Способ регулирования компрессорного цеха

Изобретение относится к области эксплуатации цеховых регуляторов на компрессорных цехах компрессорных станций. В способе регулирования компрессорного цеха, включающем контроль расхода топливного газа, поочередно изменяют нагрузки групп ГПА, работающих в трассу, для чего двум ГПА группы одновременно меняют частоты вращения роторов турбин низкого давления в противоположных направлениях на одинаковую величину. Для нейтрализации влияния шумов на измерение КПД применяют программные фильтры с большими постоянными времени. Измерение измененного КПД производят после выдержки времени, превышающей не менее чем в 3…5 раз наибольшую постоянную времени фильтров. Направление каждого шага изменения частот вращения роторов турбин низкого давления определяют по знаку приращения КПД, полученного на предыдущем шаге, при этом окончанием оптимизации группы считают малое приращение КПД либо приближение рабочей точки ГПА к технологическому ограничению. Техническим результатом заявляемого способа является снижение расхода топливного газа, повышение КПД компрессорного цеха. 1 ил.

 

Изобретение относится к области эксплуатации цеховых регуляторов на компрессорных цехах компрессорных станций в системе магистральных газопроводов и может быть использовано для снижения расхода топливного газа, потребляемого компрессорными цехами компрессорных станций магистральных газопроводов.

Известен способ управления работой комплекса агрегатов компрессорного цеха, при котором измеряется давление транспортируемого газа на входе и выходе нагнетателей, частота вращения роторов нагнетателей, значение основного параметра газа (выходного давления или расхода) компрессорного цеха, которое сравнивается с заданным значением основного параметра, после чего формируется управляющее воздействие на системы подачи топлива приводов ГПА, входящих в состав компрессорного цеха (Патент № RU 2181854 С1. Способ управления комплексом агрегатов компрессорного цеха / Заявитель: Закрытое акционерное общество «Научно-производственная фирма «Система-сервис», Открытое акционерное общество «Газпром». - Опубл. 27.04.2002). Необходимые значения частот вращения роторов нагнетателей определяют с использованием статических функций, включая функцию зависимости механической мощности на валу нагнетателя от расхода топливного газа привода ГПА. Алгоритм определения частот следующий. Для заданного значения параметра цеха (давления или расхода) рассчитывается политропическая мощность цеха, соответствующая этому значению. Далее, используя указанные выше статические функции, расчетным путем находят ряд комплексов значений частот вращения ГПА цеха, обеспечивающих данную политропическую мощность цеха, а также соответствующие этим комплексам частот совокупные расходы топливного газа по цеху в целом. Затем с использованием методов интерполяции находят тот набор частот, при котором необходимая мощность цеха обеспечивается минимальным расходом топливного газа по цеху в целом. После этого соответствующие значения частот вращения роторов нагнетателей устанавливаются для ГПА цеха в качестве заданий.

Основным недостатком данного способа является ключевая роль в определении оптимальных частот вращения нагнетателей теоретических статических функций, которые, несмотря на заявленную в патенте их подстройку по измеренным реальным параметрам ГПА, с высокой степенью вероятности являются слишком грубыми для учета индивидуальных характеристик и зависимостей отдельных ГПА.

Известен также другой способ регулирования цеха, при котором при стабильном режиме работы цеха цеховой регулятор производит циклически перераспределение нагрузки между отдельными ГПА с целью определения коэффициента чувствительности каждого ГПА, характеризующего приращение суммарного расхода топливного газа компрессорного цеха по отношению к приращению мощности, отдаваемой компрессорным цехом в газопровод при изменении мощности i-го ГПА. На основании определенных таким образом коэффициентов осуществляется такое распределение мощностных нагрузок между ГПА, которое приводит к минимизации расхода топливного газа цеха (Патент № RU 2210006 С2. Способ регулирования цеха / Заявитель: ДК «Укртрансгаз» (UA). - Опубл. 10.08.2003).

Определение коэффициента чувствительности каждого ГПА производится путем модуляции скорости вращения данного ГПА инфранизкой частотой F с амплитудой модуляции ΔN, одновременного приращения суммарного расхода топливного газа по компрессорному цеху и приращения параметра, характеризующего приращение мощности, отдаваемой компрессорным цехом в газопровод при изменении мощности данного ГПА, после окончания переходного процесса и деления приращения расхода топливного газа на приращение параметра, характеризующего приращение мощности, отдаваемой в газопровод данным ГПА, при этом величину инфранизкой частоты F выбирают в пределах от 0.005 до 0.02 Гц, величину амплитуды ΔN в пределах от 0.005 до 0.01 Nном, а модуляцию производят в течение 4-11 периодов инфранизкой частоты.

Основным недостатком способа является крайняя трудность его практической реализации (если она вообще возможна), так как для обеспечения соответствия регулируемого параметра цеха (давления, расхода, степени сжатия) заданной уставке изменять частоту вращения ротора турбины низкого давления (ТНД) более чем на ±20…30 об/мин недопустимо (пробное изменение режима проводится на одном ГПА, а это приводит к отклонению параметра цеха от уставки), что, в свою очередь, крайне усложняет выявление положительного эффекта изменения расхода топливного газа цеха из-за сильной зашумленности сигнала расхода топливного газа. Последнее усугубляется тем, что измеряется отклонение расхода топливного газа всего цеха с целью выделить его изменение, связанное с данным пробным изменением режима одного ГПА.

Этот способ является наиболее близким к заявляемому. Он выбран в качестве прототипа.

В основу предлагаемого изобретения поставлена задача усовершенствования способа (алгоритма) выявления изменения расхода топливного газа цеха при перераспределении нагрузок между ГПА компрессорного цеха (КЦ) компрессорной станции магистрального газопровода при одновременном поддержании заданного режима цеха по выбранному параметру (выходное давление, расход, степень сжатия).

Техническим результатом заявляемого способа является снижение расхода топливного газа (повышение КПД КЦ).

Технический результат достигается тем, что в способе регулирования компрессорного цеха, включающем контроль расхода топливного газа компрессорного цеха по отношению к мощности, отдаваемой цехом в газопровод (КПД цеха), поочередно изменяют нагрузки групп ГПА, работающих в трассу, для чего двум ГПА группы одновременно меняют частоты вращения роторов турбин низкого давления (ТНД) в противоположных направлениях на одинаковую величину. Для нейтрализации влияния шумов на измерение КПД применяют программные фильтры с большими постоянными времени. Измерение измененного КПД производят после выдержки времени, превышающей не менее чем в 3…5 раз наибольшую постоянную времени фильтров. Направление каждого шага изменения частот вращения роторов ТНД определяют по знаку приращения КПД, полученного на предыдущем шаге, при этом окончанием оптимизации (максимизации КПД) группы считают малое (меньше зоны нечувствительности) приращение КПД либо приближение рабочей точки ГПА к технологическому ограничению. После завершения оптимизации одной группы переходят к оптимизации следующих групп. Процедуру осуществляют циклически.

На чертеже показана зависимость КПД от приведенного расхода Qприв. Предлагаемый способ предназначен для максимизации КПД (минимизации расхода топливного газа) неполнонапорного КЦ, работающего в двухступенчатом режиме группами по два ГПА в группе, соединенных последовательно.

Для двух ГПА одной группы массовый расход один и тот же, а объемный расход отличается на степень сжатия первого (по ходу газа) ГПА (т.к. степень сжатия 1.15…1.2, то расходы отличаются на 15…20%). В обычном режиме частоты вращения обоих ГПА почти одинаковы (отличаются на 50…150 об/мин, что соответствует одинаковому удалению от ограничений обоих ГПА), их режимы обозначены на фигуре точками A1, А2. Для группы ГПА (с близкими характеристиками) наиболее экономный режим соответствует максимальным оборотам первого по ходу газа ГПА и минимальным оборотам второго (А.Н. Козаченко, В.И. Никишин, Б.П. Поршаков. Энергетика трубопроводного транспорта. М., 2001 г., гл. 3). Это можно пояснить следующим образом: на чертеже показана зависимость КПД от приведенного расхода ,

где Nном=4800 /мин - номинальные обороты, N - текущие обороты нагнетателя, Q - объемный расход. Поэтому при увеличении оборотов первого ГПА расход делится на большее число, и рабочая точка первого ГПА смещается в положение В1, уменьшение оборотов второго ГПА приводит к смещению рабочей точки в положение В2 и таким образом КПД достигает максимума. Одновременно с этим изменение оборотов ГПА группы в разные стороны обладает рядом дополнительных положительных свойств. Первое, при таком изменении оборотов расход группы меняется незначительно, что ослабляет угрозу введения в помпаж данной группы или соседней. Второе, общее изменение мощности группы также незначительно, что способствует поддержанию заданного режима цеха. Возникающий при этом незначительный дефицит или избыток суммарной мощности цеха можно ликвидировать общим (однонаправленным) фоновым изменением частот ГПА цеха в нужную сторону. Наконец, одновременное разведение частот нагнетателей позволяет сделать эффект изменения КПД более ощутимым по сравнению с прототипом, так как общее одновременное пробное изменение частот будет вдвое больше, чем у прототипа.

С учетом сказанного в основу решения поставленной выше задачи положен принцип поочередной оптимизации (выведения на максимум КПД) групп ГПА, работающих в трассу. КПД группы вычисляется как отношение суммарной политропной мощности двух ГПА к суммарному расходу топливного газа двух ГПА. Так как часть базовых измеряемых параметров (перепады давления на сужающих устройствах) сильно флуктуируют, это делает практически невозможным непосредственное измерение малых изменений КПД. (Известно, что теоретически достижимый эффект не превышает 1…1,5%, поэтому требуется измерение малых приращений сильно зашумленного параметра (А.Н. Козаченко, В.И. Никишин, Б.П. Поршаков. Энергетика трубопроводного транспорта. М., 2001 г., гл. 3).). С целью нейтрализации влияния шумов измеряемые и вычисляемые параметры фильтруются программными фильтрами с большими постоянными времени - порядка 50…90 с.

Предлагаемый способ работает следующим образом. В подлежащей оптимизации группе запоминается текущее значение КПД и производится пробный шаг: значимое изменение оборотов двух ГПА в группе в разные стороны. Например, первому по ходу газа ГПА частота увеличивается на 50 об/мин, а второму по ходу газа ГПА уменьшается на 50 об/мин (общее изменение частот у двух ГПА составляет 100 об/мин). Как известно, достоверное значение на выходе фильтра устанавливается через время, превышающее постоянную времени фильтра не менее чем в 3…5 раз. Поэтому измерение измененного КПД производится спустя 5 мин после изменения частот. Вычисляется приращение КПД, полученное в результате пробного шага, и в зависимости от полученного результата выбирается дальнейшее направление выполнения алгоритма оптимизации. Результат может быть:

1. Положительным. Пробный шаг оказался удачным, и алгоритм производит повторно аналогичное изменение частот вращения;

2. Отрицательным. Следующий шаг алгоритма - изменение частот вращения ГПА группы в направлениях, противоположных предыдущему шагу;

3. Несущественным. Приращение КПД лежит в пределах зоны нечувствительности. Следующий шаг - переход к оптимизации следующей группы. Это может произойти в случаях:

- рабочие точки ГПА группы близки к точкам В1, В2 на чертеже - оптимизация данной группы закончена;

- рабочие точки обоих ГПА лежат по одну сторону от максимума кривой на чертеже - оптимизация в данном режиме невозможна;

- техническое состояние одного или обоих ГПА группы не позволяет получить положительный эффект.

На каждом шаге контролируется удаленность рабочей точки от технологических ограничений, и при уменьшении запаса менее 3…5% оптимизация КПД данной группы прекращается. В этом случае алгоритм также переходит к оптимизации следующей по очереди группы.

Способ регулирования компрессорного цеха, включающий контроль расхода топливного газа компрессорного цеха по отношению к мощности, отдаваемой цехом в газопровод, отличающийся тем, что для контроля расхода топливного газа цеха поочередно изменяют нагрузки групп газоперекачивающих агрегатов (ГПА), работающих в трассу, для чего двум ГПА группы одновременно меняют частоты вращения роторов турбин низкого давления в противоположных направлениях на одинаковую величину, для нейтрализации влияния шумов на измерение КПД применяют программные фильтры с большими постоянными времени, измерение измененного КПД производят после выдержки времени, превышающей не менее чем в 3…5 раз наибольшую постоянную времени фильтров, направление каждого шага изменения частот вращения роторов турбин низкого давления определяют по знаку приращения КПД, полученного на предыдущем шаге, при этом окончанием оптимизации группы считают малое приращение КПД либо приближение рабочей точки ГПА к технологическому ограничению, после завершения оптимизации одной группы переходят к оптимизации следующих групп, процедуру осуществляют циклически.



 

Похожие патенты:

Изобретение относится к турбокомпрессорам. Новым в устройстве является то, что газоприемный корпус содержит профилированные фронтальный и радиальный каналы для подвода газов, соединенные с нижними левым и правым нагнетательными каналами газоприемного корпуса соответственно, верхние каналы которого являются перепускными для отвода газов, при этом каналы для подвода газов соединяются попарно с перепускными каналами через устройство управления производительностью турбины в виде двух параллельных поворотных задвижек, установленных на валиках на входе газоприемного корпуса с управлением посредством пневмодвигателей, а рабочее колесо при этом представляет комбинацию лопаток специального профиля выполненного на цилиндрической и тороидальной части с переходами от одной геометрической поверхности к другой.

Изобретение относится к области электротехники и может быть использовано для управления электродвигателем вентилятора, имеющего большой момент инерции. Технический результат заключается в уменьшении потребления электроэнергии из сети за счет использования энергии инерционных масс вентилятора.

Изобретение относится к способу управления компрессором. Способ содержит следующие этапы: а) передача по меньшей мере одного заданного значения параметра компрессора, b) определение по меньшей мере двух значений регулирующего воздействия по меньшей мере двух исполнительных элементов компрессора на основе заданного значения, с) определение основанного на модели теоретического состояния компрессора на основе значений регулирующего воздействия, d) итерационная коррекция по меньшей мере одного из значений регулирующего воздействия в зависимости от теоретического состояния, е) управление по меньшей мере одним из исполнительных элементов на основе значения регулирующего воздействия.

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в первичном потоке двухвального двухконтурного турбореактивного двигателя.

Изобретение относится к области перекачки газа и может быть использовано на компрессорных станциях при транспортировке газа через магистральные трубопроводы. Компрессорная станция для перекачки газа содержит газоперекачивающий агрегат с технологическим компрессором, приводом которого служит газотурбинная установка, включающая в себя осевой компрессор.

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для регулирования положения направляющих аппаратов компрессора авиационного газотурбинного двигателя.

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания (ДВС) с турбонаддувом. Техническим результатом является расширение диапазона регулирования турбонаддува ДВС.

Изобретение относится к воздушно-азотным компрессорным станциям, может быть использовано преимущественно в ракетно-космических стартовых комплексах для обеспечения потребителей сжатыми газами.

Изобретение относится к вентиляторным установкам регулируемой производительности. Система управления аппаратами воздушного охлаждения содержит регуляторы, датчики температуры, вентиляторы и теплообменники в аппаратах воздушного охлаждения, а также входной коллектор и выходной коллектор для охлаждаемой среды.

Способ регулирования компрессора, включающего себя компрессорный элемент. При переходе от полной нагрузки или частичной нагрузки к нулевой нагрузке осуществляется процесс А, включающий в себя следующие этапы: снижение давления на входе в компрессорный элемент; снижение частоты вращения и/или крутящего момента, и/или при переходе от нулевой нагрузки к частичной или полной нагрузке осуществляется процесс В, включающий в себя следующие этапы: повышение частоты вращения или крутящего момента и повышение давления на входе в компрессорный элемент.

Изобретение относится к системам управления оборудованием компрессорных станций. Система содержит программируемый контроллер 1 сбора информации и управления, связанный с датчиком 2 давления воздуха в магистрали и с компрессорной установкой 3, снабженной силовой установкой 4 и устройством 5 плавного пуска. Компрессорная станция снабжена осушителем 6 сжатого воздуха, электрическими обогревателями 7 и воздушными заслонками 8, снабженными датчиками 9 угла поворота. Она также включает соединенные с контроллером 1 датчик 10 температуры в установке, датчик 11 давления сжатого воздуха и компрессорный агрегат 12, снабженный датчиками контроля его состояния: датчиком 13 вибрации, датчиком 14 температуры масла, датчиком 15 температуры подшипника, внутренним датчиком 16 давления. Осушитель 6 связан с контроллером 1, а входы электрических обогревателей 7 и воздушных заслонок 8 - с двумя выходами контроллера 1. Контроллер 1 также связан через интерфейс 18 и коммутатор 19 внешней сети с автоматизированным рабочим местом 17 оператора компрессорной станции, которое через коммутатор 19 сообщено с видеокамерой 20. Изобретение направлено на повышение надежности компрессорной станции. 1 ил.

Центробежный компрессор газовой турбины с радиальным воздухозаборником содержит крыльчатку, укомплектованную лопатками, и крышку истечения воздушного потока в лопатки крыльчатки. Крышка, покрытая абляционным материалом, имеет кольцевую зону изгиба по существу в срединной части. В абляционном покрытии этой зоны механической обработкой выполнены выемки маркировки (M1–M3) определенной глубины, предпочтительно по группам (G1, G2). Последовательно осуществляются эндоскопические осмотры для подачи сигнала изображения маркировок. Обработка эндоскопического сигнала позволяет определить число остаточных маркировок и реализовать критерий решения по демонтажу двигателя. Изобретение направлено на точное измерение эрозии компрессоров без демонтажа двигателя, а также простую установку. 2 н. и 10 з.п. ф-лы, 6 ил.

Обогревательная установка содержит воздушное впускное отверстие, по меньшей мере одно воздушное выпускное отверстие, импеллер, электродвигатель, вращающий импеллер, интерфейс пользователя, позволяющий пользователю выбирать скорость вращения электродвигателя, и по меньшей мере один нагревательный узел, содержащий по меньшей мере один нагревательный элемент с положительным температурным коэффициентом, для нагревания воздуха, проходящего от воздушного впускного отверстия к соответствующему воздушному выпускному отверстию. Величина тока, потребляемого по меньшей мере одним нагревательным узлом, обнаруживается, а скорость вращения электродвигателя управляется независимо от скорости вращения, заданной пользователем, с учетом параметров тока, потребляемого по меньшей мере одним из нагревательных узлов. 2 н. и 38 з.п. ф-лы, 12 ил.

Изобретение относится к области авиадвигателестроения. Задняя опора вала ротора КНД ТРД выполнена радиально-упорной, включает соединенные барабанно-дисковую и цилиндрическую составляющие вала ротора и содержит шарикоподшипник, разделяющий опору на статорную и роторную части. Статорная часть включает корпус опоры в виде силовой конической диафрагмы, переходящей у торцов во внутреннее и внешнее силовые кольца, разъемно соединенным с фланцами шарикоподшипника и промежуточного корпуса двигателя. Внутреннее силовое кольцо выполнено для разъемного соединения с корпусом браслетного уплотнения и кольцевых держателей крышек лабиринтных уплотнений. Роторная часть опоры включает выполненные заедино нижнюю часть конической диафрагмы барабанно-дисковой составляющей, переходящей в цапфу вала ротора КНД, разъемно соединенную с цилиндрической составляющей вала полым стяжным болтом. На цилиндрической составляющей вала ротора установлены многогребешковый кольцевой элемент лабиринтного уплотнения, контактная втулка браслетного уплотнения и маслоотражательное кольцо, а также внутреннее кольцо шарикоподшипника, поджимаемые к упорному буртику цилиндрической составляющей вала внешним стяжным элементом с кольцевым бортовым элементом с образованием открытого коллектора для сбора и подачи смазочно-охлаждающей жидкости к телам качения шарикоподшипника, к маслоотражательному кольцу и контактной втулке браслетного уплотнения посредством каналов во внешней поверхности цилиндрической составляющей вала ротора. Изобретение позволяет увеличить износостойкость опоры вала ротора КНД, улучшить работу смазочно-охлаждающей системы задней опоры, повысить КПД опоры и ресурса работы компрессора в целом. 4 н. и 16 з.п. ф-лы, 2 ил.

Группа изобретений относится к устройству регулирования газового потока при его прохождении через канал. Устройство регулирования газового потока в канале содержит множество поворотных лопаток (27, 28). Оси поворота первой и второй соседних лопаток (27, 28) разнесены так, что задняя кромка (47) первой лопатки (27) перекрывается с передней кромкой (48) второй лопатки (28), когда первая и вторая соседние лопатки (27, 28) находятся в первом взаимном крайнем положении для существенного ограничения газового потока в канале. Вторая лопатка (28) имеет выемку (49) такой формы, что задняя кромка (47) первой лопатки (27) по меньшей мере частично входит в выемку, когда первая и вторая соседние лопатки (27, 28) находятся в первом взаимном крайнем положении, так что выемка (49) во второй лопатке (28) и задняя кромка (47) первой лопатки (27) выполнены с возможностью образования по существу постоянного зазора между противолежащими обращенными друг к другу поверхностями при положении лопаток (27, 28) в пределах допустимых отклонений, когда первая и вторая лопатки находятся в первом взаимном крайнем положении. Группа изобретений направлена на обеспечение надежной работы устройства. 4 н. и 23 з.п. ф-лы, 11 ил.

Изобретение относится к турбомашине, в частности турбокомпрессору, содержащей по меньшей мере один ротор, который проходит вдоль оси (Х), по меньшей мере одно газовое уплотнение, которое с помощью защитного газа уплотняет зазор между ротором и статором турбомашины, подготовительный модуль, который из отбираемой в положении высокого давления в месте отбора рабочей текучей среды готовит защитный газ, при этом защитный газ подается в газовое уплотнение. В первом трубопроводе турбомашины, который направляет рабочую текучую среду от положения высокого давления к подготовительному модулю, предусмотрен регулировочный клапан, турбомашина содержит регулировочный блок, который управляет регулировочным клапаном, турбомашина во втором трубопроводе для защитного газа между подготовительным модулем и газовым уплотнением имеет датчик, который определяет давление защитного газа между подготовительным модулем и газовым уплотнением, регулировочный блок выполнен так, что регулировочный клапан регулирует давления, или массовый поток, или объемный поток, измеренный датчиком. Изобретение направлено на уменьшение инвестиционных затрат на подготовку защитного газа для газового уплотнения. 2 н. и 3 з.п. ф-лы, 1 ил.

Ступень (10) компрессора с всасывающим со стороны статора штуцером, через который уплотняемая на участке ступени компрессора среда может подаваться в ступень компрессора, с входным каналом (11) со стороны статора, через который уплотняемую среду, выходящую из штуцера, можно транспортировать в направлении к рабочему колесу (14) со стороны ротора. Рабочее колесо (14) имеет радиально внутреннюю ступицу (16), радиально внешний покрывной диск (17) и продолжающиеся между ступицей (16) и покрывным диском (17) лопатки (18) рабочего колеса, причем для измерения переменного перепада давления в ступени компрессора в ней предусмотрены положительная точка измерения и отрицательная точка измерения, причем отрицательная точка измерения позиционирована вверх по потоку рабочего колеса (14) снаружи входного канала (11) со стороны статора в ответвляющейся от входного канала кольцевой щели (24). Изобретение направлено на оптимизацию эксплуатации компрессора. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронно-гидромеханических и гидромеханических системах автоматического управления ГТД. Сущность изобретения заключается в упрощении реализации способа управления механизацией компрессора ГТД по приведенной частоте вращения турбокомпрессора (ТК) двигателя за счет определения приведенной частоты вращения ТК по внутридвигательным параметрам двигателя без измерения температуры воздуха на входе в двигатель. Это достигается тем, что частота вращения ТК двигателя, найденная по приведенной дроссельной характеристике двигателя с использованием расхода топлива в двигатель, приведенного только по давлению воздуха входе в двигатель, корректируется на величину, пропорциональную отклонению этой частоты от измеренной частоты вращения ТК. Коэффициент коррекции определяется характером приведенной дроссельной характеристики и режимом работы двигателя. Положительным эффектом изобретения является упрощение технических устройств управления механизацией компрессора ГТД и, как следствие, снижение стоимости и повышение надежности ГТД. 1 ил., 1 табл.

Изобретение относится к области рельсовых транспортных средств. Компрессорная система включает в себя приводимый в действие от электродвигателя через приводной вал компрессор, резервуар для сжатого воздуха. Электродвигатель выполнен с возможностью настройки посредством регулировочного устройства, по меньшей мере, с одной частотой вращения, в пределах от максимальной частоты вращения до минимальной частоты вращения. В расположенном по ходу потока от компрессора, проводящем сжатый воздух трубопроводе расположен датчик давления для определения давления для регулировочного устройства. Исполнительный орган для непрерывного воздействия на частоту вращения электродвигателя расположен между устройством подачи электроэнергии и электродвигателем. Настройка исполнительного органа осуществляется в соответствии с сенсорным устройством, включающим в себя датчик для регистрации внешнего граничного условия рельсового транспортного средства, через регулировочное устройство. Достигается повышение эффективности компрессорной системы и понижение шума при ее работе. 8 з.п. ф-лы, 2 ил.

Узел турбомашины содержит компрессор низкого давления, компрессор высокого давления, промежуточный корпус, размещенный между ними, клапан перепуска воздуха и приводной силовой гидроцилиндр клапана перепуска воздуха. Клапан перепуска воздуха расположен между компрессором низкого давления и компрессором высокого давления и установлен во внутреннем кожухе промежуточного корпуса. Приводной силовой гидроцилиндр клапана перепуска воздуха содержит цилиндр, продолженный разделителем, используемым для крепления приводного силового гидроцилиндра к стенке корпуса турбомашины, и стержень поршня, окруженный разделителем и предназначенный для соединения с концом механизма передачи. Разделитель не содержит боковые отверстия, а расположенный вниз по потоку фланец промежуточного корпуса крепится на боковой стороне разделителя. При сборке приводного силового гидроцилиндра размещают стержень поршня так, что он выступает из разделителя, затем соединяют выступающий стержень поршня с концом механизма передачи, выступающим из стенки корпуса на стороне приводного силового гидроцилиндра. Втягивают стержень поршня так, чтобы подводить цилиндр ближе к указанной стенке корпуса, и крепят разделитель к стенке корпуса. Группа изобретений позволяет обеспечить противопожарную защиту приводного силового гидроцилиндра клапана перепуска воздуха без существенного усложнения процесса его сборки. 2 н. и 8 з.п. ф-лы, 9 ил.

Изобретение относится к области эксплуатации цеховых регуляторов на компрессорных цехах компрессорных станций. В способе регулирования компрессорного цеха, включающем контроль расхода топливного газа, поочередно изменяют нагрузки групп ГПА, работающих в трассу, для чего двум ГПА группы одновременно меняют частоты вращения роторов турбин низкого давления в противоположных направлениях на одинаковую величину. Для нейтрализации влияния шумов на измерение КПД применяют программные фильтры с большими постоянными времени. Измерение измененного КПД производят после выдержки времени, превышающей не менее чем в 3…5 раз наибольшую постоянную времени фильтров. Направление каждого шага изменения частот вращения роторов турбин низкого давления определяют по знаку приращения КПД, полученного на предыдущем шаге, при этом окончанием оптимизации группы считают малое приращение КПД либо приближение рабочей точки ГПА к технологическому ограничению. Техническим результатом заявляемого способа является снижение расхода топливного газа, повышение КПД компрессорного цеха. 1 ил.

Наверх