Устройство для измерения боя вала и динамической формы ротора гидрогенератора



Устройство для измерения боя вала и динамической формы ротора гидрогенератора
Устройство для измерения боя вала и динамической формы ротора гидрогенератора
Устройство для измерения боя вала и динамической формы ротора гидрогенератора
Устройство для измерения боя вала и динамической формы ротора гидрогенератора

 


Владельцы патента RU 2592714:

Общество с ограниченной ответственностью "Высоковольтные измерительные комплексы и системы" (RU)

Изобретение относится к области для измерения воздушного зазора электрической машины, например гидрогенератора. Устройство для измерения боя вала и динамической формы ротора гидрогенератора включает лазерные триангуляционные датчики с отметчиком, размещенные в канале пакета активной стали и соединенные с входом ПЭВМ. При этом указанные датчики закреплены в одной плоскости так, что их лучи расположены под углом 90 градусов. Технический результат - повышение быстродействия измерения боя вала и динамической формы ротора гидрогенератора, а также возможность производить измерения в режиме реального времени. 3 ил.

 

Изобретение относится к электротехнике, в частности к измерению воздушного зазора электрической машины, например гидрогенератора. Кроме того, изобретение может найти применение на электромашиностроительных заводах для обеспечения 100% контроля изготавливаемых машин, а также в ремонтных и других предприятиях, например, для послеремонтного или профилактического контроля.

Известно устройство для контроля неравномерности воздушного зазора многофазных электрических машин на основе явления электромагнитной индукции при вращении ротора (А.с. СССР №585578, кл. H02K 15/00, G01M 15/00, 1977).

Существующее устройство для измерения воздушного зазора в электрической машине основано на анализе ЭДС индукции магнитного поля в зазоре. Недостаток этого устройства заключается в том, что неравномерность магнитного потока, т.е. разница в величине магнитного потока под различными полюсами ротора обусловлена не только величиной воздушного зазора под каждым полюсом, но и конструктивными отличиями полюсов и наличием межвитковых замыканий в обмотке полюса. Кроме того, величина магнитного потока под каждым полюсом сглаживается влиянием соседних полюсов, количество которых зависит от конструкции электрической машины и может достигать нескольких десятков. Принцип действия этого устройства не позволяет контролировать воздушный зазор при снятии возбуждения и останове электрической машины. Указанные причины не позволяют точно оценивать величину воздушного зазора под каждым полюсом ротора и изменение воздушного зазора электрической машины при снятии возбуждения и останове.

Известно устройство, реализующее способ бесконтактного динамического измерения смещения заземленного проводящего тела, которое может применяться для измерения осевого смещения ротора вращающейся машины. Способ заключается в использовании емкостного датчика, образованного двумя параллельными проводящими пластинами, электрически изолированными одна от другой, на которые подан высокочастотный сигнал заданного напряжения, и в измерении тока, индуцируемого высокочастотным сигналом в емкостном датчике, прямо пропорционального их площади перекрытия (RU 2104478, кл. G01B 7/14, G01B 7/02, G 01D 5/24, 1998).

Недостатком известного устройства является сложность монтажа на статоре вращающейся машины. Устройство необходимо устанавливать непосредственно в воздушном зазоре. Поэтому устройство подвержено повреждениям при малом зазоре между статором и ротором. Кроме того, результаты измерения сильно зависят от влажности воздуха в зазоре. Крупные электрические машины имеют встроенную в тело статора и ротора охлаждающую систему, работающую на воде. Изменение влажности в воздушном зазоре снижает достоверность измерений и надежность емкостного датчика.

Известно устройство для бесконтактного измерения воздушного зазора электрической машины (RU 2100818. кл. МПК6 G01B 11/14, 1997). Устройство содержит источник света, блок смещения, фотоприемник, соединенный с электрической частью блока смещения, причем механическая часть блока смещения сопряжена с источником света, фотоприемником и блоком определения положения блока смещения, блок выборки-хранения, соединенный с блоком определения положения блока смещения, и отметчик оборотов, соединенный с блоком выборки-хранения.

Недостатком данного устройства является наличие механической части блока смещения, которая отрицательно влияет на надежность работы устройства в целом, последовательный характер измерения, обусловленный тем, что устройство последовательно измеряет расстояние до каждого полюса, что приводит к увеличению времени измерения и исключает возможность измерения динамических характеристик величины воздушного зазора. Точность измерения напрямую зависит от качества изготовления и условий эксплуатации механической части блока смещения. Учитывая, что измерение воздушного зазора будет проводиться в условиях вибраций и перепадов температур в зоне измерения, получить точные результаты измерения будет крайне сложно.

Известно также лазерное устройство для измерения расстояния до цели (RU 2111510, ул. МПК 6 G01S 17/32, 1998), которое состоит из лазера, имеющего две грани резонатора для излучения выходного света (свет из первой грани резонатора рассеивается на поверхности цели и попадает обратно в лазер), модуля управления оптической частотой лазера, подключенного к лазеру и изменяющего его оптическую рабочую частоту, модуля оптического детектирования, чувствительного к выходному свету из второй грани резонатора, частота изменения интенсивности которого связана с расстоянием до цели из-за интерференции в лазере между рассеянным светом от цели и светом в лазере, и модуля измерения расстояния, подключенный к средству оптического детектирования.

Недостатками данного устройства являются малая разрешающая способность и значительная погрешность измерения воздушного зазора электрической машины. Указанные недостатки связаны с тем, что погрешность измерения обратно пропорциональна времени накопления данных, которое напрямую зависит от требуемой разрешающей способности. Таким образом, при низкой погрешности измерения устройство будет давать малое разрешение, а при высоком разрешении измеренных данных - большую погрешность измерения.

Указанные недостатки - узкая область применения лазерного устройства и невозможность бесконтактного измерения расстояния до поверхности вращающихся объектов и бесконтактного измерения воздушного зазора электрической машины с малой погрешностью измерения и высоким разрешением.

Эти недостатки устранены в устройстве (RU 2469264, МПК 7 G01D 11/14, 2012) - наиболее близком к предлагаемому изобретению по технической сущности и достигаемому результату и принятом нами в качестве прототипа.

Это достигается введением новых блоков - модуля синхронизации с ротором и модуля накопления и фазового осреднения, что позволяет накапливать результаты измерения в точке на поверхности ротора и получить заведомо меньшую погрешность измерения, чем у прототипа.

Это достигается тем, что модуль накопления и фазового осреднения синхронно принимает информацию о текущем расстоянии до ротора от модуля измерения расстояния и информацию о текущем фазовом положении ротора от модуля синхронизации с ротором. Модуль накопления и фазового осреднения осуществляет фазовое накопление и осреднение данных, полученных от модуля измерения расстояния и модуля синхронизации с ротором.

Недостатки такой конструкции заключаются в следующем.

Эксплуатация предлагаемого устройства показала повышенную точность измерения. Однако предлагаемое устройство отличается сравнительно низким быстродействием. Время, необходимое для фазового осреднения, составляет 9-10 секунд. Весьма проблематично получить траекторию перемещения оси вала гидроагрегата за один оборот при различных режимах работы гидроагрегата и получить динамическую форму ротора в различных поясах и сделать вывод об изломе линии «генератор - турбина».

Техническим эффектом изобретения является создание устройства для измерения боя вала и динамической формы ротора гидрогенератора, которое бы имело большее быстродействие, позволяло производить измерения в режиме реального времени и позволяло получить измерение боя вала и траекторию перемещения оси вала.

Для достижения указанного технического эффекта предлагается бесконтактное устройство для измерения боя вала и динамической формы ротора гидрогенератора на основе 2-х лазерных триангуляционных датчиков положения со встроенной микропроцессорной системой управления, расположенных в одной плоскости под углом 90°.

Лазерные триангуляционные датчики положения со встроенной микропроцессорной системой управления выпускаются промышленностью, например фирмой RIFTEK, находящейся по адресу - Логойский тракт, 22, г. Минск, 220090, Республика Беларусь, тел/факс: +375172813513, info@riftek.com, www.riftek.com или ООО «НЛП «Призма», г. Каменск-Уральский, ул. Челябинская, 18, оф. 211, www.prizmasensors.ru, prizma_sensors@inbox.ru, тел +7(343)2684572.

Лазерный оптический датчик положения со встроенной микропроцессорной системой управления позволяет с высокой точностью измерить расстояние до контролируемого объекта без механического контакта с ним. Датчик реализует принцип триангуляции. Лазерный излучатель (смотри фиг. 1) создает световую метку на поверхности объекта. Отражение изображения световой метки проецируется на позиционно-чувствительный КМОП фотоприемник. При изменении расстояния от датчика до объекта происходит перемещение изображения световой метки в плоскости фотоприемника. Микропроцессор производит вычисление координат изображения. По координатам изображения точки определяется расстояние до объекта. В процессе измерений производится дополнительный контроль мощности отраженного света и подавление фоновых засветок. Программирование осуществляется с помощью программного обеспечения, поставляемого с датчиками. Для реализации осреднения используется сигнал с отметчика, представляющего собой оптический модуль, генерирующий синхросигнал, привязанный к начальной фазе вращения ротора.

При измерении указанным датчиком расстояния до поверхности вала определяется только одна координата - X смещения вала, но вал при этом может также отклоняться и по другой координате - Y. Ось вала при этом перемещается в направлении и по величине, которые могут быть определены по двум координатам. Вторая координата отклонения оси вала определяется при помощи второго лазерного триангуляционного датчика, установленного под 90° в той же плоскости, что и первый датчик. Сигналы с двух датчиков подаются на вход вычислительного устройства, например ПЭВМ, которое производит в реальном времени обработку показаний датчиков и строит траекторию передвижения оси вала.

Такое решение позволяет обеспечить работу по измерению не только боя вала гидроагрегата, но и траектории перемещения оси вала.

На фиг. 1 изображена схема, поясняющая принцип измерения лазерного датчика.

На фиг. 2 изображена схема установки лазерного датчика динамического контроля формы ротора.

На фиг. 3 изображено сечение по А-А вида, изображенного на фиг. 2.

В статоре 1 гидрогенератора в вентиляционном канале 2 расположен лазерный триангуляционный датчик 3, луч которого направлен на ротор 4. В этом же вентиляционном канале статора установлен второй лазерный триангуляционный датчик 5 так, что его луч направлен на ротор 4 под 90° по отношению к лучу датчика, а выходные сигналы с датчиков 3 и 5 - на вход ПЭВМ 6.

Устройство работает следующим образом. Вначале устанавливают лазерные датчики в канале пакета активной стали статора, как показано на фиг. 2, и соединяют их с ПЭВМ, в которую введена программа работы устройства и обработки полученных данных. Приводят во вращение вал гидроагрегата, затем включается устройство по команде с ПЭВМ, при этом используется сигнал с отметчика, представляющего собой оптический модуль, генерирующий синхросигнал, привязанный к начальной фазе вращения ротора. С помощью программного обеспечения производится вычисление перемещения оси вала по формуле δ=(х2+y2)0.5 в режиме реального времени через заданный программно угол поворота ротора с выдачей на печать динамической формы ротора, например, в полярных координатах.

Устройство для измерения боя вала и динамической формы ротора гидрогенератора, включающее лазерные триангуляционные датчики с отметчиком, размещенные в канале пакета активной стали статора и соединенные с входом ПЭВМ, отличающееся тем, что указанные датчики закреплены в одной плоскости так, что их лучи расположены под 90 градусов.



 

Похожие патенты:

Изобретение относится к устройству для определения положения первого вала и второго вала относительно друг друга. Заявленное устройство содержит первый измерительный модуль, установленный на периферийной поверхности первого вала, и второй измерительный модуль, установленный на периферийной поверхности второго вала.

Способ основан на формировании действительного изображения калиброванных источников излучения с помощью мир. Миру каждого из каналов комбинированной оптико-электронной системы (КОЭС) выполняют в виде последовательности штрихов, создающих высокую пространственную частоту (ВПЧ) в направлении строки МФПУ и вытянутых в направлении кадровой развертки.

Группа изобретений относится к области транспортного машиностроения. Способ измерения и контроля рамы грузового автомобиля или автобуса заключается в том, что измерительное устройство располагают перед рамой, а излучение от источника направляют на раму и на консоль рефлектора.
Устройство состоит из измерительной рамки с цифровыми, угловыми и линейными значениями, лазерного прибора, который проецирует на нее крестообразный лазерный луч, держателей, которые удерживают лазерный прибор и измерительную рамку на соответствующем колесе, поворотных подставок для свободного поворота и скольжения регулируемых колес и блокиратора руля, который удерживает руль в неподвижном положении.

Способ юстировки включает предварительную сборку объектива по геометрическим базам, формирование автоколлимационного изображения путем установки фокальной точки объектива интерферометра на оси главного зеркала в фокусе объектива и анализирование волнового фронта объектива в автоколлимационной схеме с плоским зеркалом в двух расположенных симметрично относительно центра точках поля зрения.

Устройство для базирования линз в цилиндрических оправах предназначено для вращения оправ и измерения децентрировок оптических поверхностей линз. Устройство содержит втулку, в которой проточена базовая плоскость в виде кольца для базирования торца цилиндрической оправы линзы.

Предложен способ определения углов установки колес транспортного средства, которое содержит, по меньшей мере, одну колесную ось (12, 13, 14), имеющую конец оси с, по меньшей мере, одним колесным элементом (2а-b, 3а-b, 4а-b) на соответствующей продольной стороне транспортного средства.

Изобретение относится к оптическому приборостроению и может быть использовано в устройствах для контроля параллельности оптических осей каналов различных оптических и оптико-электронных систем.

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы.

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона.
Наверх