Ветроэнергетическая установка и способ управления ветроэнергетической установкой или ветровой электростанцией

Изобретение относится к ветроэнергетической установке (100), содержащей гондолу (104) и ротор (106), первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) для излучения микроволновых и/или радиолокационных сигналов и для регистрации отражений микроволновых и/или радиолокационных сигналов для получения данных о ветре и/или метеорологических данных или информации относительно поля ветра спереди и/или сзади ветроэнергетической установки (100), и систему управления ветроэнергетической установкой, которая управляет работой ветроэнергетической установки (100) в зависимости от данных, регистрируемых с помощью первого и/или второго измерительного блока (1100, 1200). Изобретение направлено на уменьшение аэродинамической нагрузки на ветроэнергетическую установку. 3 н. и 5 з.п. ф-лы, 13 ил.

 

Данное изобретение относится к ветроэнергетической установке и к способу управления или соответственно регулирования ветроэнергетической установки или парка ветроустановок.

Для управления или соответственно регулирования ветроэнергетической установки предпочтительно, если известны переменные, такие как, например, скорость ветра или значения метеорологических характеристик. Чем лучше и точнее выполняется измерение переменных ветрового режима, тем, соответственно, лучше можно настраивать ветроэнергетическую установку на эти переменные.

В ЕР 1432911 В1 показана система раннего предупреждения для ветроэнергетической установки на основе системы SODAR, установленная на гондоле ветроэнергетической установки и регистрирующая зону перед ротором ветроэнергетической установки. Ветровой режим перед ветроэнергетической установкой можно регистрировать с помощью системы SODAR и, соответственно, согласовывать управление или соответственно регулирование ветроэнергетической установки.

В JP 2002152975 А показана ветроэнергетическая установка и отдельно расположенный радарный блок для регистрации вектора ветра.

В ЕР 1770278 А2 показана система для управления ветроэнергетической установкой. Скорость ветра перед ветроэнергетической установкой регистрируется с помощью лазерного локатора LIDAR, посредством регистрации отражения или рассеяния излучаемого света, и в соответствии с этим осуществляется управление ветроэнергетической установкой.

В US 6166661 раскрыта система обнаружения льда для самолета, имеющего радарную систему.

В US 2002/0067274 А1 раскрыт способ обнаружения бури с градом с помощью радарного блока, при этом радарный блок используется для обнаружения и отслеживания бури с градом. При обнаружении бури с градом создается сигнал предупреждения и может, соответственно, изменяться положение роторных лопастей.

Задачей данного изобретения является создание ветроэнергетической установки и способа управления или регулирования ветроэнергетической установки или парка ветроустановок, которые позволяют улучшить согласование с ветровым режимом или значениями метеорологических характеристик в зоне окружения ветроэнергетической установки.

Эта задача решается с помощью ветроэнергетической установки, согласно пункту 1, и способа управления ветроэнергетической установкой или парком ветроустановок, согласно пункту 5 формулы изобретения.

Таким образом, предлагается ветроэнергетическая установка, содержащая гондолу, ротор, обтекатель, первый и/или второй микроволновый и/или радиолокационный измерительный блок для излучения микроволновых и/или радиолокационных сигналов и для регистрации отражений микроволновых и/или радиолокационных сигналов для получения данных о ветре и/или метеорологических данных или информации относительно поля ветра спереди и/или сзади ветроэнергетической установки. Ветроэнергетическая установка имеет также регулятор, который управляет работой ветроэнергетической установки в зависимости от регистрируемых с помощью первого и/или второго измерительного блока данных. Первый и/или второй микроволновый и/или радиолокационный измерительный блок расположен на гондоле и/или на обтекателе.

В основу изобретения положена идея предусмотрения на гондоле ветроэнергетической установки или в зоне обтекателя (вращающейся части ветроэнергетической установки) измерительного блока, который регистрирует ветровой режим или метеорологические условия перед и/или позади ветроэнергетической установки с помощью микроволновой или радиолокационной техники. Данные о ветре и/или метеорологические данные, зарегистрированные с помощью измерительного блока, можно передавать в систему управления ветроэнергетической установки. Система управления ветроэнергетической установки может быть основана на принципе опережения, так что работу ветроэнергетической установки можно адаптировать на основании данных о ветре, зарегистрированных с помощью измерительного блока, например, с целью максимизации производительности или минимизации нагрузки ветроэнергетической установки.

С помощью микроволнового или радиолокационного измерительного блока можно определять турбулентность, наклонный набегающий поток, спутный поток, сдвиг ветра, изменение направления ветра, направление ветра и/или скорость ветра.

Согласно изобретению, данные о ветре, регистрируемые с помощью измерительного блока, можно использовать для мониторинга состояния ветроэнергетической установки и можно, соответственно, адаптировать модели ветроэнергетической установки.

Согласно изобретению, данные о ветре, регистрируемые с помощью измерительного блока, можно использовать для управления ветроэнергетической установкой в парке ветроустановок.

Согласно другому аспекту данного изобретения, данные о ветре можно использовать для мониторинга структуры роторных лопастей.

Значениями метеорологических характеристик могут быть, например, скорость ветра (например, с ее горизонтальной составляющей), производные параметры, такие как профиль скорости ветра (ветровой сдвиг), турбулентности, среднеквадратическая/средняя скорость ветра, наклонный набегающий поток (скорость ветра с вертикальной составляющей), направление ветра, профиль вращения ветра ометаемой ротором площади (изменение направления ветра), давление воздуха, температура воздуха, влажность воздуха, плотность воздуха, вид осадков, облачность, видимость и/или полная радиация.

Другие варианты выполнения изобретения являются предметом зависимых пунктов формулы изобретения.

Ниже приводится в качестве примера более подробное описание преимуществ и вариантов выполнения изобретения со ссылками на прилагаемые чертежи, на которых схематично изображено:

фиг. 1 - ветроэнергетическая установка, согласно первому варианту выполнения;

фиг. 2 - ветроэнергетическая установка, согласно второму варианту выполнения;

фиг. 3 - система опережающего управления ветроэнергетической установкой, согласно третьему варианту выполнения;

фиг. 4 - мониторинг состояния ветроэнергетической установки, согласно четвертому варианту выполнения;

фиг. 5 - оптимизация модели ветроэнергетической установки, согласно пятому варианту выполнения;

фиг. 6 - блок-схема парка ветроустановок, согласно шестому варианту выполнения;

фиг. 7 - центральная система регулирования парком ветроустановок, согласно седьмому варианту выполнения;

фиг. 8 - ветроэнергетическая установка, согласно восьмому варианту выполнения;

фиг. 9 - ветроэнергетическая установка, согласно девятому варианту выполнения;

фиг. 10 - ветроэнергетическая установка, согласно изобретению;

фиг. 11 - ветроэнергетическая установка, согласно изобретению;

фиг. 12 - ветроэнергетическая установка, согласно изобретению; и

фиг. 13 - множество измерительных полей для ветроэнергетической установки, согласно изобретению.

Прогнозирование структуры ветра представляет возможный путь уменьшения аэродинамической нагрузки на ветроэнергетическую установку и, в частности, на ее ротор, обусловленную ветром. В этом отношении, например, можно подходящим образом изменять угол установки (угол наклона) роторных лопастей. С помощью прогнозирования структуры ветра, например, с помощью микроволнового или радиолокационного измерительного блока, согласно изобретению, можно осуществлять оптимизацию производительности, оптимизацию шума, мониторинг структуры и т. п. как для ветроэнергетической установки, так и для ветрового парка с множеством ветроэнергетических установок.

На фиг. 1 схематично показана ветроэнергетическая установка 100, согласно первому варианту выполнения. На фиг. 1 показана ветроэнергетическая установка 100, имеющая башню 102 и гондолу 104. На гондоле 104 расположен ротор 106 с тремя роторными лопастями 108 и обтекателем 110. Во время работы ротор 106 приводится во вращение ветром и за счет этого приводит в действие генератор в гондоле 104. Угол установки (угол наклона) роторных лопастей 108 можно регулировать. Микроволновый или радиолокационный измерительный блок 1100 может быть предусмотрен на гондоле, и/или другой микроволновый или радиолокационный измерительный блок 1200 может быть предусмотрен на обтекателе 110. Эти измерительные блоки 1100, 1200 служат для регистрации ветрового режима перед ветроэнергетической установкой (в случае измерительного блока 1200) или перед и позади ветроэнергетической установки 100 (в случае измерительного блока 1100).

На фиг. 2 схематично показана ветроэнергетическая установка, согласно второму варианту выполнения. Показанная на фиг. 2 ветроэнергетическая установка (согласно второму варианту выполнения) может соответствовать ветроэнергетической установке, согласно первому варианту выполнения на фиг. 1. Микроволновый или радиолокационный измерительный блок 1100 предусмотрен на гондоле 104 ветроэнергетической установки. Измерительный блок 1100 может излучать радиолокационные сигналы и/или микроволновые сигналы и может измерять отражения этих радиолокационных сигналов или микроволновых сигналов с целью получения из них информации о ветровом режиме и/или метеорологических условиях впереди и позади ветроэнергетической установки. В частности, расположение измерительного блока 1100 на гондоле 104 (то есть на не вращающейся части установки) обеспечивает возможность регистрации ветрового режима как спереди, так и сзади ветроэнергетической установки 100. Ветровой режим позади ветроэнергетической установки 100 также может быть важным, поскольку он дает информацию, среди прочего, об эффективности преобразования кинетической энергии во вращательное движение роторных лопастей 108.

Если микроволновый или радиолокационный измерительный блок 1200 предусмотрен на обтекателе 110 ветроэнергетической установки 100, то можно регистрировать ветровой режим перед ветроэнергетической установкой. В соответствии со вторым вариантом выполнения, можно с помощью измерительных блоков 1100, 1200 и регулятора 300 регистрировать турбулентности, наклонный набегающий поток, спутный поток, сдвиг ветра, изменение направления ветра, направление ветра и скорость ветра. В этой связи изменение направления ветра представляет поворот направления ветра относительно высоты, а сдвиг ветра представляет профиль ветра относительно высоты. Эти измерительные переменные можно регистрировать с помощью измерительного блока 1100, 1200 и передавать в систему управления ветроэнергетической установки, которая может подходящим образом адаптировать правила управления ветроэнергетической установкой.

На фиг. 3 схематично показан опережающий регулятор 300 ветроэнергетической установки, согласно третьему варианту выполнения. Ветроэнергетическая установка 100, согласно третьему варианту выполнения, может основываться на ветроэнергетической установке 100, согласно первому или второму варианту выполнения. В частности, на фиг. 3 показан регулятор 300 ветроэнергетической установки. Ветроэнергетическая установка 100, согласно третьему варианту выполнения, имеет также микроволновый или радиолокационный измерительный блок 1100 или 1200. Данные, полученные с помощью измерительного блока 1100, 1200, можно обрабатывать в блоке 320 обработки данных регулятора 300. Регулятор 300 ветроэнергетической установки 100 может иметь опережающий регулятор 330, блок 370 моделирования системы, блок 340 моделирования возмущений, контроллер 350 и контур 380 регулирования скорости вращения.

Из данных поля ветра или соответственно данных о ветре, зарегистрированных с помощью измерительного блока 1200, и/или метеорологических данных можно определять те параметры, которые являются характеристическими для возмущающих воздействий в поле ветра. Если возмущения заранее известны, то можно противодействовать возмущающим воздействиям с помощью опережающего управления. Измерительный блок 1200, как указывалось выше, может определять скорость ветра, направление ветра, изменение направления ветра, сдвиг ветра, спутный поток, турбулентность и/или наклонный набегающий поток. Характеристики возмущений хранятся в блоке 340 моделирования возмущений и модель ветроэнергетической установки хранится в блоке 370 моделирования системы.

На основании данных измерения измерительного блока 1200 может быть определено направление управляющей величины iGf(s). Это можно осуществлять в опережающем регуляторе 330. Отображение величин возмущения на выходе обработки может быть смоделировано в блоке 340 моделирования возмущения. Компенсация величины возмущения может осуществляться с помощью блока 340 моделирования возмущения. Компенсация относительно величин возмущения может осуществляться посредством регулирования угла наклона роторных лопастей с помощью опережающего регулирования. В качестве альтернативного решения или дополнительно к регулированию угла установки возможно также выполнение изменения в профиле роторных лопастей (то есть активное изменение роторных лопастей для регулирования наклона). Регулятор 350 служит для согласования регулирования для отображения целей оптимизации с опциями управления. Правила модификации угла установки и других управляющих величин могут быть предусмотрены в регуляторе 350.

Структуру ветра в месте расположения ветроэнергетической установки, а также метеорологические характеристики можно использовать для улучшения передаточной функции по возмущению.

Опционально адаптацию передаточной функции F(s) можно выполнять для оптимизации опережающего регулятора 330. Другими словами, параметры передаточной функции F(s) можно адаптировать на основании данных измерения измерительных блоков 1200 или 100, то есть обрабатываться в блоке 320 обработки данных. Это может обеспечивать возможность адаптивной компенсации величины возмущения.

На фиг. 4 показана схема мониторинга состояния в случае ветроэнергетической установки, согласно четвертому варианту выполнения. В четвертом варианте выполнения данные измерения измерительных блоков 1100, 1200 можно использовать для блока 410 мониторинга состояния ветроэнергетической установки или ее частей. Блок 410 мониторинга состояния ветроэнергетических установок необходим для уменьшения, среди прочего, времени останова. Дополнительно к этому мониторинг состояния можно использовать для усовершенствования ветроэнергетических установок. Мониторинг состояния можно использовать для роторных лопастей, гондолы, ротора и/или башни ветроэнергетических установок.

Данные измерения измерительного блока 1100, 1200 можно хранить в блоке 430 хранения данных о ветре. Фактические нагрузки на роторные лопасти можно регистрировать с помощью блока 470 измерения нагрузок на лопасти. Данные о ветре, хранящиеся в блоке 430 хранения данных о ветре, подаются в блок 420 моделирования ветроэнергетической установки, который вводит данные в модель. Выходные сигналы блока 420 моделирования сравниваются с выходными сигналами блока 470 измерения напряжения лопастей в блоке 460 сравнения. Если отклонений не обнаруживается, то модель соответствует фактической ветроэнергетической установке. Однако, если обнаруживаются отклонения, то это указывает на то, что модель, хранящаяся в модельном блоке 420, не совпадает с реальностью. В блоке 450 наблюдения за состоянием данные о ветре, зарегистрированные с помощью измерительного блока 1100, 1200, можно использовать для оценки состояния модели. Текущее состояние роторной лопасти 108 можно реконструировать на основании оцениваемых состояний.

Если при сравнении между измеренными напряжениями лопастей и напряжениями лопастей, определяемых с помощью модели, обнаруживаются различия, то могут быть адаптированы теоретические допущения модели нагрузки с положением ветровой электростанции. Это может осуществляться в блоке 440 адаптации правил. Адаптация может выполняться как в режиме онлайн, так и в режиме оффлайн.

Когда ветроэнергетическая установка запускается в работу, расчетная нагрузка может быть проверена с помощью результатов измерения измерительного блока 1100, 1200. Если отклонения между определяемыми величинами измерения и величинами, определяемыми с помощью модели, являются чрезмерно большими, то можно выполнять изменения для оптимизации нагрузки в блоке 480 правил управления. Это может быть предпочтительным относительно стоимости, оптимизации шума и оптимизации производительности.

На фиг. 5 показана схема оптимизации модели ветроэнергетической установки, согласно пятому варианту выполнения. На фиг. 5, помимо мониторинга нагрузки роторных лопастей 108, может быть также предусмотрен блок 510 для мониторинга нагрузки ротора 106 и башни 102. Для этой цели предусмотрен блок 570 мониторинга нагрузки на ротор и/или башню, блок 520 оптимизации и опционально блок 580 правил управления. Оптимизация нагрузки может осуществляться в соответствии с описанием фиг. 4.

Кроме того, оптимизацию нагрузки и/или производительности или соответственно оптимизацию шума можно также осуществлять не только для единственной ветроэнергетической установки, но и для парка ветроустановок, содержащего множество ветроэнергетических установок. В этом случае необходимо учитывать как локальную ветровую ситуацию, так и топологию парка ветроустановок (количество ветроэнергетических установок, ориентацию ветроэнергетических установок, расстояние между ветроэнергетическими установками).

На фиг. 6 показана блок-схема ветровой электростанции, согласно шестому варианту выполнения. В показанном на фиг. 6 состоянии ветровая электростанция может иметь несколько ветроэнергетических установок 611, 612, 613, при этом по меньшей мере одна из ветроэнергетических установок имеет микроволновый или радиолокационный измерительный блок 1100, 1200. Результаты измерений ветра могут передаваться в центральное запоминающее устройство 620 парка ветроустановок.

Компьютер 610 парка ветроустановок может быть соединен с запоминающим устройством 620 парка ветроустановок. Компьютер 610 парка ветроустановок может быть соединен, соответственно, с ветроэнергетическими установками и может управлять ими. Управление отдельными ветроэнергетическими установками парка ветроустановок может быть основано на оптимизации шума, оптимизации производительности и/или оптимизации нагрузки.

Опережающий регулятор, согласно третьему варианту выполнения, может быть предусмотрен в соответствующих ветроэнергетических установках шестого варианта выполнения. Дополнительно или в качестве альтернативного решения может осуществляться также, например, опережающая компенсация, согласно третьему варианту выполнения, в компьютере 610 парка ветроустановок. По меньшей мере данные о ветре измерительного блока 1100, 1200 в ветроэнергетической установке служат в качестве входных сигналов для опережающей компенсации. Однако предпочтительно учитываются данные о ветре измерительных блоков 1100, 1200 всех ветроэнергетических установок. Компьютер 610 парка ветроустановок может быть также выполнен для управления ветроэнергетическими установками 100 так, что нагрузка равномерно распределяется на ветроэнергетические установки 100.

На фиг. 7 показана схема центральной регулировочной системы парка ветроустановок, согласно седьмому варианту выполнения. На фиг. 7 показано множество ветроэнергетических установок 711-726, соединенных с центральным компьютером 710 парка ветроустановок. Компьютер 710 парка ветроустановок в свою очередь соединен с запоминающим устройством 720 парка ветроустановок. Расстояния до соседних ветроэнергетических установок обозначены, соответственно, как Δx и Δy.

На фиг. 8 схематично показана ветроэнергетическая установка, согласно восьмому варианту выполнения. На фиг. 8 показана ветроэнергетическая установка 100, содержащая башню 102, гондолу 104 и первый и/или второй микроволновый или радиолокационный измерительный блок 1100, 1200. Первый и/или второй измерительный блок могут использоваться для измерения роторных лопастей 108. В блоке 810 измерения роторных лопастей можно на основании измерительных данных первого и/или второго измерительного блока 1100, 1200 определять линию изгиба роторной лопасти, эрозию поверхности, угол лопасти, состояния лопасти, кручение лопасти и обледенение.

На фиг. 9 схематично показана ветроэнергетическая установка, согласно девятому варианту выполнения. Роторные лопасти 108 ветроэнергетической установки измеряются с помощью блока 910 измерения роторных лопастей. Полученные результаты в блоке 910 измерения роторных лопастей передаются в блок 920 алгоритма. Дополнительно к этому данные из блока 930 оффлайн-информации также передаются в блок 920 алгоритма. Выходной сигнал блока 920 могут передаваться в блок 940 правил управления.

Согласно изобретению, турбулентности, создаваемые одной из ветроэнергетических установок, можно уменьшать в парке ветроустановок, так что может быть уменьшено расстояние до соседних ветроэнергетических установок.

Согласно изобретению, при регистрации заднего поля ветроэнергетическая установка 100 может работать так, что оптимизируется мощность соседней или соответственно следующей ветроэнергетической установки или же соответственно оптимизируется вся мощность ветроэнергетических установок парка ветроустановок.

Согласно другому аспекту изобретения, можно выполнять измерение лопасти с помощью указанной выше ветроэнергетической установки 100 и микроволнового и/или радиолокационного измерительного блока 1100, 1200, если роторные лопасти измеряются с помощью микроволнового и/или радиолокационного измерительного блока.

Согласно другому аспекту изобретения, можно выполнять измерения не только роторных лопастей, но также других частей ветроэнергетической установки, с помощью микроволнового и/или радиолокационного измерительного блока, так что для ветроэнергетической установки в любое время известно фактическое состояние установки. С помощью микроволнового и/или радиолокационного измерительного блока можно обнаруживать эрозию (отклонение от заданного состояния) и/или намораживание льда на роторных лопастях. С помощью микроволнового и/или радиолокационного измерительного блока, согласно изобретению, можно определять не только эрозию или соответственно нарастание льда, но и местоположение эрозии или соответственно нароста льда.

На фиг. 10 схематично показана ветроэнергетическая установка, согласно изобретению. Показаны гондола 104 и две роторные лопасти 108 ветроэнергетической установки 100. Дополнительно к этому на гондоле предусмотрен измерительный блок 1100, согласно изобретению, который излучает измерительное поле с углом раствора α. Площадь измеряемой плоскости увеличивается в зависимости от расстояния x1, х2 от измерительного блока 1100, согласно изобретению.

На фиг. 11 показана ветроэнергетическая установка, согласно изобретению, в другом виде. Измерительный блок 1100, согласно изобретению, может быть расположен на гондоле, например, на высоте 2 м (или выше). Измерительный блок 1100, согласно изобретению, должен быть на минимальной высоте над гондолой 104, так что он может измерять поле ветра перед ветроэнергетической установкой.

Опционально другой измерительный блок 1200, согласно изобретению, может быть предусмотрен на роторе 106 ветроэнергетической установки. В этом отношении можно использовать геометрию ротора 106 для установки измерительного блока. Если измерительный блок 1200 расположен на роторе 106, то может быть исключено затенение за счет движения роторных лопастей (как в случае измерительного блока 1100, согласно изобретению).

На фиг. 12 показана ветроэнергетическая установка, согласно изобретению, в другом виде. Установка может иметь измерительный блок 1100 и/или 1200, согласно изобретению. За счет выбора соответствующего раствора с соответствующим углом α1, α2 и α3 раствора, как показано на фиг. 12, можно обеспечивать одинаковый размер или соответственно одинаковые плоскости А1, А2, А3.

На фиг. 13 схематично показано множество измерительных полей для ветроэнергетической установки, согласно изобретению. Использование множества измерительных полей А1, А2, А3 обеспечивает возможность получения как измерительной величины внутри соответствующих измерительных полей А1, А2, А3, так и измерительных величин между соответствующими точками измерения. Таким образом, возможно обеспечение более точного измерения полей ветра впереди и позади ветроэнергетической установки. Согласно изобретению, должны иметься по меньшей мере две точки М1, М2 измерения для обеспечения возможности вычисления вектора W12 ветра с помощью угла α раствора. Лишь скорость ветра вдоль пути измерения можно регистрировать с помощью лишь одной точки измерения. Расстояние между точками измерения в направлении вершины лопасти ограничено, то есть более высокий уровень разрешения возможен в наружной зоне лопастей. В этом отношении следует отметить, что именно в наружной зоне лопастей, за счет расстояния относительно оси ротора, происходят моменты изгиба лопастей, которые теперь можно регистрировать.

1. Ветроэнергетическая установка (100), содержащая
гондолу (104),
ротор (106),
обтекатель (110),
первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) для излучения микроволновых и/или радиолокационных сигналов и для измерения отражений микроволновых и/или радиолокационных сигналов для получения данных о ветре и/или метеорологических данных или информации относительно поля ветра спереди и/или сзади ветроэнергетической установки (100), и
регулятор (300), который управляет работой ветроэнергетической установки (100) в зависимости от регистрируемых с помощью первого и/или второго измерительного блока (1100, 1200) данных,
при этом первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) расположен на гондоле (104) и/или на обтекателе (110).

2. Ветроэнергетическая установка по п. 1, в которой регулятор работает на основе опережающего регулирования, и данные о ветре, регистрируемые с помощью первого и/или второго измерительного блока (1100, 1200), используются для опережающего регулирования.

3. Ветроэнергетическая установка по любому из пп. 1 или 2, в которой первый и/или второй измерительный блок (1100, 1200) предназначен для определения наклонного набегающего потока, спутного потока, сдвига ветра, изменения направления ветра, направления ветра и/или скорости ветра спереди и/или позади ветроэнергетической установки.

4. Ветроэнергетическая установка по п. 1, в которой регулятор (300) имеет блок (370) моделирования, при этом данные о ветре, зарегистрированные с помощью первого и/или второго измерительного блока (1100, 1200), подаются в блок (370) моделирования, и результаты моделирования в блоке (370) моделирования сравниваются с фактически определенными параметрами ветроэнергетической установки.

5. Ветроэнергетическая установка по п. 1, дополнительно содержащая по меньшей мере две роторные лопасти (108) на роторе (106), при этом первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) выполнен для измерения роторных лопастей (108) с помощью микроволновых и/или радиолокационных сигналов.

6. Ветроэнергетическая установка по п. 5, в которой первый или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) предназначен для обнаружения эрозии и/или намораживания льда на роторных лопастях (106).

7. Способ управления ветроэнергетической установкой или множеством ветроэнергетических установок (100) в парке ветроустановок, при этом по меньшей мере одна из ветроэнергетических установок (100) имеет гондолу (104), обтекатель (110) и ротор (106), а также первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) для регистрации данных о ветре и/или метеорологических данных спереди и/или сзади ветроэнергетической установки (100),
при этом первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200) расположен на гондоле (104) и/или на обтекателе (110), при этом способ содержит этапы:
управления по меньшей мере одной ветроэнергетической установкой (100) на основании данных о ветре, полученных с помощью первого и/или второго измерительного блока (1100, 1200).

8. Парк ветроустановок, содержащий множество ветроэнергетических установок, в частности, по любому из пп. 1-6, при этом одна из ветроэнергетических установок (100) имеет первый и/или второй микроволновый и/или радиолокационный измерительный блок (1100, 1200), который предназначен для выполнения измерения поля ветра позади ветроэнергетической установки (100),
при этом средства управления ветроэнергетической установки (100) предназначены для оптимизации работы ветроэнергетической установки и для воздействия на режим работы ветроэнергетической установки для оптимизации мощности всего парка ветроустановок, содержащего множество ветроэнергетических установок (100), в зависимости от измеряемого поля ветра.



 

Похожие патенты:

Изобретение относится к области ветроэнергетики, в частности к ветровым электростанциям. Блочная ярусная с концентраторами, электронагревателями и глушителями ветровая электростанция состоит из установленной и закрепленной на фундаменте блочной ярусной эстакады.

Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим установкам с горизонтально-осевыми пропеллерными турбинами. Способ ориентации ветроэнергетических установок с горизонтально-осевыми пропеллерными турбинами относительно направления воздушного потока, включающий в себя установку их на платформе с возможностью ее вращения в горизонтальной плоскости вокруг вертикальной оси, при этом, для устойчивой ориентации оси каждой турбины параллельно ветровому потоку, платформу выполняют так, чтобы для обеспечения статически устойчивого положения каждой турбины в ветровом потоке центр бокового давления всей конструкции платформы с турбинами находился за вертикальной осью вращения платформы.

Использование: в области электроснабжения. Технический результат - повышение надежности электроснабжения и уменьшение установленной мощности электрооборудования.

Изобретения относятся к области ветроэнергетики и гидроэнергетики и могут быть использованы для привода различных устройств, а также для производства электроэнергии.

Изобретение относится к области ветроэнергетики и гелиотехники. Система автономного энергообеспечения потребителей электроэнергии башни сетчатой конструкции содержит, по крайней мере, один ветромодуль, связанный с башней сетчатой конструкции, аккумуляторные батареи и систему преобразования и управления электропитанием.

Изобретение относится к способу генерации электроэнергии, использующему природную энергию, на основе накопления и хранения энергии и соответствующей системе генерации электроэнергии.

Изобретение относится к ветроэнергетике и может быть использовано для комплексного энергоснабжения индивидуальных потребителей. Ветроэнергетическая установка содержит ветроколесо, связанное с генератором, и блок управления.

Изобретение относится к электроэнергетике. Предложенная аэродинамическая электростанция (АДЭС) содержит по меньшей мере одну аэродинамическую трубу 1 (АДТ), верхняя часть которой сообщена с вентилятором 3, а нижняя - с атмосферой, и размещенные по длине АДТ 1 высокоскоростные аэродинамические агрегаты (ВАДА), каждый из которых включает высокоскоростной аэродинамический двигатель (ВАДД) и соединенный с его валом генератор.

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования энергии ветра в электрическую энергию. Сегментный ветроэлектрогенератор содержит роторные ферромагнитные элементы, установленные на лопастях ветроколеса, статор, башню, корпус с поворотным основанием, ступицей, направляющим хвостовым устройством и подкосами статора.

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, дугообразные элементы и магнитопроводы.

Изобретение относится к способу эксплуатации ветроэнергетической установки, к ветроэнергетической установке и ветряному парку из ветроэнергетических установок.

Изобретение относится к группе двухроторных ветроэнергетических установок. Каждая из двухроторных ветроэнергетических установок включает размещенные на башне ветротурбину с двумя соосными роторами на поворотной платформе, трансмиссию, системы управления углами установки лопастей и положения платформы, электрогенератор.

Изобретение относится к области ветроэнергетической техники, в частности к конструкциям ветроустановок с горизонтальной осью вращения. Конструкция ветроэнергетической установки, содержащая мачту с горизонтальной поворотной платформой, на которой установлены электрогенератор и ветротурбина с лопастями, механическую передачу вращения от вала ветротурбины к валу электрогенератора.

Изобретение относится к способу управления ветроэнергетической установкой и к ветроэнергетической установке. Способ управления подключенной к электрической сети ветроэнергетической установкой с генератором с аэродинамическим ротором с регулируемой скоростью вращения включает этап эксплуатации ветроэнергетической установки в оптимальной относительно преобладающих условий ветра рабочей точке с оптимальной скоростью вращения и этап эксплуатации ветроэнергетической установки в переходный период времени или длительно в неоптимальной рабочей точке с неоптимальной скоростью вращения.

Настоящее изобретение относится к способу эксплуатации ветроэнергетической установки в условиях обледенения, к ветроэнергетической установке и к ветроэнергоцентру с множеством ветроэнергетических установок.

Изобретение относится к энергетике, к ветроэнергетическим установкам. Технический результат состоит в упрощении регулирования и повышении надежности.

Изобретение относится к ветроэнергетическим установкам с главным валом ветротурбины, параллельным ветровому потоку. Цилиндрическая ветротурбина установлена на валу ветроэнергетической установки и содержит лопасти, размещенные на радиальных штангах.

Предлагаемое устройство управления ветроэнергетической установкой может быть использовано в области ветроэнергетики, конкретно - при управлении ветроэнергетической установкой.

Изобретение относится к области ветроэнергетики и может быть применено для выработки электроэнергии. Ветроэнергетическая установка содержит башню, выполненную в виде тетраэдра, имеющего ребра и углы, а также ветроколесо и генератор.

Изобретение относится к устройству регулирования шага лопастей ветрогенератора. Устройство предназначено для регулирования шага лопастей 6, шарнирно закрепленных посредством концевых крепежных частей 7 в радиально-упорных подшипниках 5.

Изобретение относится к лопатке для ротора ветровой турбины и способу изготовления такой лопатки. Лопатка (104а, 104b, 104с, 108, 201) для ротора ветровой турбины (101) содержит корпус (218) лопатки, имеющий несущую поверхность для размещения нагревательного элемента, электропроводный, по существу, плоский нагревательный элемент (110, 120, 122, 124, 126, 128, 130, 132, 208, 208а, 208b), содержащий многоосную углеродную ткань, расположенный на несущей поверхности и проходящий в продольном направлении, по существу, вдоль по меньшей мере передней кромки (108а) лопатки, электропроводный элемент (112а, 112b, 212, 212а, 212b) подачи электропитания, расположенный на одном конце нагревательного элемента, проходящий, по существу, по ширине нагревательного элемента с обеих его сторон и связанный с ним электрически, и соединительную конструкцию, содержащую по меньшей мере один электропроводный соединительный элемент (114а, 114b, 214) и, по существу, покрывающую с обеих сторон нагревательного элемента части электропроводного элемента, которые проходят по ширине нагревательного элемента, при этом указанная лопатка предпочтительно содержит такой электропроводный элемент и соединительную конструкцию на обоих концах нагревательного элемента. Изобретение направлено на предотвращение и уменьшение обледенения лопаток ветровых турбин. 2 н. и 14 з.п. ф-лы, 6 ил.
Наверх