Катализаторы окисления сажи и способ их получения


 


Владельцы патента RU 2592702:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)

Изобретение относится к катализаторам окисления сажи, включающим металлы и кислород. При этом в качестве металлов используются висмут, медь и магний, образующие висмутит меди CuBi2O4, купрат магния MgCu4O5, висмутит магния Bi12MgO19 и оксид магния MgO. Также изобретение относится к способу получения заявленных катализаторов, который заключается в том, что определенные массы нитратов перечисленных элементов смешивают в корундовом тигле с последующим полным растворением их в дистиллированной воде, раствор частично упаривают, помещают в муфельную печь и прокаливают при 300°C в течение 3 часов; затем увеличивают температуру до 700°C и отжигают в течение 4 часов, все перечисленные операции проводят в воздушной среде. Технический результат заключается в снижении выбросов токсичных соединений из двигателей. 2 н. и 1 з.п. ф-лы, 1 табл., 12 пр.

 

Изобретение относится к катализаторам окисления сажи и способу его получения, так как выброс токсичных соединений их двигателей существенно угрожает экологии. Изобретение катализаторов относится к катализаторам окисления дизельных выбросов, в частности сажи.

Известен катализатор окисления и каталитически активное покрытие сажевого фильтра, содержат палладий и платину, причем соотношение между общим количеством палладия и общим количеством платины составляет от 8:1 до 1:15, при этом одновременно соотношение между количеством платины и количеством палладия в катализаторе окисления не превышает 6:1, а соотношение между количеством платины и количеством палладия в каталитически активном покрытии сажевого фильтра составляет не менее 10:1 [1].

Способ получения простой, так как включает смешивание компонентов в необходимом соотношении.

Недостатком данного катализатора являются, прежде всего, дорогостоящие компоненты, и в связи с тем, что с каждым днем увеличивается количество источников выброса веществ, засоряющих атмосферу и поверхность Земли, требуются активные катализаторы в большом количестве, стоимость таких катализаторов велика и применение их нерентабельно.

Известен катализатор окисления сажи, состав которого содержит металлический алюминий и оксидный композит, состоящий из оксида алюминия, оксидов переходных металлов и, дополнительно, оксидов редкоземельных элементов или их смеси и/или оксида фосфора и/или оксида кремния смесей оксидов переходных металлов. Катализатор также может содержать платиновые металлы или их смеси. Катализатор обладает термостойкостью [2].

Способ получения незначительно отличается от первого аналога.

Недостаток этого катализатора также состоит в том, что стоимость подобных катализаторов достаточно велика для широкого внедрения.

Известен катализатор, в состав которого входят алюминий и соль кобальта, предварительно прокаленные, после чего получается оксидный композит состава Al1,20-1,88Co0,05-0,05Oy в количестве 60,5-72,6 вес. %, металлический алюминий - остальное; либо катализаторы включают платиновый металл в количестве 0,05 вес. % без указания концентрации остальных компонентов катализатора [3].

Недостатком катализаторов на основе металлического алюминия является выплавление алюминия при температуре выше 660°C через трещины в оксидном керамическом слое, что приводит к разрушению и дезактивации катализаторов.

Известен катализатор и способ его получения, который включает введение неблагородного металла в виде гидроксида аммония или аммиачного комплекса, или в виде органического аминового комплекса, или в виде гидроксидного соединения в активный в окислительно-восстановительных реакциях кубический флюоритный CeZrOx материал при основных условиях. Катализатор окисления включает первичный каталитический активный металл из группы благородных металлов, нанесенный на носитель, а также вторичный каталитический активный компонент, который получен путем ионного обмена между поверхностью кубического флюоритного CeZrOx материала и раствором неблагородного металла и необязательно цеолита. Полученные катализаторы используют в каталитическом устройстве, располагая один из них на субстрате, вокруг которого расположен корпус [4].

Недостатком данного катализатора является многокомпонентность, использование благородных металлов и возможность потери дорогих составляющих.

Наиболее близким к заявляемому является катализатор молибдат меди CuMoO4 и способ получения медно-молибдатных катализаторов дожита сажи [5]. Способ получения катализатора дожига дизельной сажи включает смешивание экстракта меди в н-каприловой кислоте и экстракта молибдена в изоамиловом спирте в соотношении, обеспечивающем содержание металлов в получаемой смеси, соответствующее составу CuMoO4, последующее удаление растворителя из полученной смеси и ее пиролиз на воздухе, причем полученную смесь экстрактов доводят изоамиловым спиртом до суммарной концентрации металлов 1,5-2,0 мас. %, разбавленную смесь наносят на подложку из титана либо его сплава, обработанную путем плазменно-электролитического оксидирования в водном электролите, удаление растворителя осуществляют нагреванием титановой подложки с нанесенной смесью экстрактов до 150°C в течение не менее 1 часа, последующий пиролиз проводят при температуре 540-550°C в течение не менее 1 часа. Технический результат - упрощение способа получения катализатора на металлической подложке и повышение его производительности при одновременном повышении качества и эффективности получаемого катализатора.

Недостатком способа можно только считать многоступенчатость получения данного катализатора, экстрагирование меди и молибдена, применение изоамилового спирта, плазменно-электролитического оксидирования, что усложняет получить молибдат меди.

В состав заявляемых катализаторов входят висмут, магний, медь и кислород, а именно в состав катализаторов входят сложные оксидные системы на основе висмута, магния и меди, Bi12MgO19+MgO; Bi12MgO19+Cu4MgO5 и CuB2O4.

Образцы катализаторов получались в корундовом тигле с последующим полным растворением их в дистиллированной воде.

Раствор частично упаривался, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивалась температура до 973 К и масса отжигалась в течение 4 часов. Все перечисленные операции проводились в воздушной среде.

Для выяснения стабильности катализаторов Bi-Mg, Bi-Cu-Mg, Bi-Cu была проведена серия экспериментов. Эксперименты проводились в проточном кварцевом реакторе при температурах 713 К и 733 К в атмосфере воздуха. Объемный расход воздуха составлял 12 мл/мин.

Исходным объектом для исследований являлась дизельная сажа с удельной поверхностью 16 м2/г. В качестве катализаторов использовались сложные оксидные системы на основе висмута, магния, меди.

Образцы катализаторов получались путем смешивания определенных масс нитратов перечисленных элементов в корундовом тигле с последующим полным растворением их в дистиллированной воде. Раствор частично упаривался, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали в течение 4 часов. Все перечисленные операции проводили в воздушной среде.

Пример 1. Нитраты магния и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов, затем увеличивалась температура до 973 К и каталитическая смесь отжигалась в течение 4 часов. Все перечисленные операции проводились в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза являются тетрагональный висмутит магния B12MgO19 и кубический оксид магния MgO.

Пример 2. Нитраты меди, висмута и магния массами 0,2 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого остаток раствора упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были висмутит меди тетрагональный Bi12MgO19 и кубический купрат меди CuMgO5.

Пример 3. Нитраты меди и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктом синтеза был тетрагональный висмутит меди CuBi2O4.

Пример 4. Нитраты магния и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были тетрагональный висмутит магния Bi12MgO19 и кубический оксид магния MgO.

Пример 5. Нитраты меди, висмута и магния массами 0,2 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого остаток раствора упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были висмутит меди тетрагональный Bi12MgO19 и кубический купрат меди Cu4MgO5.

Пример 6. Нитраты меди и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктом синтеза был тетрагональный висмутит меди CuBi2O4.

Пример 7. Нитраты магния и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были тетрагональный висмутит магния Bi12MgO19 и кубический оксид магния MgO.

Пример 8. Нитраты меди, висмута и магния массами 0,2 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого остаток раствора упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были висмутит меди тетрагональный Bi12MgO19 и кубический купрат меди Cu4MgO5.

Пример 9. Нитраты меди и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктом синтеза был тетрагональный висмутит меди CuBi2O4.

Пример 10. Нитраты магния и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были тетрагональный висмутит магния Bi12MgO19 и кубический оксид магния MgO.

Пример 11. Нитраты меди, висмута и магния массами 0,2 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого остаток раствора упаривался. частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктами синтеза были висмутит меди тетрагональный Bi12MgO19 и кубический купрат меди Cu4MgO5.

Пример 12. Нитраты меди и висмута массами 0,3 г смешивались в корундовом тигле с полным растворением их в дистиллированной воде. После этого раствор упаривался частично, помещался в муфельную печь и прокаливался при 573 К в течение 3 часов. Затем увеличивали температуру до 973 К и отжигали состав в течение 4 часов. Все перечисленные операции проводили в воздушной среде. Согласно рентгенофазовому анализу продуктом синтеза был тетрагональный висмутит меди CuBi2O4.

Исходным объектом для исследований являлась дизельная сажа с удельной поверхностью 16 м2/г. В качестве катализаторов, увеличивающих адсорбцию кислорода на поверхности сажи, использовали сложные оксидные системы на основе висмута, магния и меди, взятых в соотношении: сажа: катализатор = 1:1.

Следует отметить, что многие каталитические системы проявляют высокую каталитическую активность в окислении сажи только в случае плотного контакта с ней. Действительно, изученные системы проявляют каталитическую активность даже при неплотном контакте с сажей, что проявляется в снижении температуры начала окисления сажи и увеличении удельной скорости окисления по сравнению с некаталитическим процессом.

В то же время при плотном контакте каталитическая активность всех систем значительно выше. Система Bi-Cu оказалась наименее активна в адсорбции кислорода на саже. Для систем Bi-Cu-Mg окисление проводилось в температурном интервале от 293 К до 873 К в соотношении сажа: катализатор 2:1. Для системы Bi-Mg при 733 К скорость окисления при плотном контакте почти в 6 раз выше, чем при неплотном, а для системы Bi-Cu-Mg при 733 К - в 4 раза выше. Учитывая такую зависимость каталитической активности от типа контакта, исследования проводились в условиях плотного контакта. Следует также отметить значительное увеличение активности для обеих систем и для обоих типов контакта катализатора с сажей.

Все катализаторы исследовали в окислении сажи.

Рентгеновская фотоэлектронная спектроскопия (РФЭС) и смесей сажа-катализатор исследований поверхности образцов дизельной сажи (без добавок) и сажи с добавками, содержащими соединения Bi, Cu, Mg до и после окисления кислородом показала, что если до окисления с катализаторами, соотношение кислорода к углероду О/С (показатель адсорбции кислорода на саже) составляет двухзначное число, то после добавления катализатора к саже значение этого числа менее 10 (Таблица).

Исследования показали, что использование представленных катализаторов более эффективны по сравнению с применяемыми катализаторами на основе как благородных металлов, так и других катализаторов, включая прототип, кроме того, получение представленных катализаторов не представляет особых трудностей.

Использование в составе катализаторов окисления сажи соединений металлов: меди, висмута и магния при плотном контакте сажа-катализатор значительно увеличивают удаление сажи, очищая окружающую среду.

Источники информации

1. Патент RU №2479341, B01D 53/94, B01J 23/38, B01J 23/42, B01J 23/44, F01N 3/10, 2008.

2. Патент RU №2103057, B01J 27/185, B01J 27/182, B01J 23/70, B01J 23/10, B01J 21/04, B01J 21/02, B01J 103/54, B01D 53/72, B01D 53/72, B01D 53/48, 1998.

3. Авт. Св. СССР N 923588, В01J 37/02, Б.И. N 16, 1982.

4. Патент RU №2506996, B01J 23/00, 21/00, B01J 23/10, B01J 23/54, B01J 21/04, B01J 37/00, B01D 53/94, C01F 17/00.

5. RU 2455069, C1 B01J 37/025, C1 B01J 37/03, 2012.

6. Лебухова Н.В., Карпович Н.Ф., Макаревич К.С., Чигрин П.Г. «Каталитическое горение сажи в присутствии медно-молибдатных систем, полученных разными методами». Катализ в промышленности, 2008, №6, с. 35-40.

1. Катализаторы окисления сажи, включающие металлы и кислород, отличающиеся тем, что в качестве металлов используются металлы: висмут, медь и магний, образующих висмутит меди CuBi2O4, купрат магния MgCu4O5, висмутит магния Bi12MgO19 и оксид магния MgO.

2. Катализаторы по п. 1, отдичающиеся тем, что катализаторы имеют следующий состав: Bi12MgO19+MgO, Bi12MgO19+Cu4MgO5, CuBi2O4.

3. Способ получения катализаторов для окисления сажи, отличающийся тем, что определенные массы нитратов перечисленных элементов смешивали в корундовом тигле с последующим полным растворением их в дистиллированной воде, раствор частично упаривали, помещали в муфельную печь и прокаливали при 300°C в течение 3 часов; затем увеличивали температуру до 700°C и отжигали в течение 4 часов. Все перечисленные операции проводили в воздушной среде.



 

Похожие патенты:
Изобретение относится к способу приготовления предшественника кобальтсодержащего катализатора синтеза углеводородов, который включает прокаливание загруженного катализатором носителя, представляющего собой носитель катализатора для нанесения на него соли кобальта, нанесение на носитель соли кобальта и последующее разложение соли кобальта и/или реакцию соли кобальта с кислородом; таким образом, что при прокаливании соль кобальта превращается в оксид кобальта, причем прокаливание включает нагревание носителя катализатора с нанесенной солью в интервале температур 90-220°С, с использованием одного или нескольких периодов быстрого нагревания в определенном интервале температур, причем нагревание носителя катализатора с нанесенной солью протекает со скоростью по меньшей мере 10°С/мин при скорости потока газа через носитель катализатора с нанесенной солью по меньшей мере 5 м3 н/кг соли кобальта/час; одного или нескольких периодов медленного нагревания в определенном интервале температур, причем нагревание носителя катализатора с нанесенной солью протекает со скоростью менее 6°С/мин для прокаливания соли кобальта и приготовления предшественника кобальтсодержащих катализаторов синтеза углеводородов.

Изобретение раскрывает способ получения предшественника кобальтсодержащего катализатора для синтеза углеводородов, где способ включает прокаливание нагруженной катализатором подложки, содержащей подложку катализатора с нанесенной солью кобальта, при этом прокаливание включает разложение соли кобальта и/или осуществление взаимодействия соли кобальта с кислородом, причем прокаливание превращает соль кобальта в оксид кобальта и прокаливание включает предоставление нагруженной катализатором подложки для тепловой обработки путем нагревания нагруженной катализатором подложки до температуры Т по меньшей мере 220°С при скорости нагревания ниже 10°С/минуту, и пропускание потока газа при объемной скорости по меньшей мере 19 м3 n/кг соли кобальта/час через нагруженную катализатором подложку в течение, по меньшей мере, части нагревания до температуры Т 220 ºС с получением таким образом предшественника кобальтсодержащего катализатора.

Изобретение относится к химической промышленности, в том числе нефтехимии и газохимии, и может быть использовано при приготовлении катализаторов для процесса получения углеводородов из СО и H2 по методу Фишера-Тропша.

Изобретение относится к пористому катализатору для получения водорода путем парового реформинга. Предлагаемый пористый катализатор содержит алюминий и магний, а также дополнительно содержит бор и никель.

Изобретение относится к нефтехимии и газохимии и касается процесса ароматизации метана. Катализатор ароматизации метана содержит, мас.%: молибден 2,0-12,0, промотор, выбранный из группы Ru, Rh, Re, 0,1-3,0, цеолитный носитель - остальное.
Изобретение относится к способу приготовления предшественника катализатора, который включает приведение в контакт материала носителя катализатора с соединением вольфрама с получением вольфрамсодержащего материала носителя катализатора; прокаливание вольфрамсодержащего материала носителя катализатора при температуре выше 900°C с получением модифицированного носителя катализатора, в котором достаточное количество соединения вольфрама используют таким образом, что соединение вольфрама присутствует в массе и на поверхности материала носителя катализатора в количестве не больше чем 12 мас.% W в расчете на общую массу модифицированного носителя катализатора; и введение соединения предшественника активного компонента катализатора, выбранного из группы, состоящей из кобальта (Со), железа (Fe) и никеля (Ni) на поверхность и/или в массу модифицированного носителя катализатора с получением предшественника катализатора.

Изобретение относится к катализаторам предгидроочистки прямогонной бензиновой фракции в смеси с бензином вторичных термических процессов. Катализатор согласно первому из вариантов содержит 6,0-10,0 мас.% оксида молибдена, 3,0-7,0 мас.% оксида никеля, 0,2-0,35 мас.% фосфора на носителе, представляющем собой твердый раствор оксида молибдена в оксиде алюминия при мольном соотношении MoO3/Al2O3 1:10-1:20 - остальное.

Изобретение относится к способу получения катализатора селективной гидроочистки бензина каталитического крекинга, включающему в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.
Изобретение относится к способу приготовления катализатора для дегидрирования циклогексанола в циклогексанон. Данный способ включает нанесение активного компонента - меди из водного раствора аммиачно-карбонатного комплекса на оксидный твердый носитель, термическую обработку и гранулирование.

Изобретение относится к нефтехимии и касается катализатора для пиролиза углеводородной смеси C1-C4, сформированного в виде пленочного покрытия в проточном трубчатом реакторе.

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления.

Изобретение относится к катализатору, способу его получения и к способам гидрирования органического соединения в присутствии указанного катализатора. Предложен дисперсный катализатор для гидрирования и дегидрирования в форме частиц, имеющих минимальный размер по меньшей части 0,8 мм, включающий переходный металл или его соединение, диспергированный на материале пористого носителя.

Изобретение относится к способу получения катализатора, пригодного для применения в способе парового риформинга. Способ включает стадии: (i) распыление взвеси, содержащей измельченное соединение-катализатор, содержащее один или большее количество каталитических металлов, выбранных из группы, включающей Ni, Cu, Pt, Pd, Rh, Ru и Au, на поверхность сформованной подложки, содержащей оксид подложки, выбранный из группы, включающей оксид алюминия, диоксид церия, оксид магния, диоксид титана или диоксид циркония, алюминат кальция или алюминат магния и их смеси, в баковом устройстве для нанесения покрытий с получением формованного материала подложки с покрытием, содержащего каталитический металл в поверхностном слое, в котором содержание твердых веществ во взвеси находится в диапазоне 10-60 масс.

Изобретение относится к катализатору глубокого окисления CO и органических веществ. Данный катализатор содержит в качестве активного компонента оксиды переходных металлов или их смеси, нанесенные на оксидный носитель.

Изобретение относится к способу эффективного получения 4,5-диалкокси-2-гидроксибензойной кислоты из недорого исходного материала. Способ получения 2-бром-4,5-диалкоксибензойной кислоты, представленной нижеследующей формулой (2), где каждый из R1 и R2 представляет низшую алкильную группу, включает введение 3,4-диалкоксибензойной кислоты, представленной нижеследующей формулой (1), где R1 и R2 имеют те же значения, что определены выше, в реакцию с бромом в концентрированной соляной кислоте, где реакцию проводят при 10-45°C.

Изобретение относится к катализатору для окислительной очистки нефти и нефтяных дистиллятов от меркаптанов. Данный катализатор содержит комплекс соли меди с азотсодержащим лигандом, иммобилизованный на носителе.

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO2, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания.

Изобретение относится к способу получения трехосновных карбоновых кислот адамантанового ряда, содержащих в своих структурах карбоксильные и карбоксиметильные группы в различных сочетаниях, которые могут являться структурными блоками в синтезе биологически активных соединений и функциональных материалов с полезными прикладными свойствами.
Настоящее изобретение относится к способу получения этиленгликоля в реакторе с псевдоожиженным слоем катализатора путем приведения исходного сырья оксалата в контакт с катализатором в следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 ч-1 до около 7 ч-1, молярное соотношение водород/сложный эфир составляет примерно 20-200:1, давление реакции составляет от около 1,5 МПа до около 10 МПа, а разница температур реакции ΔТ составляет от около 1°С до около 15°С, с получением потока, содержащего этиленгликоль.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное.

Изобретение относится к способу получения α, β этилен-ненасыщенных карбоновых кислот или сложных эфиров, содержащему этапы, где вызывают контакт формальдегида или его подходящего источника с карбоновой кислотой или сложным эфиром формулы R3-CH2-COOR4, где R4 обозначает водород или алкильную группу, a R3 обозначает водород, алкильную или арильную группу, в присутствии катализатора и возможно в присутствии спирта, где данный катализатор содержит азотированный оксид металла, имеющий, по меньшей мере, два типа катионов металлов М1 и М2, где М1 выбирают из металлов или металлоидов группы 3, 4, 13 (также называемой IIIA) или 14 (также называемой IVA) Периодической таблицы, и М2 выбирают из металлов металлоидов или фосфора группы 5 или 15 (также называемой VA) Периодической таблицы.
Наверх