Способ получения нанокапсул серы

Изобретение относится к способу получения нанокапсул серы. Указанный способ характеризуется тем, что серу диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:полимер в нанокапсулах составляет 1:3 или 3:1 или 1:1. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, а также увеличение выхода по массе. 1 ил., 4 пр.

 

Изобретение относится к области инкапсуляции и ветеринарии, а в частности получения нанокапсул серы.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071 МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 г., Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул серы, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза при их получении физико-химическим методом осаждения нерастворителем с использованием осадителя - этилацетата.

Отличительной особенностью предлагаемого метода является использование натрий карбоксиметилцеллюлозы в качестве оболочки нанокапсул, серы - в качестве их ядра, а также использование осадителя - этилацетата.

Результатом предлагаемого метода является получение нанокапсул серы в натрий карбоксиметилцеллюлозе при 25°С в течение 20 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1. Получение нанокапсул серы, соотношение ядро:полимер 1:3

100 мг серы диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием при перемешивании 1000 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул серы, соотношение ядро:полимер 3:1

300 мг серы диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащий указанного 100 мг полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/мин. Далее приливают 5 мл этилацетата Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул серы, соотношение ядро:полимер 1:1

100 мг серы диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире, содержащий указанного 100 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1000 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г белого с желтоватым оттенком порошка. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length : Auto, Min Expected Size : Avto. Длительность единичного измерения 215s, использование шприцевого насоса.

Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул.

Способ получения нанокапсул серы, характеризующийся тем, что серу диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1000 об/мин, затем приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:полимер в нанокапсулах составляет 1:3 или 3:1 или 1:1.



 

Похожие патенты:

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы.

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании со скоростью 1000 об/мин.

Изобретение относится к химической промышленности и нанотехнологии. В термическую зону, в которой инертная атмосфера и содержится плазма, вводят углеводородный предшественник, способный образовывать двухуглеродные фрагментированные частицы, который содержит н-пропанол, этан, этилен, ацетилен, винилхлорид, 1,2-дихлорэтан, аллиловый спирт, пропионовый альдегид, винилбромид или метан.

Устройство манипулирования относится к области точной механики и может быть использовано для точного перемещения объектов, например, в зондовой микроскопии. Заявленное устройство манипулирования включает основание (1) с блоком направляющих, на котором установлена подвижная каретка (2), включающая блок опор, сопряженная с блоком направляющих посредством блока опор, и привод (13), сопряженный с рычагом (18), имеющий возможность разъемного соединения с подвижной кареткой (2) Согласноизобретению подвижная каретка (2) установлена на блоке направляющих при помощи блока опор с возможностью однозначной установки в рабочее положение, при этом подвижная каретка (2) в рабочем положении имеет минимум потенциальной энергии.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется натрий карбоксиметилцеллюлоза, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию натрий карбоксиметилцеллюлозы в бутаноле в присутствии поверхностно-активного вещества E472c, при этом соотношение ядро:оболочка при пересчете на сухое вещество составляет от 1:1, или 1:3, или 1:5, затем при перемешивании приливают хлористый метилен, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется каррагинан, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию каррагинана в бутаноле в присутствии поверхностно-активного вещества E472c, при этом соотношение ядро:оболочка при пересчете на сухое вещество составляет от 1:1 до 1:5, затем при перемешивании приливают серный эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида натрия в присутствии цитрата натрия или динатриевой соли этилендиаминтетрауксусной кислоты (Трилон Б).
Группа изобретений относится к медицине, конкретно к пористому двухфазному материалу фосфата кальция/гидроксиапатита (ФК/ГАП) в качестве заменителя кости, содержащему спеченный ФК стержень и по меньшей мере один однородный и замкнутый эпитаксически выращенный слой нанокристаллического ГАП, нанесенный поверх спеченного ФК стержня, при этом эпитаксически выращенные нанокристаллы имеют такой же размер и структуру, как и костный минерал человека, т.е.
Изобретение относится к области получения композитных строительных материалов и может быть использовано в технологии изготовления древесно-минеральных плит, применяемых в качестве несущих, самонесущих стен и перегородок, конструкционных звуко- и теплоизоляционных плит и панелей.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы.

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании со скоростью 1000 об/мин.

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3 или 5:1.

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия.

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина характеризуется тем, что в качестве оболочки для нанокапсул используют геллановую камедь, при этом 100 мг рибофлавина диспергируют в суспензию геллановой камеди в петролейном эфире, содержащую 100, 300 или 500 мг геллановой камеди в присутствии 0,01 г Е472с, затем перемешивают при 1300 об/мин, после приливают 5 мл бутилхлорида, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из ксантановой камеди.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков - цефтриаксона или цефотаксима.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются цефалоспориновые антибиотики, в качестве оболочки - полудан при соотношении оболочка:ядро 3:1, при этом к водному полудану добавляют порошок цефалоспоринового антибиотика и препарат Е472 с в качестве поверхностно-активного вещества, при перемешивании после растворения компонентов реакционной смеси по каплям приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется натрий карбоксиметилцеллюлоза, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию натрий карбоксиметилцеллюлозы в бутаноле в присутствии поверхностно-активного вещества E472c, при этом соотношение ядро:оболочка при пересчете на сухое вещество составляет от 1:1, или 1:3, или 1:5, затем при перемешивании приливают хлористый метилен, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Наверх