Сорбент для разделения оптических изомеров веществ и их анализа в биологических жидкостях методом вэжх и способ его получения

Изобретение относится к сорбентам для высокоэффективной жидкостной хроматографии (ВЭЖХ), в частности к получению химически модифицированных сорбентов. Предложен сорбент на основе силикагеля с привитым через спейсер гибридным хиральным селектором. Сорбент получен путем модифицирования силикагеля эпоксигруппами, прививки эремомицина и бычьего сывороточного альбумина. Сорбент проявляет повышенную энантиоселективность к различным соединениям, в том числе при их анализе в биологических жидкостях. 2 н.п. ф-лы, 4 ил., 2 табл.

 

Изобретение относится к сорбентам для высокоэффективной жидкостной хроматографии и может быть использовано для анализа, препаративной очистки оптически активных соединений, а также определения низкомолекулярных гидрофобных оптически активных примесей (например, лекарств) в биологических жидкостях.

Наиболее близким по технической сущности и достигаемому результату является сорбент на основе силикагеля с химически привитым гликопептидным антибиотиком эремомицином, структурная формула которого приведена на фиг. 1, а также способ его получения, описанный в RU 2255802, 2005, выбранный в качестве прототипа изобретения.

Сорбент проявляет селективность в разделении широкого круга энантиомеров как в водно-органических, так и в неводных элюентах. Однако не всегда энантиоселективность является достаточно высокой.

Способ получения известного сорбента заключается в обработке силикагеля 3-глицидооксипропилтриалкоксисиланом с последующим взаимодействием с эремомицином в водном или водно-органическом щелочном буферном растворе при температуре не выше 40°C.

Одним из недостатков известного способа получения сорбента является наличие в составе распознающих хиральных центров только производных эремомицина. Еще один недостаток сорбента, полученного известным способом, заключается в невозможности определения низкомолекулярных гидрофобных оптически активных примесей (например, лекарств) напрямую в биологических жидкостях.

Еще одним прототипом изобретения, близким по технической сущности и достигаемому результату, является гибридный сорбент на основе силикагеля с химически привитыми гликопептидным антибиотиком эремомицином и хиральным полианилином, способ его получения описан в RU 2348455, 2006.

Энантиоселективность такого сорбента повышена за счет введения в состав хирального сорбента селектора эремомицина и селектора спиралевидной хиральности - хирального полианилина.

Способ получения такого гибридного сорбента заключается в модифицировании поверхности силикагеля эпоксигруппами, иммобилизацию эремомицина на поверхности силикагеля с привитыми эпоксигруппами, промывку, сушку, а затем силикагель, модифицированный эремомицином, подвергают взаимодействию с анилином в присутствии фермента лакказы и энантиомера сульфокамфорной кислоты. Предпочтительно для модифицирования поверхности силикагеля эпоксигруппами используют обработку 3-глицидоксипропилтриэтоксисиланом.

Наилучшие результаты показал сорбент известного способа с эремомицином, полученным с использованием штамма-продуцента Amicolatopsis orientalis subsp, согласно известному способу по RU 2110578, 1998.

Недостатком известного способа получения сорбента является отсутствие в его структуре каркаса из хиральных молекул (например, молекул альбумина) на поверхности силикагеля большего размера, чем размер пор самого силикагеля, что не позволяет определять низкомолекулярные гидрофобные оптически активные примеси (например, лекарств) напрямую в биологических жидкостях.

Задачей настоящего изобретения является повышение селективности сорбента в разделении оптических изомеров и разработка способа, позволяющего обеспечить введение на поверхность хирального сорбента каркаса из молекул большого размера, закрывающего доступ внутрь пор силикагеля белкам, находящимся в растворе.

Поставленная задача решается описываемым сорбентом для хроматографии оптических изомеров, содержащим силикагель, модифицированный гликопептидным антибиотиком - эремомицином и дополнительно бычьим сывороточным альбумином (БСА).

Поставленная задача решается также описываемым способом получения сорбента для хроматографии оптических изомеров, включающим модифицирование поверхности силикагеля эпоксигруппами, иммобилизацию эремомицина на поверхности силикагеля с привитыми эпоксигруппами, промывку, сушку, в котором силикагель, модифицированный эремомицином, после промывки и сушки подвергают взаимодействию с бычьим сывороточным альбумином, последующей обработкой глутаровым альдегидом и восстановление тетрагидроборатом натрия. Обработка глутаровым альдегидом осуществляется для сшивания между собой молекул бычьего сывороточного альбумина и образования каркаса на поверхности силикагеля. Обработка тетрагидроборатом натрия необходима для восстановления всех непрореагировавших групп на поверхности сорбента и устранения их влияния на разделение оптических изомеров. Предпочтительно для модифицирования поверхности силикагеля эпоксигруппами используют обработку 3-глицидоксипропилтриэтрксисиланом.

Сущность изобретения поясняется иллюстративными материалами.

На Фиг. 1 показана структурная формула эремомицина.

На Фиг. 2 показаны хроматограммы профенов, полученные на колонке с иммобилизованным гибридным сорбентом I (силикагель-эремомицин-БСА) и на колонке с сорбентом, полученным известным способом (RU 2255802, 2005) II. Хроматограмы следующих веществ:

а) ибупрофен

б) кетопрофен

в) фенопрофен

г) флурбипрофен

д) индопрофен.

На Фиг. 3 показаны хроматограммы белка, полученные на сорбенте-прототипе (RU 2255802, 2005) (а) и на сорбенте с гибридным селектором (б). Элюент: МеОН/KH2PO4 (0.1М, pH 4.5), 50/50, об/об; 0.5 мл/мин. Детектирование: УФ 280 нм. Температура 24°C.

На Фиг. 4 показана хроматограмма кетопрофена на колонке с иммобилизованным гибридным селектором в образце мочи. Элюент: МеОН/KH2PO4 (0.1М, pH 4.5), 50/50, об/об; 0.5 мл/мин. Детектирование: УФ 280 нм. Температура 24°C.

Изобретение иллюстрируется примерами вариантов его выполнения и применения.

Пример 1

5,04 г силикагеля Kromasil KR100-7-SIL суспендировали в 25 мл 0,1 М раствора ацетата натрия, доведенного ледяной уксусной кислотой до pH 5,5. К полученной суспензии добавили 4 мл 3-глицидоксипропилтриэтоксисилана. Реакционную смесь интенсивно перемешивали в течение 2 часов, а затем оставили без нагревания и перемешивания на 4 суток. По окончании реакции модифицированный силикагель промыли водой, этанолом, ацетоном и отфильтровали. Сушили при температуре 105°C. По данным элементного анализа содержание углерода составляет 5,2%.

Получен силикагель, модифицированный эпоксигруппами. Затем 1,5 г макроциклического антибиотика - эремомицина растворили в 23 мл дистиллированной воды. Довели pH до значения 8,58, прибавляя по каплям 1 М водный раствор КОН. Полученный раствор смешали с 5,61 г силикагеля с привитыми эпоксигруппами. Полученную реакционную смесь выдерживали при комнатной температуре, периодически перемешивая, в течение 1 недели. После окончания реакции сорбент отфильтровали и отмыли последовательно водой, метанолом и ацетоном. Сушили в сушильном шкафу при 50°C в течение 20 часов. По данным элементного анализа содержание углерода составляет 9,5%.

Получен силикагель, модифицированный эремомицином. Затем раствор 0,2 г БСА в 25 мл ацетата натрия (доведенного до pH 5,6 уксусной кислотой) добавили к 2 г силикагеля, модифицированного эремомицином. Полученную реакционную смесь выдерживали при комнатной температуре, подвергая ультразвуковой обработке каждые четыре часа, в течение двух дней. После окончания реакции сорбент отфильтровали и отмыли водой. Затем его суспендировали в раствор глутарового альдегида (1,5 мл 25% глутарового альдегида в 25 мл ацетатного буферного раствора с pH 5,6). Полученную реакционную смесь выдерживали при комнатной температуре, периодически перемешивая, в течение одного дня. После окончания реакции сорбент отфильтровали и отмыли водой, добавили к нему раствор 0,16 г NaBH4 в 25 мл дистиллированной воды. Полученную реакционную смесь выдерживали при комнатной температуре, периодически перемешивая, в течение одного дня. После окончания реакции сорбент отфильтровали и отмыли водой, этанолом. Сушили на воздухе в течение 24 часов. По данным элементного анализа содержание углерода составляет 13,8%.

Таким образом, получен силикагель с привитым через спейсер гибридным хиральным селектором:

Силикагель -Si(СН2)3О-СН2-СН(ОН)-СН2-эремомицин-бычий сывороточный альбумин.

Полученный в соответствии с настоящим изобретением сорбент был испытан при разделении оптических изомеров, в том числе в образцах мочи, в следующих условиях.

Сорбент по примеру 1 упаковали суспензионным методом в колонку из нержавеющей стали 4,6×100 мм и проводили разделение оптических изомеров профенов с использованием метода высокоэффективной жидкостной хроматографии.

Хроматографический анализ осуществляли на ВЭЖХ хроматографе фирмы Shimadzu (Япония) в составе: насос LC-20AB, диодно-матричный детектор SPD-M20A, вакуумный дегазатор DGU-20A5, термостат колонок СТО-20А, с возможностью контроля температуры в диапазоне 5-85°C с точностью 0,1°C, ручной кран-дозатор с петлей на 20 мкл. Объем пробы 20 мкл. Хроматографические пики детектировали в диапазоне 210-280 нм, в соответствии с максимумами поглощения разделяемых соединений.

Запись хроматограмм и расчеты факторов удерживания разделенных компонентов к, селективности A и разрешения RS проводили с помощью программно-аппаратного комплекса Laboratory Solution (Shimadzu, Япония).

В качестве подвижной фазы использовали метанольные и водно-метанольные буферные растворы.

Пример 2

В таблице 1 представлены результаты хроматографического разделения профенов (значения факторов удерживания (k) и энантиоселективности (α) на колонке с сорбентом, полученным по примеру 1 с привитым гибридным селектором.

Разделение осуществляли в элюенте состава: 50% метанол - 50% водный раствор дигидрофосфата калия (pH 4.5) с молярной концентрацией 0,02 М, 0,04 М и 0,10 М. Скорость потока подвижной фазы: 0.5 мл/мин.

Из таблицы видно, что сорбент проявляет высокую энантиоселективность к данному классу соединений (α-оксикислоты).

Пример 3

В таблице 2 представлены результаты хроматографического разделения энантиомеров профенов на колонке с сорбентом, полученным по примеру 1 с привитым гибридным селектором в сравнении с сорбентом, полученным известным способом (RU 2255802, 2005). Разделение осуществляли в элюенте одинакового состава: 50% СН3ОН - 50% 0,1 М фосфатный буфер (pH 6,5) на колонках 4,6×100 мм. Скорость потока подвижной фазы: 0.5 мл/мин.

Из полученных результатов видно, что заявленный сорбент в большинстве случаев обеспечивает меньшее удерживание ( k 1 ' , k 2 ' ) веществ и более высокие результаты по разрешению (RS), чем известный. Хроматограммы разделения профенов на колонке с сорбентом, полученным по примеру 1 с привитым гибридным селектором в сравнении с сорбентом, полученным известным способом. (RU 2255802, 2005) представлены на фиг. 2.

Пример 4

Высокомолекулярные соединения, в частности белки, не удерживаются на сорбенте, полученном по примеру 1, и элюируются с мертвым объемом. С сорбента-прототипа (RU 2255802, 2005) белки не элюируются, оседают на сорбенте, изменяя ее свойства. На Фиг. 3 представлены хроматограммы раствора белка (бычьего сывороточного альбумина), полученные на гибридном сорбенте и на сорбенте-прототипе (RU 2255802, 2005).

Как следует из результатов исследования, на сорбенте, полученном по примеру 1, в отличие от сорбентов-прототипов (RU 2255802, 2005 и RU 2348455, 2006) возможно разделение и определение энантиомеров низкомолекулярных соединений (лекарств, например, профенов) в биологических жидкостях при их прямом вводе на колонку с сорбентом. На Фиг. 4 представлена хроматограмма энантиоразделения кетопрофена в образце мочи при его прямом вводе в колонку с гибридным сорбентом.

1. Сорбент для разделения оптических изомеров веществ и для их анализа в биологических жидкостях методом ВЭЖХ, содержащий силикагель, модифицированный гликопептидным антибиотиком эремомицином, отличающийся тем, что он дополнительно модифицирован бычьим сывороточным альбумином.

2. Способ получения сорбента для хроматографии оптических изомеров, включающий модифицирование поверхности силикагеля эпоксигруппами, иммобилизацию эремомицина на поверхности силикагеля с привитыми эпоксигруппами, промывку, сушку, отличающийся тем, что силикагель, модифицированный эремомицином, после сушки подвергают взаимодействию с бычьим сывороточным альбумином, глутаровым альдегидом и тетрагидроборатом натрия.



 

Похожие патенты:

Изобретение относится к области сорбционной техники, в частности к средствам коллективной защиты, которые могут быть использованы для очистки воздуха от радиоактивных аэрозолей, паров молекулярного йода и его органических соединений, например в системах вентиляции воздуха на радиохимических производствах, а также в системах вентиляции судов гражданского и Военно-Морского флота с атомными реакторами.

Изобретение относится к биотехнологии, пищевой и фармацевтической промышленности, а именно к производству продуктов функционального питания для нормализации состояния организма и биологически активных добавок (БАД) к пище и лекарственных препаратов, предназначенных для нормализации состояния желудочно-кишечного тракта (удаления из организма токсичных веществ).

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Общая формула заявленного сорбента соответствует формуле (1).

Изобретение относится к аналитической химии, в частности к созданию адсорбентов для разделения энантиомеров методом газовой хроматографии. Адсорбент состоит из инертного носителя Chromaton NAW и оптически активного соединения, представляющего собой супрамолекулярную структуру меламина, нанесенную на носитель в количестве 1% от массы носителя.

Изобретение относится к созданию неподвижных фаз для разделения энантиомеров методом газовой хроматографии и может быть использовано в химической и фармацевтической промышленности для анализа энантиомеров.

Настоящее изобретение относится к материалу для разделения, содержащему осажденный диоксид кремния, высушенный во вращающейся или распылительной сушилке. Диоксид кремния имеет площадь P поверхности пор, при которой log10 P>2,2, и отношение площади поверхности по BET к площади поверхности по СТАВ, измеренное до какого-либо модифицирования поверхности диоксида кремния, составляющее по меньшей мере 1,0.

Изобретение относится к синтезу сорбентов с химически закрепленными функциональными группами. Сорбент содержит 3-глицидилоксипропил-силикагель, который обработан тиосемикарбазидом при катализе хлорной кислотой в среде кипящего метанола в течение 8 часов.

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один 2-гидроксипропильный радикал. При этом R1 - (СН2)n, где n=2-8, R2 выбран из ряда: Н, ОН, Hal (галоген), Alkyl (алкильный радикал). В качестве исходного материала при получении берут аминированную матрицу, выбранную из ряда аминированных: полимера на основе дивинилбензола, в котором дивинилбензол является сшивающим агентом, полиметакрилата, диоксида кремния, диоксида титана, диоксида циркония или оксида алюминия.
Изобретение относится к получению сорбентов. Способ получения основан на использовании комплексов ионов никеля с аминометилфосфоновыми кислотами, образующимися в результате взаимодействия уротропина, гипофосфита кальция, йодоводородной кислоты и йодида никеля.

Изобретение относится к никелевому комплексу 5,10,15,20-тетракис [3′,5′-ди-(2″-метилбутилокси)фенил]-порфина формулы: Изобретение позволяет получить никелевый комплекс, проявляющий свойство стационарной фазы для газовой хроматографии.

Изобретение относится к способам извлечения ионов тяжелых металлов сорбцией на природных целлюлозосодержащих сорбентах из растворов различного состава и может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод различной природы. Способ извлечения ионов тяжелых металлов из водных растворов включает контактирование раствора при комнатной температуре в течение 1-20 мин с модифицированными полимерными сорбентами на основе целлюлозы при модуле раствор/сорбент, равном 50-200. При этом модифицирование сорбентов осуществляют нанесением на них углеродных нанотрубок при ультразвуковом воздействии рабочей частотой 22 или 44 кГц при комнатной температуре в течение 2-10 мин в водном растворе, содержащем 3-12% полиакриловой кислоты и 0,1-1% нанотрубок от массы сорбента при модуле раствор/сорбент 10, с последующей обработкой сорбентов в растворе акриловой кислоты в присутствии инициатора при температуре 60-90°С при перемешивании в течение 30-90 мин. Причем обработку сорбентов с нанесенными углеродными нанотрубками осуществляют в растворе с содержанием акриловой кислоты 15-25% и инициатора персульфата аммония 1,5-2,5% от массы сорбента при модуле раствор/сорбент 10 с последующей промывкой, отжимом и высушиванием до влажности 8-14%. Изобретение обеспечивает повышение степени извлечения ионов тяжелых металлов и снижение температуры обработки сорбентов. 1 табл., 5 пр.
Настоящее изобретение относится к способу захвата представляющих интерес вирусоподобных частиц из смеси, включающей разрушенные клетки растений. Способ включает использование расширяющегося слоя адсорбента, содержащего материал смолы, уравновешивание материала смолы при рН 6,0-8,0 и внесение смеси на расширяющийся слой адсорбента для связывания вирусоподобных частиц. Степень расширения расширяющегося слоя равна 1-5. Далее адсорбент отмывают. Вирусоподобные частицы элюируют из адсорбента. Технический результат: обеспечение высокой чистоты выделяемых частиц, высокойя эффективности процесса. 4 н. и 13 з.п. ф-лы, 9 табл.

Изобретение относится к области сорбционных материалов. Предложено применение регулярных мультимолекулярных структур - пленок Ленгмюра-Блоджетт на основе стеаратов трехвалентных металлов, содержащих лабильную ковалентную связь, в качестве сорбентов для металл-аффинной хроматографии водорастворимых органических и биоорганических соединений. Изобретение обеспечивает повышение селективности сорбентов при хроматографии органических и биоорганических веществ, содержащих активные атомы кислорода или фтора. 5 ил.

Изобретение относится к способам получения сорбентов на основе растительного сырья и может быть использовано в фармацевтической и пищевой промышленности. Способ получения лигноцеллюлозного сорбента включает измельчение плодовых оболочек подсолнечника до размера частиц 0,160-0,500 мм, обработку 1%-ным раствором гидроксида натрия при комнатной температуре в течение 60 мин, промывку водой, нейтрализацию и сушку при t=105°С. Изобретение обеспечивает повышение сорбционной активности сорбента, расширение круга сорбентов, а также возможность утилизировать многотоннажные отходы при переработке подсолнечника. 1 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Изобретение относится к способу очистки вредных техногенных газовых выбросов в атмосферу от различных загрязнителей и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей. Способ заключается в сорбции и одновременном окислении-восстановлении газов путем последовательного пропускания их через слой сорбционного катализатора на основе глауконита. При этом катализатор получают следующим образом: обогащенный мелкодисперсный глауконит смешивают с интеркалированным графитом, полученную смесь модифицируют раствором гальваношламов, содержащим соединения тяжелых металлов, после чего полученную массу гранулируют и обжигают при температуре 600-700°C в течение 1-1,5 часов. Изобретение обеспечивает повышение эффективности очистки газовых выбросов, а также позволяет расширить температурный режим очистке. 2 з.п. ф-лы, 1 табл.

Изобретение относится к изготовлению неиспаряемого геттера. Формируют слои материала из первого порошка титан-ванадий, имеющего среднеарифметический размер гранул не более 70 мкм, и второго порошка – из смеси первого порошка титан-ванадий и интеркалированного углерода. Засыпают в пресс-форму последовательно порошок титан-ванадий, порошок из смеси порошка титан-ванадий и интеркалированного углерода и порошок титан-ванадий. Затем осуществляют прессование заготовки при давлении 100-1000 кг/см2 и спекание заготовки в вакуумной печи при температуре 900-990°С в течение (1,8-3,6)×103 с, охлаждают до комнатной температуры, вынимают полученную заготовку из вакуумной печи. Лицевую и обратную наружные поверхности заготовки облучают лазерным излучением, например посредством лазера СО2, в инертной атмосфере гелия или аргона с получением части наружной поверхности с открытой пористостью и сплавной части наружной поверхности. Обеспечивается повышение качества неиспаряемого геттера путем снижения его осыпаемости, повышения сорбционных свойств и механической прочности. 2 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к сорбентам для газовой хроматографии. Предложенный сорбент состоит из твердого носителя и медного комплекса в качестве стационарной фазы. В качестве медного комплекса сорбент содержит тетра(1',7',7'-триметилбицикло[2.2.1]гептано[2',3'-b]пиразинопорфиразин меди. Техническим результатом изобретения является повышение структурной селективности сорбента по отношению ко всем изомерам лутидина, пиридина и пиперидина и возможность работы сорбента в более широком интервале температур. 1 табл., 1 пр.

Изобретение относится к многослойным материалам для применения в области легкой промышленности и сельского хозяйства и касается универсального многослойного материала, формирующего систему гибких распределительных каналов для отбора, фильтрации, распределения и отвода текучих сред. Варианты материала содержат три последовательно скрепленных слоя. Первый слой выполнен из полимерной пленки. Средний слой выполнен из полимерной пленки, которая сформирована в виде множества выпуклых элементов, наполняемых газом. Третий слой в первом варианте изобретения выполнен из нетканого материала, во втором - из фильтровального полотна на целлюлозной основе, в третьем - из перфорированной полимерной пленки. В результате скрепления третьего слоя с вершинами всего множества газонаполненных элементов среднего слоя сформирована система гибких распределительных каналов в виде множества непрерывных полостей, разделенных между собой множеством выпуклых газонаполненных элементов. Наличие сквозного отверстия в материале обеспечивает отбор текучих сред и отвод их из материала, создает условия для вентиляции системы гибких распределительных каналов, поддерживает требуемый уровень влажности внутри материала. Возможность скрепления слоев материала по их краям позволяет избежать засорения внутренней структуры материала. Через скрепление слоев обеспечен естественный и принудительный отвод текучих сред из материала, а также газообмен. Изобретение обеспечивает расширение арсенала технических средств. 3 н. и 6 з.п. ф-лы, 14 ил.

Изобретение относится к сепарационным материалам, которые могут быть использованы в ионной хроматографии в качестве сорбентов для определения органических и неорганических анионов, а также в режиме гидрофильной хроматографии для определения полярных биологически активных соединений. Сорбент содержит матрицу на основе силикагеля с привитой четвертичной аммониевой группой и соединённые с ней с помощью спейсеров атомы азота с заместителями, входящие в состав диамина или триамина. Сорбент обладает улучшенными эксплуатационными и хроматографическими характеристиками. Сорбент эффективен для разделения неорганических анионов, слабоудерживаемых органических кислот, аминокислот, сахаров и витаминов. 8 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М растворе гидроксида натрия, взятого из расчёта 100 мл раствора на 10-30 грамм кизельгура. Изобретение позволяет повысить адсорбционную активность сорбента по ионам меди. 2 табл.
Наверх