при механическом вращении ФЦ реальной антенны вокруг центра масс носителя [Татарский Б.Г., Ясенцев Д.А. Анализ особенностей формирования и обработки траекторного сигнала в РЛС с синтезированием апертуры антенны при вращении ее фазового центра // Информационно-измерительные и управляющие системы. - М.: Радиотехника, 2008, №9]. В этом случае ФЦ реальной антенны перемещается по круговой траектории с постоянной скоростью и обеспечивается когерентная обработка принимаемого сигнала в течение времени наблюдения Тн, равного периоду вращения. Радиолокатор, осуществляющий процесс синтеза искусственной апертуры данным способом, может работать как в непрерывном, так и в импульсном режиме излучения. В результате данного способа синтеза апертуры обеспечивается линейная разрешающая способность по азимуту, равная [Татарский Б.Г., Ясенцев Д.А. Анализ особенностей формирования и обработки траекторного сигнала в РЛС с синтезированием апертуры антенны при вращении ее фазового центра // Информационно-измерительные и управляющие системы, 2008, Т. 6, №9]

где R - радиус вращающей структуры; Д - дальность до объекта наблюдения.

При малой дальности до объекта наблюдения (поверхности земли) синтезирование искусственной апертуры возможно и в плоскости угла места.

При этом линейная разрешающая способность РЛС в плоскости угла места будет определяться следующим выражением [Татарский Б.Г., Ясенцев Д.А. Особенности синтезирования апертуры при вращении фазового центра антенны в режиме обзора «под собой» // Информационно-измерительные и управляющие системы, 2009, Т. 7, №1]

где ψ - угол визирования объекта наблюдения; Н - высота расположения центра масс носителя.

Из уровня техники известно также изобретение «Наземная обзорная радиолокационная станция аэропорта и радиолокационная установка» по патенту №2115141, МПК G01S 13/91, публ. 10.07.1998 г. (прототип).

Изобретение основывается на радиолокационной станции для зоны поверхности земли, в частности зоны аэропорта, предназначенной для размещения в соответствии с предварительно выполненной геометрической увязкой с данной контролируемой зоной.

В соответствии с общим определением изобретения такая обзорная радиолокационная станция содержит в соответствующей комбинации

- по меньшей мере одну неподвижную антенну, представляющую собой решетку излучающих элементов, выстроенных вертикальными колонками и связанных с системой фазосдвигающих элементов,

- источник излучения, способный выдавать сверхвысокочастотный сигнал предварительно определенной мощности на по меньшей мере одной предварительно определенной частоте,

- средства сверхвысокочастотной передачи и приема,

- по меньшей мере один канал передачи,

- по меньшей мере один канал приема,

- средства обработки цифровых сигналов, поступающих от первого и второго приемных элементов, предназначенные для радиолокационного обнаружения объектов в контролируемой зоне,

- средства управления системой фазосдвигающих элементов.

Недостатком известных способов является их трудоемкость и высокая стоимость.

Заявленный технический результат от использования предложенного технического решения может быть выражен в упрощении возможности получения высокодетального изображения ограниченного по площади участка земной поверхности и снижении затрат на его получение.

Указанный технический результат достигается следующим образом. Способ получения высокодетального радиолокационного изображения ограниченного участка земной поверхности включает прямой синтез апертуры за счет имитации вращения ФЦА при последовательном электронном переключении и когерентной обработке выходных откликов по меньшей мере четырех приемо-передающих элементов, неподвижно установленных по окружности вокруг исследуемого объекта. Главные лучи диаграммы направленности реальной антенны направлены в центр наблюдаемого участка. При этом выходные отклики формируются в течение времени to6p, отводимого на работу отдельно взятого приемо-передающего элемента при последовательном их электронном переключении.

Преимущественно количество приемо-передающих элементов определяется из расчета

где Твр - время, соответствующее одному полному обороту вращения фазового центра по окружности длиной 2π Д0 со скоростью Ωск; toбp - временной интервал, необходимый для излучения и обработки отраженного сигнала от ограниченного участка местности отдельно взятым ПРМ-ПРД элементом распределенной системы; Nm - максимально возможное число ПРМ-ПРД элементов, располагаемых по окружности вокруг ограниченного участка местности;

а линейная разрешающая способность по азимуту распределенной РЛС с синтезированием аппаратуры определяется как

где Д0 - расстояние от приемо-передающего элемента до центра наблюдаемого участка.*

В предлагаемом способе синтез искусственной апертуры обеспечивается за счет перемещения ФЦ реальной антенны по окружности вокруг ограниченного участка местности, детальное РЛИ которого требуется получить. Причем перемещение ФЦ вокруг наблюдаемого участка местности обеспечивается электронным образом за счет последовательного переключения распределенных в пространстве элементов «прием-передача». Главный луч каждого элемента «прием-передача» направлен на участок местности, РЛИ которого необходимо получить. Формирование высокодетального РЛИ участка земной поверхности осуществляется за счет последовательного электронного перемещения ФЦ антенны в распределенной по окружности системе элементов «прием-передача» при когерентной обработке принимаемых сигналов каждым отдельно взятым элементом в общей для всех распределенных элементов системе обработки.

Сущность изобретения состоит в способе получения высокодетального РЛИ ограниченного участка земной поверхности, основанного на принципе синтезирования апертуры антенны за счет электронного перемещения ФЦ реальной антенны в распределенной системе из совокупности приемо-передающих элементов, размещенных по окружности вокруг участка земной поверхности, представляющего интерес, при когерентной обработке сигналов от каждого элемента в общей для всех элементов системе обработки. Полагается, что ГЛ диаграммы направленности антенны каждого из распределенных элементов «прием-передача» направлен на участок земной поверхности, изображение которого требуется получить, а ширина луча позволяет охватить весь наблюдаемый участок без сканирования (фиг. 3). При таком способе за один оборот ФЦ пробегает расстояние равное 2πД0, где Д0 - расстояние до центра наблюдаемого участка земной поверхности. В результате линейная разрешающая способность по азимуту распределенной РЛС с синтезированием апертуры определяется величиной равной

При подъеме элементов «прием-передача» на фиксированную величину h<<Д0 и малой величине дальности Д (фиг. 4) обеспечивается высокая разрешающая способность при использовании данного метода и в вертикальной плоскости.

Реализация данного способа получения высокодетального РЛИ возможна при работе распределенных приемо-передающих элементов как в непрерывном, так и импульсном режиме излучения.

На Фиг. 1 представлена схема реализации способа синтезирования апертуры искусственной антенны при движении носителя РЛС по линейной траектории с постоянной скоростью Vc. Показаны: линия пути (ЛП) носителя РЛС, угловые сектора (1, 2) возможного расположения ГЛ реальной антенны относительно ЛП в процессе синтезирования апертуры искусственной антенны за счет линейного перемещения ФЦ реальной антенны РЛС, вектор скорости Vc носителя РЛС, определяющий направление его движения вдоль ЛП, положение объекта наблюдения в виде точечной цели ТЦ, расположенного на расстоянии Д0 относительно ЛП носителя РЛС, текущее расстояние Д между РЛС и ТЦ.

На Фиг. 2 представлена схема реализации способа синтезирования апертуры антенны при вращении ФЦ реальной антенны относительно центра масс носителя РЛС. Показаны: траектория перемещения ФЦ реальной антенны в виде окружности радиусом Д0; положение ФЦ реальной антенны (ФЦА) на траектории вращения; направление вращения ФЦА с постоянной угловой скоростью Ωск по круговой траектории относительно центра вращения О; мгновенное положение ГЛ диаграммы направленности реальной антенны шириной θа; положение на поверхности земли объекта наблюдения в виде точечной цели (ТЦ); расстояние Д до ТЦ, соответствующее текущему моменту времени.

На Фиг. 3 представлена схема реализации способа получения высокодетального РЛИ ограниченного участка местности на основе принципа синтезирования искусственной апертуры антенны с помощью распределенной радиолокационной системы, состоящей из совокупности приемо-передающих (ПРМ-ПРД) элементов, при электронном перемещении ФЦ реальной антенны по окружности вокруг участка местности. Показаны: положение ПРМ-ПРД элементов в распределенной системе по окружности 1, радиусом Д0, вокруг участка местности; ограниченный участок местности 2, представляющий интерес, с центром в точке О; мгновенное положение ФЦА, соответствующее положению произвольного ПРМ_ПРД элемента; положение ГЛ ДН реальной антенны произвольного ПРМ-ПРД элемента, шириной θа; направление перемещения ФЦА с постоянной угловой скоростью Ωc по круговой траектории относительно центра вращения О.

На Фиг. 4 представлена схема расположения одного из ПРМ-ПРД элементов на фиксированной высоте h при реализации предлагаемого способа получения высокодетального РЛИ ограниченного участка земной поверхности на основе принципа синтезирования апертуры искусственной антенны с помощью распределенной системы, состоящей из совокупности ПРМ-ПРД элементов, при электронном перемещении ФЦА и когерентной обработке выходных откликов каждого элемента. Показаны: произвольный ПРМ-ПРД элемент из совокупности распределенных элементов (ФЦА); положение ГЛ ДН реальной антенны ПРМ-ПРД элемента, шириной θа; расстояние Д0 до наблюдаемого участка земной поверхности в вертикальной плоскости; наблюдаемый участок земной поверхности 1, высокодетальное РЛИ которого требуется получить.

Реализация данного способа получения высокодетального РЛИ возможна при использовании распределенной радиолокационной системы, состоящей из совокупности ПРМ-ПРД элементов, расположенных по окружности относительно центра участка земной поверхности, представляющей интерес, которые последовательно включаются в работу и излучают в направлении на участок поверхности зондирующий сигнал и принимают отраженный сигнал от поверхности, переключение ПРМ-ПРД элементов производится электронным образом с периодом Тп, достаточным для излучения и приема отраженного сигнала произвольным ПРМ-ПРД элементом. Для формирования РЛИ всего участка земной поверхности обеспечивается совместная когерентная обработка принимаемых сигналов произвольным ПРМ-ПРД элементом в общей системе обработки в течение времени одного периода электронного вращения ФЦ реальной по круговой траектории радиусом Д0 с угловой скоростью Ωc. При этом обеспечивается линейная разрешающая способность РЛС по угловой координате, определяемая выражением (3). Реализация данного способа возможна при работе ПРМ-ПРД элементов как в непрерывном, так и импульсном режиме излучения.

1. Способ получения высокодетального радиолокационного изображения ограниченного участка земной поверхности, включающий прямой синтез апертуры при когерентной обработке выходных откликов распределенной радиолокационной системы, включающей по меньшей мере четыре приемопередатчика, неподвижно установленных по окружности вокруг исследуемого объекта, главные лучи диаграммы направленности реальной антенны которых направлены в центр наблюдаемого участка, при этом выходные отклики формируются в течение времени tобр, отводимого на работу отдельно взятого приемопередатчика при последовательном их электронном переключении.

2. Способ по п. 1, по которому количество приемопередатчиков определяется из расчета
Nm≤N,
N=Твр/tобр,
где tобр - временной интервал, необходимый для излучения и обработки отраженного сигнала от ограниченного участка местности отдельно взятым приемопередатчиком распределенной системы; Nm - максимально возможное число приемопередатчиков, располагаемых по окружности вокруг ограниченного участка местности; Твр - время, соответствующее одному полному обороту вращения фазового центра по окружности длиной 2π Д0, где Д0 - расстояние от приемопередатчика до центра наблюдаемого участка, со скоростью Ωск;

3. Способ по п. 1, по которому линейная разрешающая способность по азимуту распределенной радиолокационной системы с синтезированием апертуры определяется как
δlx=λД/(4πД0),
где Д0 - расстояние от приемопередатчика до центра наблюдаемого участка;
Д - дальность до объекта исследования или наблюдения;
λ - длина волны зондирующих колебаний РЛС.



 

Похожие патенты:

Настоящее изобретение относится к области обеспечения безопасности, а именно к сканирующему устройству формирования топографического изображения в миллиметровом диапазоне волн для досмотра людей.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью на базе доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой.

Изобретение относится к формированию изображения сверхвысокого разрешения. Достигаемый технический результат - получение увеличенного разрешения.

Изобретение относится к области радиолокации и может быть использовано для мониторинга протяженных сред и объектов. Достигаемый технический результат - повышение скорости мониторинга протяженных сред и объектов, а также уменьшение габаритов фокусирующей системы.

Группа изобретений относится к области радиовидения и может быть использована при проектировании радиотехнических систем. Достигаемый технический результат - снижение уровня помех на выходе отдельного канала формирования радиоголограммы без качественного увеличения его стоимости.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Достигаемый технический результат - стабилизация положения зоны картографирования по курсу летательного аппарата.

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах.

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах.

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки.

Сканирующее устройство формирования трехмерного голографического изображения, в миллиметровом диапазоне волн, которое обеспечивает реализацию способа исследования объекта, включает в себя модуль трансивера миллиметрового диапазона, содержащий антенную решетку, направляющее устройство рельсового типа, с которым соединен модуль трансивера. При этом сканирование, выполняемое модулем трансивера миллиметрового диапазона, представляет собой плоскостное сканирование. При этом сканирующее устройство формирования трехмерного голографического изображения выполнено с возможностью осуществления трехмерного сканирования. Направление сканирования может варьироваться путем изменения ориентации направляющего устройства рельсового типа. Технический результат заключается в упрощении конструкции и ускорении процесса сканирования объекта при помощи длин волн миллиметрового диапазона. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к способам отображения радиолокационной информации на экранах индикаторов радиолокационных станций (РЛС). Достигаемый техническим результат - повышение достоверности и информативности радиолокационной информации о параметрах воздушных, надводных и наземных объектов. Указанный результат достигается за счет приема радиолокационной станцией (РЛС) отраженных от объектов радиосигналов, преобразования принятых от объектов сигналов в цифровую форму, отображения преобразованных сигналов на плоском экране в виде световых меток на плоскости z0y, а азимутальных и дальностных шкал в виде пересекающихся линий также на плоскости z0y, при этом плоскость экрана z0y виртуально наклоняют в плоскостях z0x и y0x, метку от объекта переносят параллельно оси 0z и высвечивают выше наклоненной плоскости экрана на величину высоты объекта и превращают в виртуальную метку, к этой виртуальной метке добавляют черточку параллельно оси 0z, со шкалой высоты на черточке, в направлении наклоненной плоскости экрана, черточку высоты одним концом упирают в виртуальную метку от объекта, а вторым концом упирают в точку реальных значений азимута и дальности объекта на наклоненном экране, на котором высвечивается точка со значениями азимута и дальности объекта относительно точки стояния РЛС, а наклоненная плоскость экрана отображает или плоскость горизонта земли или плоскость поверхности земли относительно точки стояния РЛС (в зависимости от режима работы РЛС), при этом длина черточки высоты, со шкалой высоты, характеризует высоту объекта над горизонтом или над уровнем земли (в зависимости от режима работы РЛС). Скорость и направление перемещения объекта в пространстве отображаются черточкой-вектором скорости, начало которого упирается в высвечиваемую виртуальную метку объекта, а направление черточки-вектора скорости характеризует направление перемещения объекта в пространстве относительно точки стояния РЛС, и кроме этого на черточку-вектор скорости наносят шкалу скорости, которая характеризует величину скорости перемещения объекта в пространстве, а плоскость, характеризующую поверхность земли, отображают в виде части сферической поверхности, радиус которой пропорционален радиусу земли в точке стояния РЛС, а периметр сферической поверхности ограничивают дальностью обнаружения РЛС, в то же время, радиус сферической поверхности оперативно изменяют по желанию оператора, от пропорционального радиуса земли до бесконечности, превращая тем самым кривизну линии земли в прямую линию, то есть в линию горизонта, а наклон плоскостей z0y и y0x изменяют от 0 до 90 градусов, превращая изометрическое изображение обозреваемого РЛС пространства в декартово изображение, а псевдообъемное четырехмерное изображение - в трехмерное плоскостное изображение, то есть в трехмерный индикатор азимут - дальность - скорость или в трехмерный индикатор дальность - высота - скорость, а плоскость, характеризующую поверхность земли, поворачивают по желанию оператора вокруг оси, проходящей через точку стояния РЛС и перпендикулярной в этой точке к плоскости поверхности земли. Рядом с точкой, отображающей объект, отображают по желанию оператора модели-портреты объектов, взятые из банка данных РЛС, конфигурация которых пропорциональна конфигурации и размеру обнаруженных объектов. 4 ил.

Изобретение относится к бортовой информационной системе с антенной (2) для приема спутниковых данных географического положения. Техническим результатом является повышение качества приема слабых сигналов географического положения. Упомянутый технический результат достигается тем, что заявленная бортовая информационная система содержит устанавливаемый во внутреннем пространстве транспортного средства корпус (1) и модуль для обработки спутниковых данных географического положения; антенна (2) для приема спутниковых данных географического положения расположена на корпусе (1) бортовой информационной системы так, что во встроенном состоянии направление приема направлено во внутреннее пространство транспортного средства. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью радиометра со сканирующей по азимуту и углу места антенной. Достигаемый технический результат направлен на восстановление изображений объектов при шаге сканирования антенны радиометра по углу места, большем, чем шаг дискретизации искомого изображения. Указанный результат достигается за счет того, что формируют расширенную матрицу наблюдений путем интерполяции недостающих строк с последующей обработкой расширенной матрицы в частотной области с помощью восстанавливающего фильтра, что позволяет получать неискаженное изображение объектов. 4 ил.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение аппаратной функции по методу наименьших квадратов (МНК) при восстановлении изображений объектов. Способ восстановления изображений при неизвестной аппаратной функции заключается в умножении вектора наблюдений на матрицу весовых коэффициентов, вычисляемую предварительно на основе МНК-оценок аппаратной функции, найденных для эталонного изображения.

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение точности восстановления и разрешающей способности изображения объектов в двухканальной радиометрической системе, работающей с повышенным шагом сканирования по углу места. Способ формирования изображений заключается в разном порядке сканирования антенн по угловым координатам с последующей совместной обработкой полученных в двух измерительных каналах двух матриц измерения, в результате чего формируется матрица изображений объектов с повышенной разрешающей способностью по угловым координатам. 1 табл.

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью восстановления изображения в целом. Способ восстановления изображений заключается в применении оператора восстановления одномерного изображения к массиву данных отдельных строк и столбцов двух матриц наблюдения с последующей интерполяцией и объединением двух изображений в одно восстановленное изображение без пропусков строк и столбцов. 1 табл.

Изобретение относится к радиолокационной технике, в частности к аэрокосмическим бортовым радиолокационным станциям с синтезированием апертуры антенны (РСА), формирующим радиолокационные изображения (РЛИ) земной поверхности с использованием синтезирования антенного раскрыва (САР) в процессе сканирования этой поверхности диаграммой направленности антенны РСА. Достигаемый технический результат - уменьшение искажений формируемых РЛИ, возникающих за счет изменения доплеровского сдвига несущей частоты радиолокационных сигналов, отражаемых элементами земной поверхности, при перемещении носителя РСА. Указанный результат достигается за счет того, что способ формирования изображения земной поверхности в радиолокационной станции с синтезированием апертуры антенны заключается в объединении радиолокационных изображений парциальных участков земной поверхности, подлежащей радиолокационному обзору, получаемых посредством излучения и приема когерентных импульсов при облучении антенной РСА этих участков, аналого-цифровом преобразовании принятых радиолокационных сигналов, формировании двумерных массивов оцифрованных принятых сигналов путем их распределения по каналам дальности и периодам излучения и последующей цифровой обработке сформированных двумерных массивов, при этом облучение антенной РСА участков земной поверхности производится дискретным или скользящим способом, а суммирование амплитуд элементов разрешения парциальных РЛИ, соответствующих сформированным двумерным массивам, осуществляется после перевода этих массивов из системы координат «дальность-доплеровская частота» в нормальную земную систему координат (НЗСК). 1 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники и может быть использовано в радиолокационных системах дистанционного зондирования Земли. Достигаемый технический результат изобретения – повышение качества изображения путем повышения разрешающей способности формируемого радиолокационного изображения наблюдаемого участка земной поверхности в телескопическом режиме за счет уменьшения протяженности обобщенной функции неопределенности по пространственным координатам. Сущность изобретения заключается в формирования радиолокационного изображения в телескопическом режиме с помощью алгоритма оптимального восстановления случайных полей в дискретном времени, при этом шагом дискретизации по времени будет являться длительность интервала синтезирования апертуры, получают оптимальную оценку удельного коэффициента рассеяния, характеризующего неподвижное во времени радиолокационное изображение зондируемой поверхности, и корреляционную функцию ошибки восстановления на текущем этапе обработки, которые служат априорной информацией для вычислений на следующем этапе обработки. 3 ил.

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью сканирующего радиометра, и может быть использовано для получения радиотеплового изображения различных объектов. Технический результат изобретения заключается в определении корректной величины аппаратной функции радиометра в условиях его эксплуатации с целью обеспечения возможности получения радиотеплового изображения наблюдаемых объектов. Указанный результат достигается за счет размещения в зоне обзора антенны радиометра контрольного объекта, сканирования объекта антенной радиометра по азимуту и углу места, формирования радиометрического и оптического изображений области, содержащей контрольный объект с прилегающим фоном; формирования матриц Y и X, соответственно, радиометрического и оптического изображения, сегментирования матрицы X по контрасту амплитуд, представлении матрицы X в качестве эталонного радиометрического изображения контрольного объекта, и последующей математической обработки матриц Y и X с получением матрицы А, являющейся матричным представлением аппаратной функции радиометра. 1 з.п. ф-лы, 6 ил.
Наверх