Способ термообработки заготовки из нержавеющей хромистой стали

Изобретение относится к области термической обработке и может быть использовано при обработке заготовок высоконагруженных конструкций из стали 20Х13 и 30Х13 с заданными одновременно механическими и магнитными свойствами, в частности, при производстве короткозамкнутых роторов дисковой формы для торцевых гистерезисных двигателей высокооборотных центробежных устройств. Для обеспечения в стали предела текучести не менее 120 кгс/мм2, коэрцитивной силы в диапазоне от 3400 до 4400 А/м, твердости в диапазоне от 45 до 50 единиц HRC заготовку из стали 20Х13 или 30Х13 подвергают термической обработке путем закалки с температуры от 1000 до 1050°C в масле до комнатной температуры и двухступенчатого отпуска, при этом первый отпуск проводят при температуре от 350 до 450°С с охлаждением на воздухе до комнатной температуры, а второй отпуск при температуре от 480 до 520°C с охлаждением на воздухе до комнатной температуры. 3 табл.

 

Изобретение относится к области металлургии железа, в частности к изменению физических свойств нержавеющей хромистой стали путем термообработки. Изобретение может быть использовано при обработке заготовок высоконагруженных конструкций из стали с заданными одновременно механическими и магнитными свойствами, в частности при производстве короткозамкнутых роторов дисковой формы для торцевых гистерезисных двигателей высокооборотных центробежных устройств.

Изобретение направлено на решение прикладной задачи создания конструкционного материала с высокими механическими свойствами в сочетании с заданными магнитными гистерезисными характеристиками, с приемлемой для механической обработки твердостью и относительно низкой стоимостью сырья.

Техническим результатом изобретения является конструкционный материал, характеризуемый сочетанием величины предела текучести не менее 120 кгс/мм2, коэрцитивной силы в диапазоне от 3400 до 4400 А/м, твердости в диапазоне от 45 до 50 единиц HRC. В качестве исходного доступного и относительно дешевого сырья в изобретении используется нержавеющая хромистая сталь типа 30X13.

Хромистые нержавеющие стали типа 20X13, 30X13 относятся к мартенситному классу сталей [1], т.е. в закаленном состоянии они имеют структуру мартенсита. Это обеспечивает сталям при закалке высокие прочностные свойства при низкой пластичности. Наличие в стали довольно большого содержания хрома, имеющего большое сродство к углероду, приводит к необходимости поднимать (в сравнении с углеродистыми сталями) температуру и увеличивать время нагрева под закалку, чтобы растворить хромсодержащие карбиды и перевести хром в твердый раствор. Присутствие хрома в аустените стабилизирует его [2], что дает возможность проводить закалку не только в масле, но и на воздухе.

В таблице 1 приведены данные по влиянию температуры закалки на механические свойства стали 30X13 [1]. Видно, что прочностные свойства имеют тенденцию к росту с увеличением температуры закалки, влияния типа охлаждающей среды (масло или воздух), т.е. скорости охлаждения практически не прослеживается.

Более сложные процессы происходят при отпуске сталей типа 20X13, 30X13. Взаимодействие хрома и углерода в содержащей хром стали приводит к повышенной устойчивости стали при отпуске. Физико-механические свойства стали 30X13 меняются в зависимости от температуры отпуска после закалки при 1050°С [2]. Особенностью является практически полное отсутствие изменений свойств примерно до 500°С и затем резкое их уменьшение при температуре более 500°С.

Такая особенность выбранной сырьевой стали создает серьезные трудности при промышленном производстве, поскольку даже незначительные колебания технологических параметров (например, температуры печи) в сочетании с допустимыми колебаниями состава в пределах одной марки (для стали 30X13 содержание углерода колеблется в диапазоне 0,26-0,35% [4]) будут приводить к значительным изменениям контролируемых параметров - механических и магнитных свойств итогового конструкционного материала.

Из существующего уровня науки и техники известно несколько способов термообработки нержавеющих хромистых сталей, принятых за аналоги изобретения.

Известен способ термической обработки пружинных сталей мартенситного класса, например 30X13 (3X13) ГОСТ 5632-72, включающий закалку при 950-1050°С и последующий отпуск при 400°С [1]. Этот способ не позволяет достигнуть заданного сочетания механических и магнитных характеристик из-за повышенного содержания остаточного аустенита.

При температуре закалки 900-940°С снижается растворимость в аустените карбидов, а при мартенситном превращении уменьшается содержание остаточного аустенита, что исключает при отпуске в интервале 350-390°С образование вторичного неотпущенного мартенсита.

При закалке ниже 900°С в структуре пружинных сталей сохраняется остаточный феррит (признак недогрева при закалке), снижающий ее упругие свойства.

При повышении температуры закалки свыше 940°С происходит рост зерна, а за счет увеличения растворимости хрома в аустените происходит увеличение его устойчивости. Мартенситное превращение идет неполное, что способствует появлению остаточного аустенита. Наличие остаточного аустенита и превращение его в мартенсит под воздействием упругих напряжений приводит к локальным зонам понижения микропластичности, которые являются концентраторами разрушения в структуре стали, что способствует снижению ударной вязкости и релаксационной стойкости.

При температуре отпуска 350-390°С происходит распад остаточного аустенита с уменьшением количества зон пониженной микропластичности, что способствует повышению релаксационной стойкости изделий из пружинных сталей. Режим отпуска пружинных сталей после закалки обеспечивает не только создание определенной структуры продуктов превращения мартенсита, но и распад остаточного аустенита и выделение дисперсных карбидов.

При отпуске ниже 350°С происходит снятие структурных напряжений и перераспределение дислокаций, но сохраняется остаточный аустенит, что не способствует повышению релаксационной стойкости изделий из пружинных сталей.

При отпуске выше 390°С происходит изменение субструктуры мартенсита, дислокационной структуры, а дополнительный распад остаточного аустенита сопровождается грубым выделением карбидов по границам зерен, что приводит к снижению ударной вязкости, что также не способствует повышению релаксационной стойкости изделий из пружинных сталей.

Известен способ термической обработки пружинной стали, например 30X13, включающий закалку при температуре 1000-1050°С и отпуск при температуре 500°С [4].

Известен также способ термической обработки изделий из пружинных сталей мартенситного класса, включающий закалку и последующий отпуск, отличающийся тем, что закалку проводят при температуре 900-940°С и отпуск при температуре 350-390°С, выдерживают в течение одного часа и охлаждают на воздухе [5].

Экспериментально проверено, что указанные выше способы также не позволяют достигнуть заданного сочетания механических и магнитных свойств стали.

Наиболее близким к предлагаемому изобретению является способ термической обработки деформируемой коррозионно-стойкой стали 14Х17Н2, включающий нагрев под закалку, охлаждение в масле, двукратный отпуск с охлаждением в воде после каждого отпуска, отличающийся тем, что нагрев под закалку осуществляют при температуре 1040-1050°С, а нагрев при первом отпуске - при температуре 600-610°С [6]. Термическая обработка стали по этому прототипу приводит к повышению пластических характеристик и ударной вязкости, которые наиболее важны для высоко нагруженных деталей, что достигается выбором узкого диапазона температур при закалке и первом отпуске. В структуре металла после охлаждения от температуры закалки до комнатной образуется мартенсит и сохраняется некоторое количество мягких структурных составляющих феррита. Проведение первого отпуска при указанной температуре приводит к распаду мартенсита на ферритно-карбидную смесь, обеспечивая стабильное состояние отпущенной мартенситной составляющей. Однако экспериментально проверено, что термическая обработка нержавеющих хромистых сталей типа 20X13, 30X13 по этому прототипу не позволяет достигнуть заданного сочетания механических и магнитных свойств стали.

Технический результат по предлагаемому заявителем изобретению достигается путем термообработки нержавеющей хромистой стали: закалка при температуре от 1000 до 1050°С с охлаждением в масле до комнатной температуры и двухступенчатый отпуск заготовок, первый отпуск при температуре от 350 до 450°С, с последующим остыванием на воздухе до комнатной температуры, второй отпуск при температуре от 480 до 520°С с последующим остыванием на воздухе до комнатной температуры. Указанный режим термообработки был выбран в результате анализа следующих экспериментальных данных.

В таблице 2 приведены измеренные заявителем средние значения магнитных и механических свойств стали 30X13, полученные после термообработки заготовок при температуре закаливания 1020°С.

Как следует из таблицы 2, общий характер изменения свойств стали 30X13 с температурой отпуска, указанной в [1], полностью подтверждается. Примерно до 500°С свойства практически не изменяются, а в достаточно узком диапазоне температур от 500 до 700°С происходит резкое ухудшение свойств. Кроме того, возникают дополнительные сложности, связанные с тем, что практически невозможно подобрать такую температуру отпуска, которая могла бы одновременно обеспечить достижение требуемого сочетания значений для всех трех заданных параметров - предела текучести, коэрцитивной силы и твердости. Так, для достижения заданного уровня предела текучести необходимо провести отпуск при температуре примерно 400°С, но при этом коэрцитивная сила и твердость будут слишком высокими, и наоборот, при температуре 500-550°С, оптимальной для получения нужной величины коэрцитивной силы, предел текучести будет на уровне 105-110 кгс/мм2, а твердость слишком высока - выше 50 HRC.

Решением поставленной задачи является применение двухступенчатого отпуска: на первой ступени - низкотемпературный отпуск, на второй - отпуск при более высокой температуре. При таком сочетании можно ожидать достаточно высокого уровня прочностных свойств при сравнительно невысоком значении коэрцитивной силы.

Заявляемый способ обладает новизной в сравнении с аналогами и прототипом, отличаясь от них такими существенными признаками, как закаливание заготовки при температуре от 1000 до 1050°C с последующим охлаждением в масле до комнатной температуры и двухступенчатый отпуск заготовки, первый отпуск при температуре от 350 до 450°C с последующим охлаждением до комнатной температуры на воздухе, второй отпуск при температуре от 480 до 520°C с последующим охлаждением до комнатной температуры на воздухе, обеспечивающими в совокупности достижение заданного сочетания механических и магнитных свойств стали.

Заявителю неизвестны технические решения, обладающие совокупностью указанных отличительных признаков, обеспечивающих в совокупности достижение заданного результата, поэтому он считает, что заявляемый способ соответствует критерию «изобретательский уровень».

Заявляемый способ может найти широкое применение в технологии обработки нержавеющих хромистых сталей, в частности для производства короткозамкнутых роторов дисковой формы для торцевых гистерезисных двигателей высокооборотных центробежных устройств, а потому соответствует критерию «промышленная применимость».

Заявляемый способ термообработки нержавеющей хромистой стали заключается в следующем.

Для закаливания заготовку помещают в печь, предварительно нагретую до температуры от 1000 до 1050°С, выдерживают заготовку в печи до достижения стационарной температуры, вынимают из печи, помещают в масло с комнатной температурой, охлаждают до комнатной температуры. Для первого отпуска закаленную заготовку помещают в печь, предварительно нагретую до температуры от 350 до 450°С, выдерживают заготовку в печи до достижения стационарной температуры, вынимают из печи, охлаждают до комнатной температуры на воздухе. Для второго отпуска закаленную и отпущенную один раз заготовку помещают в печь, предварительно нагретую до температуры от 480 до 520°С, выдерживают заготовку в печи до достижения стационарной температуры, вынимают из печи, охлаждают до комнатной температуры на воздухе.

Заявляемый способ термообработки нержавеющей хромистой стали осуществляется следующим образом, указанным в примере.

Пример

Брали восемь заготовок из нержавеющей хромистой стали в виде диска ⌀100 мм с центральным отверстием ⌀13 мм и толщиной 1,8 мм. Металл заготовок проанализировали на содержание углерода, по результатам которого установили, что содержание углерода (0.32-0.33%) соответствует составу стали 30X13.

В соответствии с предлагаемым способом поместили заготовки в печь, предварительно нагретую до температуры 1020°С, выдержали заготовку в печи до достижения стационарной температуры, вынули из печи, поместили в масло с комнатной температурой, охладили до комнатной температуры. Для первого отпуска закаленную заготовку поместили в печь, предварительно нагретую до температуры 400°С, выдержали заготовку в печи до достижения стационарной температуры, вынули из печи, охладили до комнатной температуры на воздухе. Для второго отпуска закаленную и отпущенную один раз заготовку поместили в печь, предварительно нагретую до температуры 500°С, выдержали заготовку в печи до достижения стационарной температуры, вынули из печи, охладили до комнатной температуры на воздухе.

Механические свойства материала термообработанных заготовок определяли по ГОСТ 1497-84 на 4 плоских образцах длиной 80 мм и шириной 5 мм, вырезанных из каждой заготовки. В качестве испытательного оборудования использовали универсальную разрывную машину UTS-100. Образцы по 25 мм с каждой стороны зажимали в захватах разрывной машины, измерение удлинения образцов проводили контактным оптическим экстензометром на базе 20 мм.

Коэрцитивную силу измеряли на установке контроля магнитных характеристик приводных дисков УКМХ-1 на базе структуроскопа магнитного СМ-401.2. Для исключения разброса измеренных величин, обусловленных влиянием анизотропии материала, коэрцитивную силу определяли усреднением измерений в четырех точках за счет поворота диска вокруг оси на 45° относительно полюсов намагничивающей системы. Твердость по шкале HRC определяли по ГОСТ 22975-78 на твердомере Mitutoyo WiZhard HR-522 в восьми точках по всей торцевой поверхности заготовок. Измеренные значения усредняли.

Результаты

Измеренные значения механических и магнитных свойств приведены в таблице 3.

Из таблицы 3 видно, что применение двухступенчатого отпуска оказалось вполне эффективным для заготовок из стали 30 XI3, получено заданное сочетание механических и магнитных характеристик для всех восьми заготовок (предел текучести не менее 120 кгс/мм2, коэрцитивная сила в диапазоне от 3400 до 4400 А/м, твердости в диапазоне от 45 до 50 единиц HRC).

Источники информации

1. А.Г. Рахштадт. Пружинные стали и сплавы. М.: Металлургия, 1971.

2. Э. Гудремон. Специальные стали, т. 1, ГНТИЛ, 1959.

3. ГОСТ 5672-71. Стали высоколегированные и сплавы коррозионно-стойкие, жаропрочные и жаростойкие. Марки.

4. С.А. Филинов, И.В. Фиргер. Справочник термиста. Л.: Машиностроение, Ленинградское отделение, 1975.

5. Способ термической обработки изделий из пружинных сталей мартенситного класса. Патент RU 2244757.

6. Способ термической обработки деформируемой коррозионно-стойкой стали 14Х17Н2. Патент RU 2508410.

Способ термической обработки заготовок из нержавеющей хромистой стали, включающий нагрев под закалку, последующее охлаждение в масле до комнатной температуры, двухступенчатый отпуск с нагревом заготовки и последующим охлаждением до комнатной температуры, отличающийся тем, что нагрев под закалку осуществляют до температуры 1000-1050°С, первый отпуск проводят при температуре 350-450°С и охлаждением на воздухе, второй отпуск проводят при температуре 480-520°С и охлаждением на воздухе.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к составу светопоглощающих покрытий, используемых при термической обработке углеродистых сплавов. Светопоглощающее покрытие для изделий из углеродистого сплава содержит оксид меди и связующее - оксиэтилцеллюлозу, силикат натрия или калия и воду при следующем соотношении компонентов, мас.%: оксид меди 4,2-4,8, оксиэтилцеллюлоза 4,0-4,4, силикат натрия или калия 25,0-26,5, вода - остальное.

Изобретение относится к области металлургии, а именно к получению высокопрочных углеродсодержащих инварных сплавов. Способ обработки углеродсодержащего инварного сплава включает закалку и деформационно-термическую упрочняющую обработку.

Изобретение относится к области металлургии. Для повышения выносливости мартенситной нержавеющей стали проводят электрошлаковый переплав, затем охлаждают полученный слиток и осуществляют по меньшей мере один аустенитный термический цикл, состоящий в нагреве слитка выше температуры аустенизации с последующей стадией охлаждения.

Изобретение относится к области металлургии. Для повышения среднего значения усталостной прочности получают мартенситную сталь, которая имеет такое содержание других металлов, что она способна упрочняться в результате выделения интерметаллических соединений и карбидов и имеет содержание Al от 0,4 до 3 мас.%.

Изобретение относится к способу получения мартенситной стали. Для повышения механических свойств и сокращения значений их разброса в стали, содержащей другие металлы, обеспечивающие её упрочнение при выделении интерметаллических соединений и карбидов, а также Al между 0,4% и 3%, указанную сталь подвергают термической обработке, включающей нагрев стали выше температуры ее аустенизации, охлаждение стали примерно до температуры окружающей среды, помещение стали в криогенную среду при температуре Т1, причем температура Т1 является более низкой, чем температура Mf мартенситного преобразования, и выдержку стали в криогенной среде с продолжительностью, по меньшей мере равной ненулевому времени t1 выдержки от момента, когда самая горячая часть стали достигла температуры ниже, чем температура Mf мартенситного преобразования, причем температура Т1 (в ºС) и время t1 выдержки (в часах) определяется уравнением Т1=ƒ(t1), причем первая производная функции ƒ по t, ƒ'(t), является положительной, и вторая производная ƒ по t, ƒ”(t), является отрицательной.

Изобретение относится к области металлургии. Для обеспечения высоких механических свойств, хорошей способности к пластической деформации и высокой стойкости к коррозии осуществляют выплавку листа из стали, содержащей, мас.%: 0,6≤С≤0,9, 17≤Mn≤22, 0,2≤Al≤0,9%, 0,2≤Si≤1,1, при условии 0,85≤Al+Si≤1,9, 1,2≤Cu≤1,9, S≤0,030, P≤0,080, N≤0,1, при необходимости: Nb≤0,25, предпочтительно 0,070-0,25, V≤0,5, предпочтительно 0,050-0,5, Ti≤0,5, предпочтительно 0,040-0,5, Ni≤2, следы≤Cr≤2, предпочтительно≤1, B≤0,010, предпочтительно 0,0005-0,010, железо и неизбежные примеси - остальное, её отливку в виде сляба, нагрев сляба до температуры 1100-1300°C, горячую прокатку сляба с температурой конца прокатки по меньшей мере 890°C, быстрое охлаждение горячекатаного листа со скоростью не менее 40°C/с с выдержкой между окончанием прокатки и началом охлаждения, проводимой таким образом, чтобы точка, заданная упомянутой выдержкой и температурой конца прокатки, располагалась внутри участка, определяемого диаграммой ABCD'E'F'A, предпочтительно ABCDEFA, на фиг.1, при этом во время выдержки лист естественно охлаждают на воздухе, смотку листа в рулон при температуре менее или равной 580°C.

Изобретение относится к области металлургии, в частности производству труб нефтепромыслового сортамента. Для обеспечения низкой анизотропии предела текучести трубы при приложении к ней различных напряжений, зависящих от среды использования, получают трубу из аустенитного сплава, имеющую предел текучести при растяжении YSLT по меньшей мере 689,1 МПа.

Изобретение относится к методу изготовления изделий из аустенитной легкой конструкционной стали с изменяемыми в направлении толщины стенки изделия свойствами материала с составом в вес.%: С от 0,2 до≤1,0, Аl от 0,05 до<15,0, Si от 0,05 до ≤6,0, Мn от 9,0 до<30,0, остальное - железо и неизбежные примеси с добавлением по необходимости Cr≤6,5, Cu≤4,0, Ti+Zr≤0,7, Nb+V≤0,5, В≤0,1.

Изобретение относится к области металлургии и может быть использовано при изготовлении труб для энергетического машиностроения и оборудования АЭС. Способ производства металлопродукции из легированных марок стали, например нержавеющих и сплавов, включает выплавку стали, горячую деформацию, термическую обработку в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе, холодную деформацию и термическую обработку в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе.

Изобретение относится к области металлургии. Для повышения сопротивления усталости способ изготовления нержавеющей мартенситной стали содержит этап электрошлаковой переплавки слитка упомянутой стали, а затем этап охлаждения упомянутого слитка.

Изобретение относится к области металлургии. Для исключения возникновения дефектов кромки при производстве горячекатаной кремнистой стали и получения горячекатаной кремнистой стали с поверхностью хорошего качества способ изготовления горячекатаной кремнистой стали включает нагрев, черновую прокатку и чистовую прокатку плоской заготовки из кремнистой стали.

Изобретение относится к нанесению металлического покрытия на стальную ленту (1). Для повышения коррозионной стойкости покрытия проводят оплавление покрытия посредством индукционного нагрева с помощью по меньшей мере одной катушки (2) индуктивности при максимальной температуре (ПТМ), превышающей температуру плавления (Ts) материала покрытия, затем в охлаждающем устройстве (3) охлаждают до температуры (ТА) быстрого охлаждения, лежащей ниже температуры плавления, при этом покрытие в течение времени (th) выдерживают при температуре, превышающей температуру плавления (TS), и что время выдержки (th) посредством перемещения по меньшей мере одной катушки (2) индуктивности относительно охлаждающего устройства (3) согласуют с максимальной температурой (ПТМ) и толщиной покрытия, чтобы полностью расплавить покрытие на всю его толщину вплоть до слоя, граничащего со стальной лентой.

Изобретение относится к химико-термической обработке металлов и может быть использовано для упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической, строительной и других отраслях промышленности.

Изобретение относится к области машиностроения, в частности к обработке высокопрочных изделий, работающих при воздействии значительных динамических и циклических нагрузок.

Изобретение относится к области металлургии, а именно к электроимпульсной обработке твердосплавных пластин режущего инструмента, и может быть использовано в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности.
Изобретение относится к области металлургии и может быть применено при обработке металлов давлением. Для снижения сопротивления металла деформированию и усиления релаксационных процессов на движущуюся проволочную или полосовую заготовку в области зоны деформации одновременно воздействуют СВЧ-излучением и импульсным током в продольном направлении вдоль заготовки, вызывающего электропластический эффект в металле при амплитудной плотности тока Jm примерно 103 А/мм2, длительности импульсов τ примерно 10-4 сек и частоте следования импульсов в несколько сот Гц в зависимости от скорости движения заготовки.

Изобретение относится к области металлургии. Для исключения образования плотных оксидов в процессе нормализации и повышения качества полосы получают лист нормализованной кремнистой стали путем горячей прокатки и нормализации.

Изобретение относится к металлообрабатывающей промышленности, инструментальному производству и машиностроению. Для улучшения эксплуатационных свойств режущего инструмента и деталей за счет повышения твердости, прочности, износостойкости и ударной вязкости осуществляют обработку деталей в условиях акустического воздействия, включающую нагрев и охлаждение деталей в резонаторной камере при давлении 1,5-4,5 атм, причем нагрев ведут в пределах температур от 150 до 450°C, а охлаждение проводят при воздействии на детали циркулирующим потоком сжатого воздуха на резонансной частоте в диапазоне 500-5000 Гц.

Изобретение относится к области упрочняющей обработки изделий из твердых сплавов. Техническим результатом изобретения является повышение ресурса работы инструментов, деталей машин и механизмов, работающих в условиях резания, трения и абразивного износа.
Изобретение относится к ядерной технике. Для обеспечения надежной работоспособности изделий контура с тяжелым жидкометаллическим теплоносителем за счет повышения коррозионной стойкости стали и механической прочности осуществляют очистку поверхности изделия от внешних загрязнений и последующую механическую обработку поверхностей, контактирующих с теплоносителем.

Изобретение относится к области термической обработки изделий из графитизированных чугунов и может быть использовано в энергомашиностроении, двигателестроении, сельхозмашиностроении и других отраслях промышленности. Для повышения износостойкости изделий из графитизированного чугуна с ферритной матрицей осуществляют нагрев изделия токами высокой частоты и последующую закалку, при этом в качестве исходного материала используют чугун с количеством графитных включений более 200 1/мм2, а скорость индукционного нагрева составляет 400-500 град/с. 1 табл., 3 ил.
Наверх