Способ изготовления ствола

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стволов с нарезными и гладкими направляющими частями. Из исходной заготовки механической обработкой получают заготовку-трубу. Производят первое радиальное обжатие заготовки-трубы на радиально-обжимной машине (РОМ), имеющей подпорный и поводковый центры. Получают промежуточную поковку и производят ее промежуточную термическую и механическую обработку. Из промежуточной поковки вторым радиальным обжатием получают готовую поковку ствола. При этом заходную часть заготовки-трубы выполняют в виде наружного заходного конуса, который деформируют бойками РОМ при первом и втором обжатиях. Заходный конус переходит своим основанием в часть заготовки-трубы в виде цилиндра и имеет на торце внутреннюю технологическую фаску под подпорный центр РОМ. При механической обработке промежуточной поковки ствола под второе радиальное обжатие подрезают торец ее заходной части. Со стороны указанного торца на заходной части выполняют цилиндр, переходящий в наружный заходный конус промежуточной поковки. В результате обеспечивается уменьшение объема механической обработки заготовки-трубы и промежуточной поковки, повышение надежности крепления заготовки-трубы при радиальном обжатии. 3 ил., 1 пр.

 

Изобретение относится к области обработки металлов давлением и может использоваться при изготовлении стволов с гладкими и нарезными направляющими частями.

Известен способ изготовления ствола (см. патент RU №2429102, С2, 20.09.2011 г, В21К 21/06). Он заключается в том, что из исходной и термообработанной заготовки получают предварительной механической обработкой заготовку-трубу, имеющую на одном конце под подпорный центр заходную часть в виде наружных фаски и вспомогательной поверхности, переходящей в деформируемую часть в виде заходного конуса и цилиндра, являющегося на другом конце поводковой частью, имеющей с торца в отверстии заготовки-трубы технологическую фаску под поводковый центр: обжатие этой заготовки-трубы на радиально-обжимной машине и получение при этом поковки ствола, подвергаемой окончательной механической обработке с образованием готового ствола.

Недостаток аналога: удаляемая технологическая прибыль - заходная часть - значительная по массе и у стволов калибра 12,7 и 14,5 мм составляет до 0,4-0,6 кг; коэффициент использования металла исходной заготовки низок и не превышает 50-60%, что отрицательно сказывается на производственно-экономических показателях ствольного производства (значительны энергозатраты на изготовление, большой износ режущего инструмента - резцов и времени на образование заготовки-трубы).

Известен другой способ изготовления ствола (см. патент RU №2069594, С1, 27.11.1996, МПК6 В21D 41/00). Он заключается в изготовлении и термообработке исходной заготовки, предварительной механической обработке ее с получением заготовки-трубы, имеющей с одного конца под подпорный центр заходную часть в виде наружной технологической фаски, основание которой переходит во вспомогательную поверхность, а та - в деформируемую часть коническо-цилиндрической формы, заканчивающейся на другом конце поводковой частью в виде большого и малого цилиндров; первым обжатием заготовки-трубы на радиально-обжимной машине получают промежуточную поковку, которую подвергают термической и затем механической обработке внутренней и наружных поверхностей для удаления окисных пленок под второе радиальное обжатие, которым получают окончательную поковку ствола, подвергаемую дальнейшей механической обработке с образованием готового ствола.

Его недостатки: отсутствие унификации элементов конструкции заготовки-трубы вследствие разных технологических фасок ее концов (наружной и внутренней) и разного инструмента, используемого для их образования; уменьшенная прочность заходной части из-за наличия наружной технологической фаски под радиальное обжатие и внутренней под механическую обработку заготовки-трубы в центрах токарного оборудования; нетехнологичность заготовки-трубы из-за образования этих фасок; ограниченная площадь контакта наружной технологической фаски с рабочей поверхностью подпорного центра и его повышенный износ при работе; сложность восстановления этой поверхности его.

Известен и третий способ - наиболее близкий аналог, включающий образование и термообработку исходной заготовки, ее предварительную механическую обработку с получением заготовки-трубы, изготовление из нее первым радиальным обжатием на радиально-обжимной машине (РОМе), имеющей подпорный и поводковый центры, промежуточной поковки ствола, ее последующую промежуточную термическую и механическую обработку, образование из промежуточной поковки ствола вторым радиальным обжатием на РОМе готовой поковки ствола и затем ее окончательную механическую обработку; при этом получают заготовку-трубу с отверстием диаметром do, имеющую на одном конце заходную часть, переходящую в подлежащую деформированию бойками РОМы при первом и втором обжатиях часть в виде цилиндра, которая на другом конце выполнена с расположенной на торце в отверстии заготовки- трубы технологической фаской под поводковый центр РОМы (см. патент RU 2539548 С2, B21K 21/06, 20.01.2015), имеющий аналогичные недостатки предыдущего способа.

Задачей предлагаемого изобретения является уменьшение количества используемого инструмента и объема механической обработки заготовки-трубы; унификация элементов ее конструкции; повышение прочности и надежности крепления ее на РОМе, а также стойкости и технологичности подпорных центров этой машины. Она решается тем, что в способе изготовления ствола, включающем образование и термообработку исходной заготовки, ее предварительную механическую обработку с получением заготовки-трубы, изготовление из нее первым радиальным обжатием на РОМе, имеющей подпорный и поводковый центры, промежуточной поковки ствола, ее последующую промежуточную термическую и механическую обработку, образование из промежуточной поковки ствола вторым радиальным обжатием на РОМе готовой поковки ствола и затем ее окончательную механическую обработку; при этом получают заготовку-трубу с отверстием do, имеющую на одном конце заходную часть, переходящую в подлежащую деформированию бойками РОМы при первом и втором обжатиях часть в виде цилиндра, которая на другом конце выполнена с расположенной на торце в отверстии заготовки-трубы технологической фаской под поводковый центр РОМы, НОВЫМ ЯВЛЯЕТСЯ ТО, ЧТО заходную часть заготовки-трубы выполняют в виде наружного заходного конуса, подлежащего деформированию бойками РОМы при первом и втором обжатиях, переходящего своим основанием в часть заготовки-трубы в виде цилиндра и имеющего на торце диаметр Do>2,5 do и внутреннюю технологическую фаску с диаметром основания dп>2do под подпорный центр РОМы, а при механической обработке промежуточной поковки ствола под второе радиальное обжатие подрезают торец ее заходной части с получением диаметра основания внутренней технологической фаски, который меньше диаметра дульной части ствола, и со стороны указанного торца на заходной части выполняют цилиндр диаметром D′o<Do и длиной, превышающей полученную в результате подрезания торца длину внутренней технологической фаски заходной части, переходящий в наружный заходный конус промежуточной поковки.

Использованием под первое и второе радиальные обжатия соответственно заготовки-трубы и промежуточной поковки с одними и теми же наружной заходной частью и внутренней с технологическими фасками со своими параметрами (у первой они больше, чем у поковки под второе радиальное обжатие) оптимизируются прочностные характеристики не только этой части, но и подпорного центра под первое радиальное обжатие, чем уменьшают ее износ; при угле наклона заходной части β<30° возрастает прочность ее по сравнению с β=0°, когда эта поверхность - цилиндрическая и минимальной прочности и применяется в предлагаемом решении при втором радиальном обжатии промежуточной поковки ствола.

Применением в заходной части одной технологической фаски (внутренней) заготовки и поковки без изменения ее размеров под первое обжатие и с уменьшением ее длины и диаметра (подрезкой торца у промежуточной поковки) уменьшается объем механической обработки этой поковки под второе радиальное обжатие.

Такой фаске соответствует и свой подпорный центр с наружной более технологичной рабочей поверхностью при ее восстановлении после предельного износа наружным шлифованием.

Образованием ее одним инструментом- зенковкой, а не двумя резцами, как у прототипа, и при наличии фаски с таким же углом наклона ее образующей относительно продольной оси заготовки или поковки на ее другом торце унифицируется ее конструкция и, следовательно, она становится технологичнее из-за использования одной и той же зенковки для их образования.

Наличием этих фасок у заготовки-трубы также отпадает необходимость их образования для обработки ее наружных поверхностей под первое радиальное обжатие, т.к. они используются сначала под центры токарного оборудования, а затем и под подпорный и поводковый центры РОМы.

Недоходом внутренней технологической фаски до начала деформируемой части заготовки-трубы исключается воздействие деформируемого металла на подпорный центр и гарантируется надежность фиксации заходной части заготовки-трубы и промежуточной поковки при их обжатии на РОМе.

Использованием в заходной части одной технологической фаски (внутренней) без изменения ее размера под первое обжатие и с уменьшением ее длины и диаметра (подрезкой торца у промежуточной поковки) уменьшается объем механической обработки этой поковки под второе обжатие с меньшей продольной подачей и объемом деформируемого металла, чем при первом обжатии, для получения требуемого качества направляющей части у окончательно обжатой поковки ствола.

Технический результат от предлагаемого способа: уменьшение количества используемого инструмента и объема механической обработки заготовки-трубы и промежуточной поковки, унификация их конструктивных элементов; повышение прочности и надежности крепления первой при радиальном обжатии, а также стойкости и технологичности подпорных центров РОМы.

Сравнительный анализ этого способа с известными сейчас решениями показывает, что он новый, существенно отличается от них, промышленно пригоден и поэтому полностью соответствует критерию ИЗОБРЕТЕНИЕ.

Изобретение поясняется чертежом, где на фиг. 1 изображена заготовка-труба под первое радиальное обжатие, на фиг. 2 - промежуточная поковка после термической и механической обработки под второе радиальное обжатие, на фиг. 3 - окончательно обжатая поковка ствола.

Предлагаемый способ реализуется так: круглый прокат, например, разрезают на требуемой длины заготовки с последующей обработкой, например, на фрезерно-центровальном станке подрезают их торцы; затем один из них зацентровывают с размерами dп и lп технологической фаски заходной части заготовки под подпорный центр РОМы; далее ее сверлят и развертывают отверстие в do с выполнением в нем технологической фаски dз и lз. Базируя этими фасками на упорных центрах токарного станка, заготовку, как и получаемые из нее радиальным обжатием поковки, обрабатывают в соответствующие размеры.

На фиг. 1 представлена заготовка-труба, у которой с торца заходной части имеется технологическая фаска с параметрами dп>2dо и lп, а также наружный заходный конус с углом наклона образующей β и диаметром при вершине Dо>2,5dо, основание которого располагается на цилиндре D1 этой заготовки. В отверстии поводковой части ее образована технологическая фаска с параметрами dз и lз под поводковый центр, идентичная фаске заготовки-трубы фиг. 1.

На фиг. 2 приведена термически и механически обработанная поковка под второе радиальное обжатие, у которой первым радиальным обжатием получены d o ' < d o , D 1 ' < D 1 , 2,5 d o < D 1 ' ' < 3 d o на длине казенной части ствола Lкч, D1 остался неизменным или его доработали до диаметра бурта длиной L этой части ствола; L′0>l0, а у заходной части подрезают торец и l′п<lп и d′п<dп и точат цилиндр D o ' < D o на длине lg>lп, переходящей углом β в заходный конус деформируемой части поковки с диаметрами D 1 ' и D 1 ' ' .

Вторым радиальным обжатием промежуточной поковки получают окончательную поковку ствола (см. фиг. 3), у которой подрезают торец поводковой части не более 0,5 мм для удаления отпечатков зубьев поводкового центра (такую же подрезку торца осуществляют и у промежуточной поковки), затем отрезают технологическую прибыль с заходной части, состоящую из ее наружной вспомогательной поверхности и переходной зоны с участками отверстий do и d o ' , получая ствол длиной lс (см. фиг. 3).

Примеры изготовления ствола калибра 14,5 мм пулемета КПВТ по формуле изобретения:

исходную заготовку - круглый прокат диаметром 56 мм разрезают на заготовки длиной не менее 750 мм. Затем торцы заготовки фрезеруют в размер lo≥742 мм, у нее зацентровывают торец под глубокое сверление и образуют центровочное гнездо с параметрами dп=35 мм и lп=8,5 мм с углом наклона αo=45°, полученными после глубокого сверления и развертывания, которое становится внутренней технологической фаской (см. фиг. 1). С другой стороны заготовки-трубы в отверстие выполняют технологическую фаску с dз, lз; после этого базируют фасками в центрах токарного станка и с торца заходной части образуют деформируемый заходный конус с диаметром при вершине Do=39 мм и углом наклона β=15° образующей, переходящий основанием в деформируемый цилиндр диаметром D1=53 мм (см. фиг. 1).

Первым радиальным обжатием размеры заготовки-трубы изменили: Do осталось прежним, а диаметр D1 основания заходного конуса изменились до D 1 ' = 44 м м ; do до d o ' = 16,5 м м , D1 до D 1 ' ' в пределах 47,5-49,5 мм на концах участка длиной 210 мм, диаметр D1 на конце поводковой части длиной L<12 мм остался неизменным, но увеличилась длина с lo до L′0=1100 мм.

Перед вторым радиальным обжатием промежуточную поковку подвергают термической и механической обработкам.

Последняя заключается в обработке заходной части ее: подрезают торец с обеспечением у технологической фаски lп=6,5 мм; dп=29,5 мм (в дульной части этого ствола диаметром 30 мм выполняется резьба) и с него протачивают цилиндр в диаметр D o ' = 31 м м мм на длине lg=8-9 мм, переходящий в деформируемый заходный конус с углом наклона образующий β=15°, а тот в деформируемую коническую часть промежуточной поковки (см. фиг. 2).

Вторым радиальным обжатием ее получают окончательную поковку, показанную на фиг. 3.

У нее второй раз также надрезают торец<0,5 мм для удаления отпечатков зубьев поводкового центра и затем удаляют технологическую прибыль заходной части величиной>lп, (см. фиг. 3), получая ствол lс=1350 мм.

После этого следует окончательная механическая обработка ствола, надевание на его казенную часть муфты, обработка патронника и последующее хромирование всего канала ствола.

Предлагаемой заготовкой-трубой с деформируемой цилиндрической частью уменьшается количество снимаемого с исходной заготовки металла и объем механической обработки ее с повышением коэффициента использования ее металла до 90%, в том числе и из-за отсутствия малого цилиндра массой до 0,5 кг в поводковой части заготовки-трубы, имеющегося у образуемых поковок-прототипов.

Применением концов: ее внутренних фасок с углом при вершине, например 90°, унифицируются соответствующие инструменты оснастка своими рабочими поверхностями и, следовательно, упрощается их изготовление, а для образования внутренних фасок в заходной и поводковой частях заготовки-трубы используется одна и та же зенковка.

Под первое радиальное обжатие применяется подпорный центр с максимальным диаметром рабочей поверхности Dпц<Do=39 мм вследствие равенства углов заходной части и вспомогательной поверхности. Поэтому обеспечиваются максимальная площадь контакта сопрягаемых поверхностей его и заходной части заготовки-трубы с повышением прочности этих элементов при первом обжатии этой заготовки и уменьшением действующих между этими поверхностями давлений, чем увеличивается стойкость этого центра.

Внутренняя технологическая фаска заходной части заготовки-трубы используется сначала для наружной токарной обработки исходной заготовки, а затем и для получения из нее промежуточной и окончательной поковок, а также для их механических обработок после первого и второго радиальных обжатий. Этим решением уменьшается объем механической обработки ствола в целом и упрощается конструкция заготовки-трубы, имеющей в заходной части только одну коническую поверхность - заходный конус с углом.

Данные свидетельствуют о большей прочности заходной части заготовки-трубы с внутренней, а не наружной технологической фаской под подпорный центр РОМы, что положительно скажется на качестве получаемой промежуточной поковки и, в итоге, стола из-за уменьшения ее деформационных колебаний от бойков машины.

Выполнением наружной рабочей фаски на передней части подпорного центра под внутреннюю технологическую фаску заходной части заготовки-трубы и получаемой из нее поковки проще, чем образование у него внутренней фаски.

Инструмент для восстановления после предельного износа данной фаски этого центра (фасонно-шлифовальный круг) проще, а сама операция реставрации ее технологичнее, чем ремонт внутренней фаски подпорного центра.

Таким образом, предлагаемыми способами изготовления ствола унифицируются конструкции его заготовки-трубы, упрощается ее изготовление, уменьшаются ее масса и количество используемого инструмента и оснастки на образование ствола, а так же его трудоемкость и повышается прочность заходной части этой заготовки под подпорный центр.

Способ изготовления ствола, включающий образование и термообработку исходной заготовки, ее предварительную механическую обработку с получением заготовки-трубы, изготовление из нее первым радиальным обжатием на радиально-обжимной машине, имеющей подпорный и поводковый центры, промежуточной поковки ствола, ее последующую промежуточную термическую и механическую обработку, образование из промежуточной поковки ствола вторым радиальным обжатием на радиально-обжимной машине готовой поковки ствола и затем ее окончательную механическую обработку, при этом получают заготовку-трубу с отверстием диаметром d0, имеющую на одном конце заходную часть, переходящую в подлежащую деформированию бойками радиально-обжимной машины при первом и втором обжатиях часть в виде цилиндра, которая на другом конце выполнена с расположенной на торце в отверстии заготовки-трубы технологической фаской под поводковый центр радиально-обжимной машины, отличающийся тем, что заходную часть заготовки-трубы выполняют в виде наружного заходного конуса, подлежащего деформированию бойками радиально-обжимной машины при первом и втором обжатиях, переходящего своим основанием в часть заготовки-трубы в виде цилиндра и имеющего на торце диаметр D0>2,5d0 и внутреннюю технологическую фаску с диаметром основания dп>2d0 под подпорный центр радиально-обжимной машины, а при механической обработке промежуточной поковки ствола под второе радиальное обжатие подрезают торец ее заходной части с получением диаметра основания внутренней технологической фаски, который меньше диаметра дульной части ствола, и со стороны указанного торца на заходной части выполняют цилиндр диаметром D′0<D0 и длиной, превышающей длину внутренней технологической фаски заходной части, переходящий в наружный заходный конус промежуточной поковки.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стволов с нарезной или гладкой направляющей частью. Из исходной заготовки путем термообработки и предварительной механической обработки получают заготовку-трубу с передней заходной частью и задней поводковой частью в виде цилиндра.

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении гладких и нарезных стволов. Исходную заготовку после термообработки подвергают механической обработке по наружной поверхности.

Изобретение относится к области обработки металлов и может использоваться для изготовления стволов с нарезными и гладкими направляющими частями. Из исходной заготовки получают заготовку-трубу с заходной частью в виде наружной технологической фаски.

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении стволов с нарезными направляющими частями. Из исходной заготовки путем механической обработки получают заготовку-трубу.
Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении пулеметных стволов с нарезной направляющей частью. Исходную заготовку подвергают термической и механической обработке с образованием заготовки-трубы с заходной и поводковой частями на концах.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении нарезных стволов стрелкового оружия. Исходную заготовку подвергают механической обработке, а затем - упрочняющей термообработке.

Изобретения относятся к обработке металлов давлением и могут быть использованы при изготовлении оружейных стволов калибра 5,45-30 мм. Из исходной заготовки путем ее термообработки и механической обработки получают заготовку-трубу.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении оружейных стволов калибра 5,45-30 мм. .

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении роликов приводных цепей, применяемых в металлургии, конвейерных устройствах и других высокоэнергетических передачах движения.

Изобретение относится к способу изготовления трубчатых длинных изделий из предварительно снабженного отверстием полого блока, в котором полый блок захватывают с помощью манипулятора блока и переносят в рабочую зону ковочной машины, при этом перед ковкой полого блока в ковочной машине расположенную на штанге оправку вводят в осевом направлении через центральное отверстие в манипуляторе блока и далее во внутреннее отверстие полого блока.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении заготовки корпуса снаряда, имеющей форму стакана. В металлообрабатывающем центре от прутка отделяют мерную штучную заготовку и формируют на ее торце зацентровку. Затем заготовку продольно ориентируют и подают в индуктор для нагрева. Нагретую заготовку термостатируют в течение 3-10 минут. На заготовке путем трехвалковой прокатки на оправке формируют камору корпуса снаряда. Затем осуществляют калибрование дна и стенки заготовки. Для этого установленную на оправке заготовку проталкивают в матрицу до упора в дно заготовки. Затем установленную на той же оправке заготовку продавливают на проход через ряд прецизионных колец. Кольца выполнены с уменьшающимся диаметром и закреплены в несущем контейнере, оснащенном осевым выталкивателем. Заготовку продавливают в устройство ступенчатого контролируемого охлаждения, в котором проводят ее охлаждение. В результате обеспечивается автоматизация процесса изготовления заготовок корпусов снарядов за счет совмещения операций, повышается точность заготовок и улучшаются их прочностные характеристики. 1 з.п. ф-лы, 3 ил.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении изделий типа корпусов гидро- и пневмоцилиндров, рубашек кристаллизаторов. Исходную заготовку устанавливают в контейнер на упор и располагают в отверстиях направляющей и рабочей втулок. Втулки соосно размещают в контейнере с образованием между их торцами полости. Обеспечивают выступание части исходной заготовки на конце, предназначенном для формообразования, над торцом рабочей втулки на величину, равную двум диаметрам заготовки. Указанный конец исходной заготовки размещают в отверстии направляющей втулки. Затем выступающую часть исходной заготовки под действием пуансона при неподвижной рабочей втулке высаживают и подвергают свободной прошивке. После этого рабочую втулку растормаживают и перемещают вдоль оси заготовки синхронно с перемещением пуансона. При этом металл исходной заготовки, освобождаемый от рабочей втулки, подвергают осадке и прошивке до момента образования между торцами пуансона и упора перемычки. Полученное изделие извлекают из контейнера под действием рабочей втулки. В результате обеспечивается снижение усилий деформирования, уменьшение разностенности изделия и увеличение его длины за один переход, а также получение мелкозернистой структуры металла изделия. 1 ил.

Изобретение относится к специальному производству оболочек с насечками на внутренней поверхности с образованием сетки рифлей. Сетку рифлей изготавливают с фасками под углом 120° относительно вершины рифля, редуцирование осуществляют с переменной толщиной стенки по высоте оболочки с углом конусности γ=arctg0,5(dнб-dнм)/L, где dнб и dнм - наибольший и наименьший диаметры спирального выступа, мм; L – длина оболочки, в осевом направлении, мм. В конце каждого редуцирования выполняют осевое перемещение заготовки без ее проворота относительно рабочей вставки на величину 0,1-0,2 глубины рифля, а затем свинчивают заготовку. В устройстве толкатель выполнен с глухой полостью. В полости толкателя зафиксированы шпильками пружина и инструментальный стержень с возможностью осевого перемещения, между торцами толкателя и рабочей вставки имеется конструктивно рассчитываемый зазор hoc, форма поверхности спиральных выступов в поперечном сечении рабочей вставки выполнена с углом при вершине 60° высотой 0,8 от глубины рифля, переходящей в поверхность с углом конусности 120° и общей высотой спирального выступа, равной 1,25-1,3 от глубины рифля. Рабочая боковая поверхность рабочей вставки выполнена конусной с углом конусности γ. Изобретение позволяет повысить качество получения сетки ромбических рифлей на внутренней поверхности оболочки без образования заусенцев при свинчивании и снизить трудоемкость процесса. 2 н.п. ф-лы, 4 ил.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении кольцевого формованного тела. Заготовку из сплава на основе Ni, Co или Fe подвергают ковке с получением тела дискообразной формы. Формованием в данном теле сквозного отверстия получают кольцевое промежуточное тело, которое затем раскатывают. Ковка включает по меньшей мере два этапа горячей ковки. Каждый из этапов выполняют при соблюдении скорости деформации не более 0,5 с-1. Абсолютное значение εθ1 деформации кованого тела в окружном направлении составляет по меньшей мере 0,3. Абсолютное значение εh деформации кованого тела в направлении высоты составляет по меньшей мере 0,3. При этом соотношение εh/εθ1 между абсолютными значениями деформации составляет 0,4-2,5. В результате обеспечивается возможность изготовления кольцевого формованного тела, имеющего тонкую кристаллическую однородную структуру. 7 з.п.ф-лы, 9 ил., 2 табл., 1 пр.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении осколочных оболочек боеприпасов. На внутренней поверхности трубчатой заготовки с дном формируют многозаходные спиральные рифли противоположного направления, образующие сетку выступов ромбической формы. Формирование производят за две последовательные операции редуцирования протяжкой. Первую операцию осуществляют с использованием центрального стержня с инструментальными спиральными выступами, угол наклона которых составляет 32-33°. На второй операции используют центральный стержень с углом наклона инструментальных спиральных выступов, составляющим 30-31°. Съем обработанной трубчатой заготовки осуществляют вывинчиванием из нее центрального стержня при торможении заготовки на кольцевом съемнике. Съемник выполнен в виде перемещаемых в радиальном направлении полуколец. Диаметр колец при смыкании меньше наружного диаметра обработанной заготовки. Съемник располагают под матрицей. В результате обеспечивается повышение точности полученных изделий. 1 з.п. ф-лы, 6 ил.
Наверх