Способ определения площади проемов в крыше резервуара для хранения жидких углеводородов

Изобретение относится к определению площади проемов (клапанов) в крыше вертикальных стальных резервуаров, необходимых для предупреждения механических повреждений и разрушения конструкции резервуаров для хранения жидких углеводородов при срабатывании автоматической установки газового пожаротушения (АУГП). В способе выбирают для конкретного типа резервуара значения геометрических размеров резервуара. С помощью применения расчетно-аналитического метода, основанного на разработанной математической модели нестационарных газодинамических процессов при подаче газового огнетушащего вещества в объем резервуара в результате срабатывания АУГП, устанавливают соотношение фазовых состояний огнетушащего вещества на выходе из насадка и дисперсность частиц огнетушащего вещества, находящегося в твердой фазе. Определяют значения параметров газо-воздушной смеси в резервуаре: вакуумметрическое давление в резервуаре Р и температуру газо-воздушной смеси Т, а также величину отрезка времени τ подачи газового огнетушащего вещества до достижения максимального вакуумметрического давления в резервуаре. Определяют площадь проемов в крыше резервуара FC для компенсирования разрежения в резервуаре, которая необходима для предотвращения разрушения конструкции резервуара при срабатывании АУГП, в соответствии со следующей формулой:

где K - коэффициент запаса; mвозд - масса воздуха в резервуаре (кг); ΔР - абсолютное значение разности предельно допустимого вакуумметрического давления внутри резервуара и давления на открытом воздухе (Па); ρвозд - плотность воздуха (кг/м3). Изобретение позволяет исключить риск возникновения аварий, связанных с избыточным вакуумметрическим давлением внутри резервуаров, оборудованных АУГП. 3 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

 

Изобретение относится к определению площади проемов (клапанов) в крыше вертикальных стальных резервуаров, необходимых для предупреждения механических повреждений и разрушения конструкции резервуаров при срабатывании автоматической установки газового пожаротушения (АУГП).

Известен способ ликвидации пожара в негерметичном помещении [патент на изобретение RU 2030192 С1, опубл. 10.03.1995, МПК: А62С 2/00], при котором в негерметичное помещение, имеющее проемы и характеризуемое исходным содержанием кислорода, подают огнетущащее вещество в виде газожидкостной среды. Подачу огнетушащего вещества осуществляют пневмоакустическим методом, обеспечивающим получение газожидкостной среды с заданной дисперсностью частиц жидкой фазы. Предварительно определяют предельное содержание кислорода, при котором прекращается горение всех горячих материалов, находящихся в негерметичном помещении, суммарную площадь проемов негерметичного помещения и время ликвидации пожара, которое выбирают прямо пропорционально разности исходного и предельного содержания кислорода и суммарной площади проемов негерметичного помещения и обратно пропорционально его объему и расходу огнетушащего вещества с заданной дисперсностью жидкой фазы газожидкостной среды.

Известны нормативные документы в области проектирования установок автоматической противопожарной защиты объектов [СП 155.13130.2014 «Склады нефти и нефтепродуктов. Требования пожарной безопасности», сс. 37-41, СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования», сс. 36-37, 88], в которых предусматривается выполнение расчета и приводятся соответствующие методики определения площади проемов только для сброса избыточного давления. Расчетно-экспериментальные обоснования размеров проемов, необходимых для предупреждения разрушения конструкций резервуаров в результате воздействия вакуумметрического давления при срабатывании установок газового пожаротушения, в настоящее время отсутствуют.

Задачей, на решение которой направлено заявленное изобретение, является разработка методики расчета размеров проемов, учитывающей результаты модельного исследования динамических характеристик нестационарных процессов, обусловленных наличием фазовых переходов газовоздушной среды внутри резервуара при подаче сжиженной двуокиси углерода в результате срабатывания автоматической установки газового пожаротушения АУГП, с целью оценки достижения предельных нагрузок на конструкцию резервуара.

Техническим результатом заявленного изобретения является исключение риска возникновения аварий, связанных с избыточным вакуумметрическим давлением внутри резервуаров, оборудованных установками газового пожаротушения.

В заявленном изобретении задача решается, а технический результат достигается за счет того, что в способе определения площади проемов в крыше резервуара для хранения жидких углеводородов выбирают для конкретного типа резервуара значения геометрических размеров резервуара; с помощью применения расчетно-аналитического метода, основанного на разработанной математической модели нестационарных газодинамических процессов при подаче газового огнетушащего вещества в объем резервуара для хранения жидких углеводородов в результате срабатывания автоматической установки газового пожаротушения (АУГП), устанавливают соотношение фазовых состояний огнетушащего вещества на выходе из насадка и дисперсность частиц огнетушащего вещества, находящегося в твердой фазе; с использованием установленных соотношений фазовых состояний и дисперсности частиц огнетушащего вещества определяют значения параметров газо-воздушной смеси в резервуаре: вакуумметрическое давление в резервуаре Р и температуру газо-воздушной смеси Т, а также величину отрезка времени τ подачи газового огнетушащего вещества до достижения максимального вакуумметрического давления в резервуаре; определяют площадь проемов в крыше резервуара FC для компенсирования разрежения в резервуаре, которая необходима для предотвращения разрушения конструкции резервуара при срабатывании УАГП, в соответствии со следующей формулой:

где K - коэффициент запаса;

mвозд - масса воздуха в резервуаре (кг);

ΔР - абсолютное значение разности предельно допустимого вакуумметрического давления внутри резервуара и давления на открытом воздухе (Па);

ρвозд - плотность воздуха (кг/м3).

Дополнительно, способ заключается в том, что на основе математической модели нестационарных газодинамических процессов в процессе подачи газового огнетушащего вещества в объем резервуара при срабатывании УАГП определение вакуумметрического давления в резервуаре производят исходя из условий, соответствующих следующим случаям: абсолютно герметичный резервуар, резервуар со стационарными вентиляционными патрубками, резервуар со стационарными вентиляционными патрубками и клапанами для аварийного сброса избыточного давления.

Кроме того, коэффициент запаса выбирают из диапазона 1,1≤K≤1,3.

Дополнительно, в качестве газового огнетушащего вещества используют сжиженную двуокись углерода СO2.

Заявленное изобретение поясняется чертежами фиг. 1, фиг. 2, на которых изображены:

фиг. 1 (а, б) - изменение давления в резервуаре при подаче газового огнетушащего вещества при проведении натурных испытаний в сравнении с градиентом давления при различных граничных условиях моделирования;

фиг. 2 - график изменения значений вакуумметрического давления в резервуаре в зависимости от площади проемов резервуара.

Значение вакуумметрического давления внутри резервуара, возникающего в результате запуска установки газового пожаротушения, способно превысить максимально допустимую величину для резервуара, привести к потере конструктивной устойчивости и создать аварийную ситуацию. Проведенная апробация работоспособности автоматической установки газового пожаротушения, выполненной на основе изотермических модулей для жидкой двуокиси углерода и смонтированной на резервуаре для хранения жидких углеводородов, подтвердила возможность образования разрежения внутри металлических конструкций резервуара.

Настоящее изобретение направлено на определение размеров проемов в резервуаре для хранения жидких углеводородов, достаточных для исключения риска возникновения аварий на резервуарах, оборудованных установками газового пожаротушения.

Способ расчета площади проемов для предотвращения разрушения конструкций резервуаров при срабатывании установки автоматического газового пожаротушения учитывает результаты исследования динамических характеристик нестационарных процессов, обусловленных наличием фазовых переходов газо-воздушной среды, происходящих внутри резервуара при подаче газового огнетушащего вещества (ГОТВ) в результате срабатывания УАГП. В качестве ГОТВ используется двуокись углерода СО2, хранящаяся в резервуаре изотермическом пожарном для жидкой двуокиси углерода (РЖУ) в жидкой фазе, которая при срабатывании системы газового пожаротушения через систему трубопроводов поступает внутрь резервуара после открытия герметизирующих клапанов на насадках.

Для конкретного типа резервуара значения геометрических размеров резервуара выбирают в соответствии с нормативной документацией. Далее с помощью применения расчетно-аналитического метода устанавливают соотношение фазовых состояний огнетушащего вещества на выходе из насадка и дисперсность частиц огнетушащего вещества, находящегося в твердой фазе.

Снижение давления связано с интенсивным испарением двуокиси углерода, приводящим к снижению температуры газо-воздушной смеси. Мгновенное снижение давления двуокиси углерода СО2, находящейся в трубопроводе для подвода СO2 к резервуару, при разгерметизации насадка, выпускающего СO2 в резервуар, сопровождается ее переходом из жидкого состояния в газообразное. Понижение температуры, возникающее при фазовом переходе, приводит к тому, что часть двуокиси углерода охлаждается и переходит в твердое состояние (лед). Данное приближение процесса фазового перехода, происходящее при истечении двуокиси углерода, позволяет оценить параметры вещества, задаваемые при входе в расчетную область.

Интенсивность испарения СO2 напрямую зависит от соотношения фазовых состояний огнетушащего вещества, а также от площади испарения частиц огнетушащего вещества, соответственно, диаметр частиц, находящихся в твердой фазе, играет ключевую роль в изменении давления и достижения максимального значения вакуумметрического давления. При более мелких частицах скорость снижения давления резко возрастает.

Дисперсность частиц огнетушащего вещества, находящегося в твердой фазе, является одним из граничных условий для расчетно-аналитического метода. Ввиду отсутствия экспериментальных данных по параметрам истечения двуокиси углерода высокого давления в воздух оценку размера частиц огнетушащего вещества в твердой фазе проводят с использованием математического моделирования. Моделирование выполняют с помощью программного комплекса вычислительной аэро- и гидродинамики FlowVision, предназначенного для моделирования трехмерных стационарных и нестационарных течений жидкости и газа в широком диапазоне чисел Маха и Рейнольдса (ламинарный/ турбулентный поток).

Значения размеров частиц огнетушащего вещества и соотношение фазовых состояний огнетушащего вещества на выходе из насадка используют для дальнейшего анализа течения газо-воздушной смеси в резервуаре и определения методом математического моделирования физических процессов значений вакуума в резервуаре, температуры газо-воздушной смеси и величины отрезка времени подачи газового огнетушащего вещества до достижения максимального вакуумметрического давления для оценки риска достижения предельных нагрузок на конструкцию резервуара.

Верификацию полученной модели выполняют на основе сравнительного анализа расчетных данных с фактическими результатами натурного эксперимента по показателям вакуумметрического давления (фиг. 1, а, б), полученными при проведении испытаний АУГП.

Для оценки значения вакуумметрического давления (разрежения) выполняют математическое моделирование при следующих начальных условиях:

- абсолютно герметичный резервуар;

- резервуар со стационарными вентиляционными патрубками;

- резервуар со стационарными вентиляционными патрубками и дополнительно смонтированными аварийными клапанами для сброса избыточного давления.

Согласно графику изменения значений вакуумметрического давления в резервуаре в зависимости от площади проемов резервуара (фиг. 2) полученное разрежение в объеме резервуара при полной его герметичности приведет к значительному превышению максимально допустимого значения вакуумметрического давления, установленного нормативными документами в целях обеспечения конструктивной устойчивости резервуара и исключения риска его разрушения. Производительность установленных на резервуаре стационарных вентиляционных патрубков не позволяет обеспечить сохранение прочности строительных конструкций и требует установки на резервуаре дополнительных проемов для компенсации разрежения. Дополнительные проемы для сброса избыточного давления, размеры которых могут быть определены по СП 5.13130.2009, устанавливают параметры клапанов для выпуска избыточного давления. Однако при возникновении в резервуаре разрежения в целях обеспечения конструктивной устойчивости резервуара необходимы клапаны, способные обеспечить интенсивное поступление воздуха внутрь резервуара, расчет площади проемов которых является предметом настоящего изобретения.

При выполнении математического моделирования используют следующие граничные условия: значение максимального вакуумметрического давления в резервуаре, значение минимальной температуры газо-воздушной смеси при максимальном разрежении в резервуаре, время достижения значения максимального вакуумметрического давления после выпуска воздуха из трубопроводов и начала подачи СO2, значение проектной площади проемов в резервуаре со стационарными вентиляционными патрубками. Полученные по результатам моделирования характеристики вакуумметрического давления и температуры газовоздушной среды используют далее при расчете проемов резервуара для компенсации избыточного вакуумметрического давления.

Расчет проемов резервуара для компенсации избыточного вакуумметрического давления выполняется следующим образом. Согласно закону Дальтона сумма парциальных давлений газов в объеме равна давлению смеси в том же объеме. Для расчетов принимают, что в резервуаре находится воздух, т.к. концентрация СO2 в резервуаре находится в пределах погрешности расчетов. Значение парциального давления смеси воздуха в резервуаре рассчитывают как разницу между минимальным давлением вакуума, полученным по результатам математического моделирования, и предельно допустимым вакуумметрическим давлением: Рвозд.minпр, где Pmin - значение вакуумметрического давления в резервуаре (Па); Рпр - предельное допустимое вакуумметрическое давление в резервуаре (Па).

В соответствии с уравнением состояния идеального газа (уравнение Менделеева-Клапейрона) определяют массу воздуха, необходимую для компенсации вакуумметрического давления:

где mвозд. - масса воздуха в резервуаре (кг); µ - молярная масса воздуха (кг/моль); R - универсальная газовая постоянная (Дж/(моль·К)); Т - температура воздуха в резервуаре (К); Vp - объем резервуара (м3).

Объем резервуара определяют как сумму объемов цилиндрической части и крыши резервуара: Vp=Vц+Vкр. Объем цилиндрической части резервуара определяется как: Vц=πR2Н, где R - радиус резервуара (м); Н - высота резервуара (м).

В случае конической крыши объем определяется из соотношения: , где Vкр.кон - объем крыши резервуара (м3), R - радиус резервуара (м); h - высота крыши резервуара (м). В случае купольной (сферической) крыши объем определяется из соотношения: , где Vкр.куп. - объем купольной крыши резервуара (м3), h - высота крыши резервуара, принимается в соответствии с проектными решениями (м); r - радиус сферы, принимается от 1,6R от 3,0R (м), где R - радиус резервуара (м). Максимальное значение объема крыши резервуара определяют из соотношения: .

Исходя из уравнения скоростного напора определяют скорость движения воздуха через вентиляционные проемы резервуара: , где ΔР - абсолютное значение разности предельно допустимого вакуумметрического давления внутри резервуара и давления на открытом воздухе (Па); v - скорость движения воздуха (м/с); ρвозд - плотность воздуха (кг/м3), значение которой зависит от температуры окружающей среды. При расчете площади проемов для компенсации вакуумметрического давления выбирают значение плотности воздуха при максимальной температуре эксплуатации резервуара по нормативным требованиям.

Расход воздуха G определяется из соотношения: , где G - расход воздуха через проем (кг/с); mвозд - масса воздуха, поступившего в резервуар для компенсации вакуумметрического давления (кг); τ - время подачи углекислоты до достижения максимального значения вакуума в резервуаре.

Площадь проемов для компенсирования вакуумметрического давления (м2) определяется из уравнения расхода как: , а с учетом соотношения для расхода воздуха и скорости движения воздуха через вентиляционные проемы резервуара площадь проемов резервуара определяют по формуле:

где K - коэффициент запаса. Коэффициент запаса определяют из условия компенсации погрешности вычислений и выбирают из диапазона 1,1≤K≤1,3.

Пример.

С целью определения необходимости разработки способа расчета площади проемов для предотвращения разрушения конструкций резервуаров при срабатывании УАГП были проведены испытания автоматической установки газового пожаротушения на резервуаре вертикальном стальном со стационарной крышей и понтоном РВСП номинальным объемом 20000 м3. Фактическая площадь вентиляционных проемов в резервуаре составляет 3,63 м2. В качестве ГОТВ использовали двуокись углерода СO2, хранящуюся в резервуаре изотермическом пожарном для жидкой двуокиси углерода (РЖУ) в жидкой фазе, которая при срабатывании системы газового пожаротушения через систему трубопроводов поступала внутрь резервуара после открытия герметизирующих клапанов на насадках.

По результатам испытаний был сделан вывод о превышении величины разрежения в резервуаре максимально допустимого значения вакуумметрического давления, установленного нормативной документацией в области проектирования резервуаров и возможности возникновения аварийной ситуации, связанной с разрушением конструкции резервуара при срабатывании АУГП, а также были определены следующие динамические параметры газовоздушной среды в резервуаре:

- значение максимального разрежения в резервуаре достигло 1300 Па. Замер разрежения производился преобразователями избыточного давления «Курант» с пределом измерений от минус 0,5 до 5 кПа с погрешностью 0,01 кПа;

- значение минимальной температуры газовоздушной среды в резервуаре при максимальном разрежении в резервуаре через 15 секунд после выпуска воздуха из трубопроводов и начала подачи СO2 достигло минус 40°С. Замер температуры производился термопарами с пределом измерений от минус 100 до 1600°С с погрешностью 10°С.

После проведения натурных испытаний был проведен анализ течения газовоздушной смеси в резервуаре при помощи метода математического моделирования нестационарных газодинамических процессов на основе программного комплекса FlowVision. При оценке значений вакуумметрического давления (разрежения) методом математического моделирования были взяты следующие начальные условия:

- абсолютно герметичный резервуар - площадь проемов 0 м2;

- резервуар со стационарными вентиляционными патрубками - площадь проемов 3,63 м2;

- резервуар со стационарными вентиляционными патрубками и дополнительными аварийными клапанами для сброса избыточного давления при условии предварительного открытия аварийных клапанов для снижения вакуумметрического давления - площадь проемов 8,63 м2.

Далее были установлены соотношения фазовых состояний огнетушащего вещества на выходе из насадка и дисперсность частиц огнетушащего вещества, находящегося в твердой фазе. При сравнении результатов моделирования с результатами натурного эксперимента (фиг. 1, а, б) было установлено, что 20% огнетушащего вещества на выходе из насадка находится в газовой фазе и размер частиц огнетушащего вещества составляет порядка 0,1 мм, что позволило сделать вывод о максимальном совпадении расчетного и экспериментального графиков изменения давления внутри резервуара в результате подачи огнетушащего вещества.

При проведении анализа течения газо-воздушной смеси в резервуаре для различных начальных условий были получены следующие значения вакуумметрического давления внутри резервуара:

- для абсолютно герметичного резервуара значение разрежения ГВС внутри резервуара составило около 9 кПа.

- для существующих стационарных вентиляционных патрубков полученное значение максимального разрежения составило 1300 Па.

- для стационарных вентиляционных патрубков с аварийными клапанами для сброса избыточного давления максимальное значение вакуумметрического давления не превысило 100 Па, что ниже допустимого разрежения, составляющего 200 Па.

По результатам моделирования подачи СO2 в РВСП-20000 с фактической площадью проемов 3,63 м2 были получены следующие данные, уточняющие показатели внутри резервуара при проведении испытаний, которые были использованы для дальнейших расчетов:

- минимальное давление в резервуаре (вблизи крыши резервуара) - 1300 Па;

- температура газо-воздушной смеси при минимальном давлении в резервуаре - -51°С;

- отрезок времени подачи ГОТВ до достижения максимального вакуумметрического давления в резервуаре - 14,5 с.

Рассчитанные в соответствии с заявленным способом площади проемов для компенсирования вакуумметрического давления в резервуаре типа РВСП-20000 при различных значениях температуры окружающего воздуха, учитывающих условия эксплуатации резервуара для климатической зоны с умеренным и холодным климатом по ГОСТ 15150, приведены в таблице 1.

С учетом полученных данных можно определить максимальную величину площади проемов резервуара, определяющую параметры клапанов, предназначенных для пропуска внутрь резервуара дополнительного объема воздуха с целью компенсации вакуумметрического давления, для исключения риска потери конструктивной устойчивости и возникновения аварий на резервуарах, оборудованных установками газового пожаротушения.

Таким образом, применение заявленного способа определения площади проемов в крыше резервуара для хранения жидких углеводородов для предотвращения разрушения конструкций резервуаров при срабатывании АУГП при проектировании автоматических установок газового пожаротушения позволит обеспечить поддержание величины вакуумметрического давления внутри резервуара в пределах допустимых значений и исключить потерю конструктивной устойчивости с созданием аварийной ситуации.

1. Способ определения площади проемов в крыше резервуара для хранения жидких углеводородов, заключающийся в том, что
- выбирают для конкретного типа резервуара значения геометрических размеров резервуара;
- с помощью применения расчетно-аналитического метода, основанного на разработанной математической модели нестационарных газодинамических процессов при подаче газового огнетушащего вещества в объем резервуара для хранения жидких углеводородов в результате срабатывания автоматической установки газового пожаротушения (АУГП), устанавливают соотношение фазовых состояний огнетушащего вещества на выходе из насадка и дисперсность частиц огнетушащего вещества, находящегося в твердой фазе;
- с использованием установленных соотношений фазовых состояний и дисперсности частиц огнетушащего вещества определяют значения параметров газо-воздушной смеси в резервуаре: вакуумметрическое давление в резервуаре Р и температуру газо-воздушной смеси Т, а также величину отрезка времени τ подачи газового огнетушащего вещества до достижения максимального вакуумметрического давления в резервуаре;
- определяют площадь проемов в крыше резервуара Fc для компенсирования разрежения в резервуаре, которая необходима для предотвращения разрушения конструкции резервуара при срабатывании АУГП, в соответствии со следующей формулой:
,
где K - коэффициент запаса;
mвозд - масса воздуха в резервуаре (кг);
ΔР - абсолютное значение разности предельно допустимого вакуумметрического давления внутри резервуара и давления на открытом воздухе (Па);
ρвозд - плотность воздуха (кг/м3).

2. Способ по п. 1, заключающийся в том, что на основе математической модели нестационарных газодинамических процессов в процессе подачи газового огнетушащего вещества в объем резервуара при срабатывании АУГП определение вакуумметрического давления в резервуаре производят исходя из условий, соответствующих следующим случаям: абсолютно герметичный резервуар, резервуар со стационарными вентиляционными патрубками, резервуар со стационарными вентиляционными патрубками и клапанами для аварийного сброса избыточного давления.

3. Способ по п. 1, заключающийся в том, что коэффициент запаса выбирают из диапазона 1,1≤K≤1,3.

4. Способ по п. 1, заключающийся в том, что в качестве газового огнетушащего вещества используют сжиженную двуокись углерода СО2.



 

Похожие патенты:
Изобретение относится к средствам пожаротушения обширных участков степного пожара. Способ оперативного взрывного пожаротушения заключается в том, что используют катапульту для доставки контейнера, заполненного диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом.

Изобретение относится к способу и к средству обнаружения опасностей жизнедеятельности человека, включая пожарную опасность, и борьбы с этими опасностями. Обнаружение опасностей осуществляется измерением информативных параметров путем зондирования среды защищаемого объекта при помощи распределенной сети адресных датчиков многофакторного контроля с последующим анализом полученных данных, при этом учитывается массив совокупностей заданных информативных параметров, содержащий координаты возможных источников опасностей и прогнозируемые модели их изменений, их взаимосвязей и взаимодействий, кроме того, после анализа полученных информативных данных вырабатывается комплекс управляющих воздействий разных типов и назначений, соответствующих прогнозируемым угрозам, и эти воздействия направляются адресно к соответствующим исполнительным органам защиты, и дополнительно адресно направляются сигналы к датчикам многофакторного контроля по цепям обратной связи для корректировки характеристик этих датчиков.

Изобретение относится к области тушения пожаров нефти и нефтепродуктов в резервуарах, а также может использоваться для защиты резервуаров с сжиженными газами и низкомолекулярными спиртами.
Изобретение относится к средствам пожаротушения. Способ состоит в том, что при изготовлении плавсредств в их стенках выполняют полости-воздуховоды, соединенные с ресивером сжатого воздуха, связанным с компрессором.

Изобретение относится к противопожарной технике для подавления промышленных взрывов. Заявлен способ подавления взрыва газо-паровоздушных и пылевоздушных смесей, который включает в себя доставку порошкового вещества с помощью энергии ударной волны к очагу горения.

Изобретение относится к способам предотвращения загораний горючих материалов при проведении высокотемпературных газорезательных работ металлических изделий и конструкций на особо важных объектах, например в отсеках атомных подводных лодок и других кораблей.
Изобретение относится к средствам пожаротушения летательных аппаратов. Способ состоит в том, что в зонах возникновения пожара в полостях-воздуховодах изготовляют окна с герметичными крышками, которые удерживают в закрытом состоянии при отсутствии пожара и открывают при возникновении пожара в данной зоне реверсивным электромагнитным приводом.
Изобретение относится к средствам пожаротушения в зданиях и сооружениях. Способ состоит в том, что в стенах здания изготовляют полости-воздуховоды, соединенные с ресивером сжатого воздуха, связанным с компрессором.
Изобретение относится к средствам пожаротушения и может быть использовано для тушения пожаров в грузовых и легковых автомобилях, тракторах. Способ тушения пожара в наземном транспорте заключается в том, что в стенках транспортного средства выполняют полости-воздуховоды, которые соединены с ресивером сжатого воздуха.

Объектом изобретения является устройство (10, 11) ограничения последствий пожара в помещении (4), содержащее резервуар (28), оборудованный емкостью (29) с жидкостью (26), при этом упомянутый резервуар (28) содержит одну или несколько камер, называемых «внутренними камерами» (54а, 54b, 54c, 54d, 54e), сообщающихся с упомянутым контейнером-хранилищем (4), и одну или несколько других камер (52а, 52b, 52c, 52d, 53), при этом резервуар (28) дополнительно содержит, по меньшей мере, один первый встроенный переливной бак (72а) и, по меньшей мере, один второй встроенный переливной бак (72b), расположенные с двух сторон резервуара (28), при этом каждый бак выполнен с возможностью заполнения упомянутой жидкостью (26), когда она превышает заранее определенную заданную высоту в упомянутой емкости (29).
Изобретение относится к средствам пожаротушения верховых лесных и степных пожаров. Способ взрывного оперативного пожаротушения состоит в том, что контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом, доставляют в выбранный участок горящего объекта. В теле контейнера выполняют паз для установки в нем перед выбрасыванием его в горящий объект теплового взрывателя-детонатора, ударный боек которого фиксируют в исходном состоянии при помощи расплавляемой нити. На поверхности контейнера выполняют петли из трудносгораемого материала. Выбрасывают вниз контейнер, наполненный огнетушащим веществом, смешанным с взрывным веществом. Под воздействием высокой температуры расплавляется плавкая нить теплового взрывателя-детонатора и взрывается взрывчатое вещество, сбивая языки пламени и интенсивно распыляя огнетушащее вещество, которое осаждается на раскаленных элементах горящего объекта во всем объеме данного участка горящего объекта. Техническим результатом данного изобретения является повышение эффективности пожаротушения верховых лесных и степных пожаров.
Изобретение относится к средствам пожаротушения удаленных недоступных участков горящего объекта. Способ взрывного пожаротушения заключается в том, что на самоходную платформу устанавливают пневматическую пушку, тыльную часть которой соединяют с групповым средством, создающим управляемые импульсы сжатого воздуха. Контейнеры заполняют диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом. В теле контейнера выполняют паз для установки в нем перед выбрасыванием его в горящий объект теплового взрывателя-детонатора, ударный боек которого фиксируют в исходном состоянии при помощи расплавляемой нити. При необходимости тушения подводят самоходную платформу с установленной на ней пневматической пушкой. Вставляют в ствол пневматической пушки контейнер, наполненный огнетушащим веществом, смешанным с взрывным веществом. В ствол пневматической пушки подают импульс сжатого воздуха, которым выталкивают контейнер. Под воздействием высокой температуры расплавляют плавкую нить теплового взрывателя-детонатора и взрывают взрывчатое вещество, чем сбивают языки пламени.
Изобретение относится к средствам пожаротушения обширных участков горящего объекта - верховых лесных пожаров. Изготовляют катапульту для доставки контейнера, заполненного диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом. Снабжают катапультами населенные пункты, примыкающие к лесным массивам. Изготовляют контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с взрывным веществом. В теле контейнера выполняют паз для установки в нем перед вбрасыванием его в горящий объект теплового взрывателя-детонатора, ударный боек которого фиксируют в исходном состоянии при помощи расплавляемой нити. На поверхности контейнера выполняют петли из трудносгораемого материала. При необходимости оперативного тушения верхового лесного пожара вставляют в паз контейнера взрыватель-детонатор; вставляют контейнер в катапульту и забрасывают его в выбранную зону верхних ветвей горящего дерева. Взрывной волной сбиваются языки пламени и интенсивно распыляется огнетушащее вещество, которое осаждается на раскаленных верхних ветвях горящего дерева. Техническим результатом данного изобретения является повышение оперативности пожаротушения обширных верховых лесных пожаров.
Изобретение относится к средствам пожаротушения. Изготовляют контейнер, заполненный диспергированным огнетушащим веществом, смешанным с взрывным веществом. Снабжают его тепловым взрывателем-детонатором, ударный боек которого фиксируют в исходном состоянии при помощи расплавляемой нити. В случае возникновения пожара стационарно устанавливают контейнер в месте пожароопасного объекта, где наиболее вероятно возникновение пожара. Для оперативного тушения пожара расплавляют расплавляемую нить теплового взрывателя-детонатора, чем высвобождают ударный боек, которым воздействуют на капсюль, чем взрывают тепловой взрыватель-детонатор. Тепловым взрывателем-детонатором детонируют диспергированное взрывное вещество, находящееся в контейнере. В результате чего оно взрывается. Взрывной волной сбиваются языки пламени и интенсивно распыляется огнетушащее вещество, которое осаждается на раскаленных предметах горящей зоны, чем осуществляется отбор от них тепла, а, следовательно, их пожаротушение, выполняются описанные операции на всей зоне пожароопасного объекта до полного его завершения. Техническим результатом данного изобретения является повышение оперативности пожаротушения пожаров на пожароопасных объектах.
Изобретение относится к средствам пожаротушения. Изготовляют контейнеры, заполненные диспергированным огнетушащим веществом, смешанным с диспергированным взрывным веществом. В теле контейнера выполняют паз для установки в нем теплового взрывателя-детонатора, ударный боек которого фиксируют в исходном состоянии при помощи расплавляемой нити. При подлете летательного аппарата на расстояние, при котором контейнер может достигнуть заданного участка горящего объекта, выбрасывают вниз контейнер, наполненный огнетушащим веществом, смешанным с взрывным веществом. Под воздействием высокой температуры последнего расплавляется плавкая нить теплового взрывателя-детонатора и взрывается взрывчатое вещество, чем сбивают языки пламени и интенсивно распыляют огнетушащее вещество, которое осаждают на раскаленных элементах горящего объекта во всем объеме данного обширного участка горящего объекта, чем осуществляют отбор тепла, а следовательно, его пожаротушение. Техническим результатом данного изобретения является повышение эффективности пожаротушения обширных участков горящего объекта.

Изобретение относится к устройствам для объемного тушения пожаров посредством газоаэрозольной смеси ингибиторов. Генератор огнетушащего аэрозоля содержит оснащенный термозащитной прослойкой и воспламенителем внешнего инициирования цилиндрический корпус, в котором установлены функциональный заряд и металлический трубопровод коммуникации камеры сгорания с ресивером под крышкой с выходными отверстиями. Коаксиальный корпусу функциональный заряд выполнен в форме пиротехнический шашки с осевым каналом, в котором через теплоизолирующую оболочку установлен металлический трубопровод, сообщается посредством замедлительно-воспламенительного устройства, расположенного в насыпном слое антипирена, ограниченном поперечными сетчатыми диафрагмами, с газогенерирующим зарядом, расположенным под кольцевой изолирующей перемычкой, формообразующей ресивер, причем крышка совмещена с дополнительным охладителем, выполненным в форме обечайки, снабженной инжекционными окнами. Технический результат - повышение полезной нагрузки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования. Стенд для испытаний разрушающихся элементов конструкций зданий и сооружений содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое легкосбрасываемым разрушающимся элементом. Камера представляет собой металлический сосуд объемом равным 500÷1000 см3 с толщиной стенок 7÷8 мм, причем в верхнем основании сосуда имеется отверстие, перекрываемое легкосбрасываемым элементом. Площадь отверстия может меняться путем ввинчивания сменных колец, при этом сбрасываемый элемент перекрывает отверстие в кольце, над которым закрепляется защитный экран, а второе отверстие перекрывается клапаном, который прижимается к отверстию с помощью электромагнита и открывается пружиной при размыкании контактов. Усилие прижатия клапана и сжатия пружины устанавливается таким образом, чтобы суммарное усилие было равно допускаемому давлению, умноженному на площадь отверстия клапана. Тяговое усилие электромагнита может меняться путем изменения тока через реостат посредством подвижного контакта реостата. Для измерения усилия электромагнита и сжатия пружины предусмотрено параллельное устройство электромагнитного клапана, величина тока электромагнита в котором регулируется от того же реостата путем переключения контактов. Для настройки требуемой разности усилий электромагнита и пружины имеется динамометр, а для образования паровоздушной взрывоопасной смеси в камере имеется пробка-испаритель, в которую с помощью бюретки вносится требуемое количество легковоспламеняющейся жидкости, и пробка ввинчивается так, что пары жидкости через окна в стенках пробки-испарителя попадают во взрывную камеру и, смешиваясь с воздухом, образуют взрывоопасную смесь. Смесь поджигается электрической искрой от индукционной катушки. В одной из торцевых стенок взрывной камеры имеется отверстие под штуцер, в котором закреплена трубка от воздуходувки, перекрываемой краном, а в другой оппозитно расположенной торцевой стенке взрывной камеры имеется отверстие под штуцер для трубки, перекрываемой краном, которое служит для поддержания в камере атмосферного давления во время испарения жидкости. Площадь отверстия может меняться путем ввинчивания сменных колец, а сбрасываемый элемент перекрывает отверстие в кольце, над которым закрепляется защитный экран. Технический результат - повышение эффективности защиты зданий, сооружений и технологического оборудования от взрывов. 4 ил.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования. Стенд содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое легкосбрасываемым элементом, при этом площадь отверстия может меняться путем ввинчивания сменных колец, а легкосбрасываемый элемент перекрывает отверстие в кольце, над которым закрепляется защитный экран, причем второе отверстие перекрывается клапаном, который прижимается к отверстию с помощью электромагнита и открывается пружиной при размыкании контактов, а усилие прижатия клапана и сжатия пружины устанавливается таким образом, чтобы суммарное усилие было равно допускаемому давлению, умноженному на площадь отверстия клапана, причем легкосбрасываемый элемент содержит металлический бронированный каркас с металлической бронированной обшивкой и наполнителем - свинцом, имеющий в торцах четыре неподвижных патрубка-опоры, в покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели, при этом наполнитель выполнен в виде дисперсной системы воздух-свинец, причем свинец выполнен по форме в виде крошки, опорные стержни выполнены упругими, отличающийся тем, что между дополнительными элементами и металлическим каркасом с бронированной металлической обшивкой на опорных стержнях установлены втулки из быстроразрушающегося материала, например стекла типа «триплекс». Технический результат - повышение эффективности защиты зданий, сооружений, а также технологического оборудования от взрывов. 3 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Предложен способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающийся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва. Видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину между взрывным осколочным элементом и проемом. Устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Технический результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 2 ил.

Способ адаптивного контроля пожарной опасности и адаптивного тушения, система для его осуществления предназначены для многофакторного контроля среды защищаемого объекта на предмет раннего обнаружения пожара и локализации его при оптимальных режимах расхода огнетушащего вещества. Адаптивный контроль и адаптивное тушение обеспечивает информационно-исполнительная группировка автономных сигнально-пусковых устройств с адресными каналами ввода-вывода, объединенных посредством системного интерфейса. Группировка автономно способна формировать вокруг возникающего очага возгорания группу сигнально-пусковых устройств с повышенной чувствительностью к факторам пожара и осуществлять тушение при помощи управляемых исполнительных органов (спринклерных оросителей, порошковых модулей и т.п.). Технический результат характеризуется малым расходом огнетушащего вещества, коротким процессом тушения, минимизацией вредных последствий пожара. 2 н.п. ф-лы, 2 ил.
Наверх