Способ монтажа облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов



Способ монтажа облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов
Способ монтажа облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов

 


Владельцы патента RU 2591272:

Открытое Акционерное Общество "Фундаментпроект" (RU)

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями и может быть использовано для термостабилизации многолетнемерзлых и замораживания слабых пластичномерзлых грунтов. Способ монтажа облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов включает бурение сквозной пологонаклонной скважины, протяжку охлаждающего устройства, снабженного трубами испарителя и конденсатора, соединенными сильфонными рукавами, защищенными бандажами, в скважину до проектного положения, монтаж охлаждающих элементов на конденсаторные трубы охлаждающего устройства. Охлаждающее устройство заранее укладывают в защитную обойму, состоящую из обсадных труб муфтового соединения, оба торца которой снабжены амортизирующими прокладками и завинчены крышками, протягивают в скважину до проектной отметки с одновременным расширением скважины. Конденсаторные участки труб охлаждающего устройства освобождают от защитной обоймы, крепят их за анкеры. В зазор между защитной обоймой и стенками скважины устанавливают цементировочную трубу и извлекают буровым станком защитную обойму с одновременной подачей цементного раствора с водоцементным соотношением В:Ц=0,5 в зазор между охлаждающим устройством и стенками скважины. Технический результат состоит в повышении несущей способности грунтовых оснований, снижение нагрузок от сооружений на облегченные конструкции термостабилизаторов, снижении материалоемкости строительно-монтажных работ. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями, и может быть использовано для термостабилизации многолетнемерзлых и слабых грунтов.

При строительстве зданий и сооружений на многолетнемерзлых грунтах возникает необходимость применения специальных технических средств и технологий для сохранения их температурного режима в течение всего периода их эксплуатации с целью предотвращения ослабления несущей способности грунтов оснований при их оттаивании; при этом к наиболее эффективным технологиям относится использование парожидкостных охлаждающих устройств - двухфазных термосифонов и/или гравитационных тепловых труб, работа которых основана на конвекции легкокипящего жидкого теплоносителя (то же хладагента) под влиянием естественной разности температур охлаждаемого массива грунта и атмосферного воздуха.

Известна конструкция насыпного охлаждаемого основания (RU 2157872 С2, МПК E02D 3/115, опубликовано 20.10.2000), включающая охлаждающие трубы, соединенные с конденсаторной частью, и размещенные над ними слои теплоизоляции и отсыпку грунта; при этом охлаждающие трубы, заполненные низкокипящей жидкостью, размещены внутри защитных труб, выполненных с заглушенным торцом с одной стороны и открытым торцом с другой, и полостью, заполненной теплопроводной жидкостью. Защитные трубы расположены под отсыпкой грунта и слоем теплоизоляции с уклоном 0-10° к продольной оси основания в сторону заглушенных торцов, а открытые торцы выведены за пределы контура отсыпки грунта.

Наиболее распространенным методом установки вышеупомянутых охлаждающих устройств является их предпостроечный монтаж, заключающийся в откопке траншей и котлованов, отсыпке и трамбовке песчаной подушки, установке охлаждающих устройств с последующей засыпкой и трамбованием грунта, и установкой теплоизоляционного слоя.

Однако, при монтаже известных устройств в процессе обратной засыпки грунтом снижается пространственная прочность системы, так как засыпаемый грунт оказывает механическое воздействие на трубы, вследствие чего оси труб смещаются относительно проектного положения. Кроме того, в процессе обратной засыпки, при трамбовании грунта, образуются воздушные прослойки, обладающие существенным термическим сопротивлением.

Для термостабилизации грунтов также используют охлаждающие устройства различных конструкций, погружаемые в скважины, например, гравитационные тепловые трубы (RU 2387937 C1, МПК F28D 15/02, опубликовано 27.04.2010) содержащие герметичный, частично заправленный теплоносителем трубчатый корпус с зонами испарения, конденсации и транспортной зоной между ними.

Для облегчения изготовления, транспортировки и монтажа упомянутых устройств их корпус имеет вставки в виде сильфонных рукавов, снабженных жесткой съемной обоймой.

Погружение упомянутых охлаждающих устройств осуществляется статическим вдавливанием, что способствует существенным изгибающим нагрузкам на конструкцию, вызывающим ее критическую деформацию.

Наиболее близким к настоящему изобретению является охлаждающее устройство для температурной стабилизации многолетнемерзлых грунтов и способ монтажа такого устройства (RU 2454506 С2, МПК E02D 3/115, опубликовано 27.06.2012), при котором в пробуренную методом наклонно-направленного бурения скважину протягивается охлаждающее устройство.

Вышеупомянутые способ и устройство применимы при монтаже достаточно прочных и металлоемких охлаждающих устройств, в то время как облегченные конструкции из тонкостенных стальных труб и алюминиевых сплавов, обладающие небольшим термическим сопротивлением и высокой эффективностью охлаждения грунтов, могут при протяжке с большим усилием претерпеть деформации и потерять работоспособность. Кроме того, используемый в процессе бурения бентонитовый раствор со временем в скважине коагулирует, и стенки скважины постепенно обрушаются, а в пространстве между испарителем и упомянутыми стенками образуются воздушные полости, увеличивающие термическое сопротивление и снижающие эффективность работы испарителя.

Технический результат, на который направлено предлагаемое техническое решение, заключается в увеличении несущей способности грунтовых оснований, снижении нагрузок на облегченные конструкции охлаждающих устройств и снижение стоимости строительно-монтажных работ.

Заявленный технический результат достигается тем, что монтаж облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов включает бурение сквозной пологонаклонной скважины, протяжку в скважину до проектного положения охлаждающего устройства, содержащего заправленные хладагентом трубы конденсатора и испарителя, соединенные сильфонными рукавами, защищенными бандажами, при этом трубы конденсатора расположены по краям испарителя, а испаритель разделен непроницаемой перегородкой; монтаж охлаждающих элементов на конденсаторные трубы охлаждающего устройства. Согласно изобретению, охлаждающее устройство заранее укладывают в защитную обойму, состоящую из обсадных труб муфтового соединения, оба торца которой снабжены амортизирующими прокладками и завинчены крышками, протягивают в скважину с одновременным расширением скважины. Достигнув проектной отметки, конденсаторные участки труб охлаждающего устройства освобождают от защитной обоймы, крепят их за анкеры, в зазор между защитной обоймой и стенками скважины устанавливают цементировочную трубу и извлекают буровым станком защитную обойму с одновременной подачей цементного раствора с водоцементным соотношением В:Ц=0,5 в зазор между охлаждающим устройством и стенками скважины.

Сквозную пологонаклонную скважину для монтажа охлаждающих устройств бурят с промывкой цементным раствором с водоцементным соотношением В:Ц=0,9.

Особенности конструкции защитной обоймы, в частности наличие достаточно прочных соединений (муфты, крышки) и амортизирующих прокладок, обеспечивают надежную защиту облегченного охлаждающего устройства при его протяжке.

Цементация охлаждающих устройств позволит дополнительно, кроме создания льдогрунтового массива, укрепить окружающие грунты и защитить облегченное охлаждающее устройство от нагрузок сооружения и коррозионных процессов, увеличив, тем самым, срок его службы.

Таким образом, предлагаемое изобретение существенно снизит металлоемкость охлаждающих устройств и увеличит эффективность охлаждения грунтов оснований, что, в свою очередь, увеличит их несущую способность.

Сущность изобретения поясняется следующими чертежами:

На Фиг. 1 показано положение устройства перед его протяжкой;

На фиг. 2 изображено охлаждающее устройство в защитной обойме;

На Фиг. 3 изображено охлаждающее устройство в стадии завершения его протяжки;

На Фиг. 4 показан процесс извлечения защитной обоймы с одновременной цементацией скважины;

На Фиг. 5 представлена схема завершающего монтажа охлаждающего устройства.

Способ монтажа облегченного охлаждающего устройства реализуется следующим образом.

Перед пробуренной методом ННБ (наклонно-направленное бурение) с промывкой цементным раствором водоцементного отношения (В:Ц)=0,9 скважиной 1, со стороны выхода на поверхность пилотного долота, выкладывают охлаждающее устройство 2, снабженное трубами испарителя 3, конденсаторными трубами 4, сильфонными рукавами 5 в защитном бандаже 6 и непроницаемой перегородкой в испарителе 7 (Фиг. 1). Согласно изобретению, охлаждающее устройство 2 заранее помещают в защитную обойму 8, состоящую из обсадных труб 9, соединенных муфтами 10. С обеих торцов обойму 8 завинчивают крышками 11, фиксирующими через амортизирующие прокладки 12 установленное охлаждающее устройство 2. Одна из крышек 11 защитной обоймы снабжена серьгой 13, с которой соединяют вертлюг и расширитель 14 (Фиг. 2). Затем охлаждающее устройство, защищенное обоймой, протягивают в скважину 1 в сторону бурового станка 15, с необходимым расширением скважины, до выхода на поверхность первой муфты 10 защитной обоймы 8 (Фиг. 3). Далее отвинчивают крышку 11 с прокладкой 12, а в зазор между стенкой расширенной скважины 1 и защитной обоймой 8 устанавливают цементировочную трубу 16 с тампоном 17 и сальниковым уплотнением 18. После уплотнения тампона и сальника трубу конденсатора 4 крепят за анкер 19. Затем, защитную обойму 8 с помощью бурового станка 15 извлекают на поверхность и одновременно в зазор между охлаждающим устройством 2 и стенками скважины 1 насосом 20 через шланг 21 и цементационную трубу 16 подают цементный раствор с водоцементным соотношением В:Ц=0,5; при этом буровой цементный раствор с В:Ц=0,9 вытесняется раствором с В:Ц=0,5 (Фиг. 4).

После полного извлечения защитной обоймы 8 на поверхность конденсаторную трубу 4 освобождают от крепления за анкер 19, цементационную трубу 16 демонтируют, и охлаждающее устройство и скважину оставляют в «покое» на 72 часа до твердения цементного раствора. Затем крайние бандажи 6 с обеих сторон охлаждающего устройства разъединяют левым вращением и сдвигают по конденсаторной трубе 4, освобождая сильфонные рукава 5. Сильфонные рукава 5 изгибают до приведения конденсаторных труб 4 в вертикальное положение и фиксируют крепежными конструкциями, после чего на конденсаторные трубы напрессовывают дисковые реборды 22, и заправленное хладагентом охлаждающее устройство 2 начинает активный процесс охлаждения грунтов основания (фиг. 5).

Предлагаемое техническое решение достаточно универсально, в частности с предложенной конструкцией защитной обоймы и способом монтажа могут быть использованы различные конструкции охлаждающих устройств, в результате чего, будет достигнут заявленный технический результат.

1. Способ монтажа облегченных охлаждающих устройств для температурной стабилизации многолетнемерзлых грунтов, включающий бурение сквозной пологонаклонной скважины, протяжку охлаждающего устройства, снабженного трубами испарителя и конденсатора, соединенными сильфонными рукавами, защищенными бандажами, в скважину до проектного положения, монтаж охлаждающих элементов на конденсаторные трубы охлаждающего устройства, отличающийся тем, что охлаждающее устройство заранее укладывают в защитную обойму, состоящую из обсадных труб муфтового соединения, оба торца которой снабжены амортизирующими прокладками и завинчены крышками, протягивают в скважину до проектной отметки с одновременным расширением скважины, конденсаторные участки труб охлаждающего устройства освобождают от защитной обоймы, крепят их за анкеры; в зазор между защитной обоймой и стенками скважины устанавливают цементировочную трубу и извлекают буровым станком защитную обойму с одновременной подачей цементного раствора с водоцементным соотношением В:Ц=0,5 в зазор между охлаждающим устройством и стенками скважины.

2. Способ по п. 1, отличающийся тем, что сквозную полого-наклонную скважину для монтажа охлаждающих устройств бурят с промывкой цементным раствором с водоцементным соотношением В:Ц=0,9.



 

Похожие патенты:

Изобретение относится к области строительства на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания и одновременным обогревом сооружения с помощью теплового насоса.

Изобретение относится к устройствам для теплообмена в дренажной системе, а также на строительной площадке. Устройство для теплообмена в дренажной системе содержит теплообменный компонент, имеющий наружный канал и внутренний канал, причем внутренний канал расположен внутри наружного канала.

Изобретение относится к теплотехнике в области строительства, а именно к индивидуальным сезонно-действующим охлаждающим устройствам - термостабилизаторам грунтов.

Изобретение относится к области строительства в районах распространения многолетне-мерзлых грунтов и, конкретно, к устройствам, обеспечивающим мерзлое состояние грунтов оснований сооружений при проектном значении отрицательной температуры.

Изобретение относится к способу термостабилизации многолетнемерзлых и слабых грунтов и может быть использовано в производстве термосифонов (термостабилизаторов).

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при освоении и эксплуатации месторождений, расположенных в зоне многолетнемерзлых пород.

Изобретение относится к строительству гидротехнических сооружений и может быть применено для создания ограждающей конструкции, предназначенной для защиты добывающей платформы плавучего типа в ледовых условиях арктического шельфа.

Изобретение относится к области строительства, а именно к устройствам для глубинного охлаждения и замораживания грунтов оснований зданий и сооружений, возводимых на многолетнемерзлых грунтах.

Изобретение относится к устройствам регулируемой температурной стабилизации, охлаждения и замораживания грунта основания фундаментов, а также теплоснабжения сооружений на вечномерзлых грунтах (в условиях криолитозоны).

Изобретение относится к области строительства на многолетнемерзлых грунтах, в частности к подготовке замораживающих устройств - термостабилизаторов к эксплуатации.

Изобретение относится к строительству промышленных и гражданских объектов в криолитозоне с целью обеспечения их надежности. Термосифон включает конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака. Диаметр трубы составляет 33,7×3,5 мм, в испарителе по оси симметрии трубы коаксиально установлена внутренняя труба диаметром 20×2 мм из материала с низким коэффициентом теплопроводности. Степень заполнения термосифона аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы). Внизу внутренняя труба на длине 600 мм перфорирована шестью отверстиями диаметром 10 мм, длина термосифона 10-16 м, уровень аммиака в испарителе выше торца внутренней трубы не менее 0,1 м, конденсатор с площадью теплообменной поверхности оребрения 2,44 м2, длина оребренной трубы 1,18 м, диаметр оребрения 67 мм. Технический результат состоит в повышении надежности работы термосифона заполненного аммиаком, обеспечении более низких температур охлаждаемого грунта и интенсивности теплообмена при простоте конструктивного исполнения. 1 ил., 1 табл., 1 пр.
Наверх