Способ определения места короткого замыкания на длинной линии электропередачи с отпайкой

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередач с отпайкой. Сущность: предварительно формируют модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий и емкостных связей между проводом и землей. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии до и в момент короткого замыкания. Разбивают модель линии на равные участки. Формируют и сохраняют предаварийные напряжения и токи в конце каждого участка в каждой фазе. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе. Из сохраненных напряжений и токов выделяют значения комплексных предаварийных фазных напряжений и токов в известной точке расположения отпайки. Находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии, и определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки. Получают значения измеренных при КЗ фазных напряжений на шинах и токов с двух концов линии из осциллограмм цифрового регистратора аварийных процессов. Формируют и сохраняют напряжения при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Формируют и сохраняют токи при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений при КЗ строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии, отличная от точки отпайки, соответствует точке короткого замыкания. Технический результат: повышение точности места повреждения. 1 з.п. ф-лы.

 

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередачи с отпайкой на основе измерения параметров предаварийного и аварийного режима с двух концов линии.

Изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 97], так как решает проблему уменьшения времени задержек при транспортировке электроэнергии потребителям в случае повреждения электрических сетей.

Известен способ определения места короткого замыкания по измерениям параметров аварийного режима с одного (и с другого) конца линии, в котором измеряют реактивную составляющую сопротивления поврежденной фазы [Разработка и исследование защиты линий электропередач с фиксацией места повреждения. Новочеркасский политехнический институт, г. Новочеркасск, 1969].

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению параметров линии и измеренных с одного конца мнимых составляющих комплексных величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания с другого конца.

Данный метод, использующий только реактивную составляющую отношения измеренного напряжения к измеренному току, позволяет уменьшить влияние переходного сопротивления в месте повреждения. Однако точность во многом зависит от величины переходного сопротивления и величины подпитывающего тока противоположного конца линии тому, на котором производятся измерения. Кроме того, данный метод не учитывает емкость линии на землю и различие сопротивлений фазных проводов линии и не учитывает наличие отпайки.

Хорошо известен способ, использующийся в устройствах релейной защиты некоторых западных производителей, - компенсационный метод [Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи: Учебное пособие. - Иркутск: Издательство ИрГТУ, 2001, ч. 1]. Данный способ использует параметры аварийного и предаварийного режимов, полученные с одного конца линии.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению измеренных с одного конца величин расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания со второго конца.

Основная особенность способа - это возможность учета влияния питания с противоположного конца линии, а также исключение погрешности от переходного сопротивления в месте короткого замыкания. Для реализации этого метода требуется полная модель сети, т.е. программы расчета установившихся и аварийных режимов сети. Кроме того, требуется произвести предварительные измерения тока нагрузки, которые сохраняют и используют для компенсации погрешности от влияния нагрузки. Данный метод, также как предыдущий, не учитывает емкость линии на землю, различие сопротивлений фазных проводов линии и параметры отпайки.

Известен способ [Аржанников Е.А., Чухин A.M. Методы и приборы определения места короткого замыкания на линиях: Учебное пособие / Ивановский государственный энергетический университет, г. Иваново, 1998. - 74 с.], в основу которого заложено предположение о том, что сопротивление в месте короткого замыкания имеет чисто активный характер, и, как следствие, реактивная мощность в месте повреждения равна нулю. Критерием короткого замыкания является равенство нулю реактивной мощности в месте повреждения, для определения которой используется мнимая часть системы из трех произведений комплекса напряжения и сопряженного тока в месте повреждения в системе симметричных или фазных координат.

Метод реализуется следующим образом.

Сначала фиксируют момент повреждения, измеряют в начале и в конце линии напряжения и токи первой гармоники в предаварийном и аварийном режимах. Полученные величины токов и напряжений передают на противоположный конец линии, где определяют ток в месте короткого замыкания, как сумму токов на концах линии. Затем, меняя расстояние от нуля до величины, равной длине линии, находят для каждой точки линии с определенным шагом напряжение, как разность между напряжением в конце линии и падением напряжения до предполагаемой точки повреждения. Для каждой из точек через произведение комплекса напряжения и сопряженного комплексного тока в месте повреждения находят полную мощность, мнимая часть от которой равна реактивной мощности в предполагаемом месте короткого замыкания. Точка, в которой реактивная мощность окажется минимальной, и будет являться местом повреждения. Такой расчет проводится либо для всех трех фаз линии, либо для всех трех последовательностей симметричных составляющих, что позволяет повысить точность процедуры определения места повреждения.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на одном конце линии, определение по соотношению измеренных с одного конца величин и параметров линии расстояния до места короткого замыкания. Аналогично по соотношению измеренных величин с другого конца определяют расстояние до места короткого замыкания с другого конца.

Недостатком способа является необходимость использования только мнимых составляющих расчетных величин. Также указанный способ, как и другие, ранее указанные способы определения места короткого замыкания, обладает таким существенным недостатком, как не учет емкости линии на землю, не учет различия сопротивлений фазных проводов линии и не учет отпайки.

Указанные недостатки могут приводить к значительной погрешности в определении места короткого замыкания из-за неполного учета параметров линии, не учета емкостных параметров линии, не учета проводимости отпайки.

Известен способ определения места повреждения на одиночной воздушной линии электропередачи с отпайкой [Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи: Учебное пособие. - Иркутск: Издательство ИрГТУ, 2001, ч. 2, с. 102], в котором линия и питающие системы представляются схемой замещения нулевой последовательности, а отпайка задается сопротивлением нулевой последовательности.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на обоих концах линии, учет отпайки, определение по соотношению измеренных величин и параметров линии расстояния до места короткого замыкания. Недостатком способа, является необходимость использования только расчетных величин составляющих нулевой последовательности. Также указанный способ, как и другие, ранее указанные способы определения места короткого замыкания, обладает таким существенным недостатком, как не учет емкости линии на землю, не учет различия сопротивлений фазных проводов линии.

Известен способ определения места повреждения на воздушных линиях электропередачи [патент RU 2426998], принятый за прототип, в котором повышение точности определения места повреждения осуществляется за счет учета поперечных емкостей и волновых процессов на линиях электропередачи. Результат достигается за счет введения в схему замещения линии электропередачи (модели линии) на стадии получения расчетных выражений поперечных емкостей и использования телеграфных уравнений для описания воздушной линии электропередачи для симметричных составляющих.

В ранее предлагаемых методах определения места повреждения поперечные емкости не вводили в схему замещения по причине сложности получения расчетных выражений из-за увеличения контуров в модели линии. Такое допущение может приводить к существенной погрешности, особенно на линиях электропередачи большой протяженности и высокого напряжения.

В прототипе используют телеграфные уравнения, полученные для однофазной линии электропередачи, для описания трехфазной линии электропередачи (модели линии). Составление системы дифференциальных уравнений для трехфазной линии электропередачи в соответствии с теорией волновых процессов - задача громоздкая и для практики малоприменимая. Составление системы дифференциальных уравнений для однофазной линии электропередачи требует в значительной степени меньше трудозатрат и позволяет получить телеграфные уравнения, учитывающие волновые процессы на однофазной линии. Телеграфные уравнения, полученные для однофазной линии электропередачи, недопустимо использовать для трехфазной линии электропередачи, т.к. все три фазы связаны и влияют друг на друга. Однако телеграфные уравнения, полученные для однофазной линии, можно применить по отдельности к прямой, обратной и нулевой последовательностям линии электропередачи.

Предложенный в прототипе подход позволяет учесть волновые процессы на линиях электропередачи, чем повышает точность определения места повреждения, и в то же время дает возможность практической реализации метода, благодаря отсутствию громоздких вычислений и сложных математических преобразований, что было бы неизбежно, если бы для учета волновых процессов использовалось полное описание трехфазной линии электропередачи системой дифференциальных уравнений.

Недостатком способа, принятого за прототип, является не учет пофазного различия параметров линии, не учет междуфазных емкостей линии, не учет отпайки.

Указанные недостатки могут приводить к погрешности в определении места повреждения из-за усреднения величин сопротивлений линии, из-за не учета проводимости отпайки.

Изобретение направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.

Технический результат изобретения заключается в повышении точности определении места повреждения за счет использования величин фазных токов и напряжений и величин полных фазных и междуфазных продольных и поперечных сопротивлений линии, за счет определения параметров отпайки линии по измеренным по концам линии токам и напряжениям предаварийного режима и использования их при определении места повреждения.

Технический результат достигается за счет того, что в способе определения места короткого замыкания на длинной линии с отпайкой по замерам с двух ее концов, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, комплексные фазные проводимости отпайки YA(отп), YB(отп), YC(отп), соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ″ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты до и в момент короткого замыкания, расчетным путем определяют значение расстояния до места короткого замыкания, согласно изобретению предварительно формируют модель линии, как значения продольных и поперечных параметров N участков схемы замещения линии в трехфазном виде:

;

,

где ZAAij, ZBBij, ZCCij - значения собственных продольных сопротивлений фаз участка i-j линии (Ом);

ZABij, ZACij, ZBAij, ZBCij, ZCAij, ZCBij - значения взаимных продольных сопротивлений фаз участка i-j линии (Ом);

YAAij, YBBij, YCCij - значения собственных поперечных емкостных проводимостей фаз участка i-j линии (Ом);

YABij, YACij, YBAij, YBCij, YCAij, YCBij - значения взаимных поперечных емкостных проводимостей фаз участка i-j линии (Ом).

Значения собственных и взаимных сопротивлений определяются по общеизвестным выражениям [например, Ульянов С.А. Электромагнитные переходные процессы в энергетических системах. Изд-во Энергия, 1970 г., с. 293, 294].

Значения емкостных проводимостей фаз на «землю» и взаимных емкостных проводимостей между фаз определяются по общеизвестным выражениям [например, Висящев А.Н. Приборы и методы определения места повреждения на линиях электропередачи. Иркутск, уч. пособие, изд-во ИрГТУ, 2001 г., с. 27-29]/

Далее получают значения измеренных предаварийных фазных напряжений на шинах и токов с двух концов линии из осциллограмм цифрового регистратора аварийных процессов, задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-й точке по выражениям:

где

- значения предаварийных комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах одного конца линии (B);

- значения предаварийных комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах другого конца линии (B),

где

- значения предаварийных комплексных фазных напряжений в каждой j-й точке линии с одного конца линии (B);

- значения предаварийных комплексных фазных напряжений в каждой j-й точке линии с другого конца линии (B);

- значения предаварийных комплексных фазных токов на участке i-j с одного конца линии, для i=l значения комплексных фазных токов, измеренных с одного конца линии (A);

- значения предаварийных комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (A);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с одного конца линии (Ом);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с другого конца линии (Ом).

Формируют значения предаварийных фазных токов в поперечных емкостных проводимостях в i-й и j-й точках участка линии по выражениям:

;

;

;

.

Формируют и сохраняют значения предаварийных фазных токов в продольных сопротивлениях в каждом (ij+1)-м участке линии по выражениям:

;

.

где

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);

- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в начале каждого ij-го участка линии с одного конца линии (A);

- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в начале каждого ij-го участка линии с другого конца линии (A);

- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в конце каждого ij-го участка линии с одного конца линии (A);

- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в конце каждого ij-го участка линии с другого конца линии (A).

Далее из сохраненных предаварийных напряжений и токов выделяют значения комплексных фазных напряжений и и токов и в известной точке расположения отпайки (отп), находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии:

,

определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки:

Далее получают значения измеренных при КЗ аварийных фазных напряжений на шинах и токов с двух концов линии из тех же осциллограмм цифрового регистратора аварийных процессов, задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-й точке по выражениям:

;

,

где

- значения при КЗ комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах одного конца линии (B);

- значения при КЗ комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах другого конца линии (B),

где

- значения при КЗ комплексных фазных напряжений в каждой j-й точке линии с одного конца линии (B);

- значения при КЗ комплексных фазных напряжений в каждой j-й точке линии с другого конца линии (B);

- значения при КЗ комплексных фазных токов на участке i-j с одного конца линии, для i=1 значения комплексных фазных токов, измеренных с одного конца линии (A);

- значения при КЗ комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (A);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с одного конца линии (Ом);

- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с другого конца линии (Ом).

Формируют значения фазных токов при КЗ в поперечных емкостных проводимостях в i-й и j-й точках участка линии по выражениям:

;

;

;

.

При этом в j-м узле с отпайкой формируют значения фазных токов при КЗ в поперечных емкостных проводимостях и в отпайке по выражениям:

;

.

Формируют и сохраняют значения фазных токов при КЗ в продольных сопротивлениях в каждом (ij+1)-м участке линии по выражениям:

;

,

где

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);

- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);

- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в начале каждого ij-го участка линии с одного конца линии (A);

- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в начале каждого ij-го участка линии с другого конца линии (A);

- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в конце каждого ij-го участка линии с одного конца линии (A);

- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в конце каждого ij-го участка линии с другого конца линии (A);

- фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки (Сим).

Далее из сохраненных значений комплексных фазных напряжений и выделяются модули, по которым строятся графики с двумя осями зависимости модулей напряжений и от номера участка (от расстояния). Точка пересечения графиков, отличная от точки отпайки, соответствует точке короткого замыкания.

При двухфазном замыкании берут разность комплексных фазных напряжений поврежденных фаз.

Таким образом, предлагаемое изобретение имеет следующие общие признаки с прототипом:

1) предварительное формирование расчетной модели линии;

2) измерение с двух сторон линии фазных токов и напряжений в момент замыкания на линии;

3) расчет контролируемого параметра по данным модели сети и измеренным токам и напряжениям.

Предлагаемое изобретение имеет следующие отличия от прототипа, что обуславливает соответствие технического решения критерию новизна:

1) схемы замещения линий составляют в трехфазном виде, что позволяет наиболее полно учесть физические параметры линии (взаимоиндукцию между проводами фаз линии, междуфазную емкость и емкость на землю);

2) определяют параметры отпайки по измеренным токам и напряжениям предаварийного режима и по параметрам модели линии;

3) схему замещения линий составляют из участков линии, что позволяет учесть различие в параметрах линий (транспозиция, различный тип опор, грозозащитный трос и т.п.) на каждом участке;

4) по измеренным токам и напряжениям и параметрам отпайки рассчитывают контролируемый параметр - значения комплексных фазных напряжений и , из которых выделяют модули, по которым строят графики с двумя осями зависимости модулей напряжений от расстояния. Точка пересечения графиков соответствует точке короткого замыкания.

Из уровня техники неизвестны отличительные существенные признаки заявляемых способов, охарактеризованных в формуле изобретения, что подтверждает ее соответствие условию патентоспособности «изобретательский уровень».

Способ реализуют следующим образом.

На предварительной стадии формируют полную модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий и емкостных связей между проводом и землей.

При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии до и в момент короткого замыкания. При этом для регистрации предаварийных токов и напряжений дополнительных мероприятий выполнять не нужно, так как в цифровых регистраторах аварийных процессов производится регистрация нескольких периодов предаварийного режима.

Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют и сохраняют предаварийные напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют и сохраняют предаварийные токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, выделяют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии.

Далее из сохраненных напряжений и токов выделяют значения комплексных предаварийных фазных напряжений и токов в известной точке расположения отпайки (отп), находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии, и определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки,

Далее получают значения измеренных при КЗ фазных напряжений на шинах и токов с двух концов линии из тех же осциллограмм цифрового регистратора аварийных процессов, формируют и сохраняют напряжения при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют и сохраняют токи при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, выделяют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений при КЗ строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния).

Точка пересечения графиков с одного и другого концов линии, отличная от точки отпайки, соответствует точке короткого замыкания.

Предложенный способ также позволяет определять место короткого замыкания при других видах замыкания: двухфазном, двухфазном на землю, трехфазном, позволяет учесть транспозицию линии. При этом не нужно выполнять синхронизацию замеров по концам линии.

Определение места повреждения, выполненное по предложенной методике, показало также полное отсутствие методической погрешности при наличии переходного сопротивления от 1 до 50 Ом и при изменениях нагрузочного режима в широких диапазонах.

Таким образом, использование полной модели линий в трехфазном виде и измеренных значений фазных токов и напряжений до короткого замыкания позволяет получить параметры отпайки и в момент короткого замыкания использовать эти параметры для формирования более точной модели, чем достигается более точное определение расстояния до места повреждения.

1. Способ определения места короткого замыкания на длинной линии с отпайкой по замерам с двух ее концов, имеющей комплексные сопротивления проводов фаз ZAA, ZBB, ZCC, междуфазные комплексные сопротивления ZAB, ZAC, ZBA, ZBC, ZCA, ZCB, емкостные проводимости проводов фаз линии на землю YAA, YBB, YCC, емкостные междуфазные проводимости линии YAB, YAC, YBA, YBC, YCA, YCB, комплексные фазные проводимости отпайки YA(отп), YB(отп) YC(отп), соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по углам комплексные фазные токи , и напряжения , основной частоты до и в момент короткого замыкания, расчетным путем определяют значение расстояния до места короткого замыкания, отличающийся тем, что предварительно формируют модель линии как значения продольных и поперечных параметров N участков схемы замещения линии в трехфазном виде:
;
,
где ZAAij, ZBBij, ZCCij - значения собственных продольных сопротивлений фаз участка i-j линии (Ом);
ZABij, ZACij, ZBAij, ZBCij, ZCAij, ZCBij - значения взаимных продольных сопротивлений фаз участка i-j линии (Ом);
YAAij, YBBij, YCCij - значения собственных поперечных емкостных проводимостей фаз участка i-j линии (Ом);
YABij, YACij, YBAij, YBCij, YCAij, YCBij - значения взаимных поперечных емкостных проводимостей фаз участка i-j линии (Ом),
далее получают значения измеренных предаварийных фазных напряжений на шинах и токов с двух концов линии из осциллограмм цифрового регистратора аварийных процессов, задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-й точке по выражениям:
;
,
где
- значения предаварийных комплексных фазных напряжений в каждой i-й точке линии для i=1 значения напряжений на шинах одного конца линии (В);
- значения предаварийных комплексных фазных напряжений в каждой i-й точке линии для i=1 значения напряжений на шинах другого конца линии (В),
где:
- значения предаварийных комплексных фазных напряжений в каждой j-й точке линии с одного конца линии (В);
- значения предаварийных комплексных фазных напряжений в каждой j-й точке линии с другого конца линии (В);
- значения предаварийных комплексных фазных токов на участке i-j с одного конца линии, для i=1 значения комплексных фазных токов, измеренных с одного конца линии (А);
- значения предаварийных комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (А);
- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с одного конца линии (Ом);
- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с другого конца линии (Ом),
далее формируют значения предаварийных фазных токов в поперечных емкостных проводимостях в i-й и j-й точках участка линии по выражениям:
;
;
;
,
далее формируют и сохраняют значения предаварийных фазных токов в продольных сопротивлениях в каждом (ij+1)-м участке линии по выражениям:

,
где
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);
- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в начале каждого ij-го участка линии с одного конца линии (А);
- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в начале каждого ij-го участка линии с другого конца линии (А);
- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в конце каждого ij-го участка линии с одного конца линии (А);
- значения сформированных предаварийных фазных токов в поперечных емкостных проводимостях в конце каждого ij-го участка линии с другого конца линии (А),
далее из сохраненных предаварийных напряжений и токов выделяют значения комплексных фазных напряжений и и токов и в известной точке расположения отпайки (отп), находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии:
,
определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки:

далее получают значения измеренных при КЗ аварийных фазных напряжений на шинах и токов с двух концов линии из тех же осциллограмм цифрового регистратора аварийных процессов, задают поочередно точки j в конце каждого участка вдоль линии, формируют и сохраняют для двух концов линии значения комплексных фазных напряжений в каждой j-й точке по выражениям:
,
,
где
- значения при КЗ комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах одного конца линии (В);
- значения при КЗ комплексных фазных напряжений в каждой i-й точке линии, для i=1 значения напряжений на шинах другого конца линии (В), где
- значения при КЗ комплексных фазных напряжений в каждой j-й точке линии с одного конца линии (В);
- значения при КЗ комплексных фазных напряжений в каждой j-й точке линии с другого конца линии (В);
- значения при КЗ комплексных фазных токов на участке i-j с одного конца линии, для i=1 значения комплексных фазных токов, измеренных с одного конца линии (А);
- значения при КЗ комплексных фазных токов на участке i-j с другого конца линии, для i=1 значения комплексных фазных токов, измеренных с другого конца линии (А);
- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с одного конца линии (Ом);
- значения продольных собственных и взаимных сопротивлений участков i-j схемы замещения линии с другого конца линии (Ом),
формируют значения фазных токов при КЗ в поперечных емкостных проводимостях в i-й и j-й точках участка линии по выражениям:
;
;
;
,
при этом в j-м узле с отпайкой формируют значения фазных токов при КЗ в поперечных емкостных проводимостях и в отпайке по выражениям:
;
.
формируют и сохраняют значения фазных токов при КЗ в продольных сопротивлениях в каждом (ij+1)-м участке линии по выражениям:
;
,
где
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с одного конца линии (Сим);
- значения поперечных собственных и взаимных емкостных проводимостей половины участка i-j схемы замещения линии с другого конца линии (Сим);
- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в начале каждого ij-го участка линии с одного конца линии (А);
- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в начале каждого ij-го участка линии с другого конца линии (А);
- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в конце каждого ij-го участка линии с одного конца линии (А);
- значения сформированных фазных токов при КЗ в поперечных емкостных проводимостях в конце каждого ij-го участка линии с другого конца линии (А);
- фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки (Сим),
далее из сохраненных значений комплексных фазных напряжений и выделяются модули, по которым строятся графики с двумя осями зависимости модулей напряжений и от номера участка (от расстояния), точка пересечения графиков, отличная от точки отпайки, соответствует точке короткого замыкания.

2. Способ по п. 1, отличающийся тем, что для двухфазных замыканий формируют разность комплексных фазных напряжений и поврежденных фаз.



 

Похожие патенты:

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания, совмещенного с обрывом. Технический результат: снижение трудоемкости и повышение точности за счет более полного учета параметров линий.

Изобретение относится к электроэнергетике и может быть использовано для определения места обрыва провода на воздушных линиях электропередачи на основе измерения параметров аварийного режима с двух концов линии.

Группа изобретений относится к электроизмерительной технике и может быть использована для определения местоположения обрыва в многожильном кабеле, не имеющем экранной оболочки, в частности геофизическом.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по замерам мгновенных значений токов и напряжений при несинхронизированных замерах с двух ее концов.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания в длинных линиях электропередач. Технический результат: снижение трудоемкости и повышение точности при определении места короткого замыкания за счет более полного учета параметров линий.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам, предназначенным для контроля качества электрической энергии. Сущность: передающие линейные полукомплекты снабжены блоком сравнения напряжений передающих линейных полукомплектов.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей, работающих в режиме с изолированной нейтралью. Сущность: используется модель контролируемого фидера.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Изобретение относится к защите подземных сооружений от коррозии и может быть использовано при контроле работы устройств катодной защиты от коррозии. Сущность: поиск места повреждения протяженного анодного заземлителя (ПАЗ) индукционным способом осуществляют в три этапа с использованием различных схем подключения источников переменного тока к ПАЗ и с использованием переменного тока с частотой ниже 128 Гц, исключая частоты 100 и 50 Гц.

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет выявления областей с повышенной напряженностью электрического поля и измерения градиентов напряженности электрического поля в этих областях с последующим выделением дефектов. Сущность: локацию областей с повышенной напряженностью электрического поля и измерение градиентов напряженности поля осуществляют электрооптическим датчиком контроля напряженности электрического поля по значению коэффициента отражения лазерного пучка от указанного датчика, которое пропорционально напряженности электрического поля. Предварительно электрооптический датчик градуируют путем внесения его в калиброванное переменное электрическое поле. Затем для каждого типа изоляторов, которые подлежат диагностике, определяют в ходе стендовых измерений усредненные значения напряженности переменных электрических полей, соответствующие рабочему высокому напряжению и предельные границы градиентов напряженности электрических полей, не создающих электрический пробой или перекрытие изоляторов. Электрооптический датчик, размещенный на диэлектрической штанге и соединенный через поляризационный дискриминатор и волоконный световод, с лазерным излучателем, а также с фотоприемником, сканируют по поверхности опорного высоковольтного изолятора. При этом регистрируют пространственное положение электрооптического датчика на поверхности изолятора и соответствующую ему напряженность электрического поля, измеряют нормальные и тангенциальные компоненты градиентов напряженности электрического поля. Затем пространственное распределение повышенных нормальных и тангенциальных к поверхности градиентов напряженности электрического поля сравнивают с ранее записанным распределением значений напряженности для эталонного изолятора и выделяют области возможных внутренних пробоев и поверхностных перекрытий в изоляторе путем выделения градиентов напряженности электрического поля, превышающих уровень, безопасный для нормального функционирования. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано для определения места повреждения линии электропередачи. Технический результат: повышение точности определения места повреждения линии электропередачи. Сущность: фиксируют электромагнитные волны, возникающие в месте повреждения и распространяющиеся к концам линии. В моменты достижения фронтами волн концов линии измеряют и фиксируют разность времени прихода фронтов электромагнитных волн к концам линии. Место повреждения определяют путем суммирования половинной длинны линии, половинного произведения разности времени прихода фронтов электромагнитных волн на скорость распространения электромагнитных волн, а также корректирующего коэффициента. Корректирующий коэффициент определяют как произведение половинной разности времени прихода электромагнитных волн на приращение скорости распространения электромагнитных волн. При этом приращения скорости распространения электромагнитных волн формируют по результатам обходов линии электропередачи, соответствующих ранее произошедшим повреждениям. 3 табл., 3 ил.
Группа изобретений относится к области техники по определению местоположения электрических повреждений, преимущественно на железнодорожном транспорте. Технический результат: возможность определения конкретного пути, секции, номера пути (и, или группы путей), где произошло короткое замыкание и (или) повреждение как на станции, так и на перегоне, а также возможность определения участка с нарушением проектного положения элементов линии электроснабжения. Сущность: короткое замыкание (КЗ) локально фиксируется на основе порогового принципа определения тока КЗ на токоведущих частях контактной сети, на расстоянии от них, или на спусках заземления опор или мостов, тоннелей, путепроводов, или вблизи токоведущих частей в зоне магнитного (электромагнитного) влияния, или на электроподвижном составе. Фиксируется отклонение элементов линии электроснабжения от проектного положения. Информация передается в пункт приема через ретранслятор, расположенный в любом удобном месте, который обслуживает группу датчиков в зоне радиовидимости, и далее по каналам связи до ближайшей станции, трансформаторной подстанции, поста секционирования, диспетчерского пункта. 2 н. и 9 з.п. ф-лы.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем. Технический результат: повышение точности определении места короткого замыкания. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием фазных величин токов и напряжений и продольных и поперечных фазных и междуфазных параметров линии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи с грозозащитным тросом по измерениям с двух ее концов. Технический результат: повышение точности определения места короткого замыкания. Сущность: измеряют с двух концов линии не синхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, например, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием величин емкостных фазных и междуфазных проводимостей, величин полных фазных и междуфазных сопротивлений линии с учетом троса при использовании токов и напряжений троса. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения мест повреждения (короткого замыкания, обрыва фаз) последовательно на всех поврежденных фазных проводах линии электропередачи по измерениям с двух ее концов значений наведенных токов или напряжений. Сущность: способ включает определение постоянной времени затухания убывающей апериодической составляющей наведенного тока или действующих значений наведенных токов или напряжений с дальнейшим определением расстояния до места короткого замыкания. Технический результат: повышение точности определения места повреждения, что обусловлено учетом действительных параметров линии электропередачи, т.е. ее распределенной емкости, индуктивности и текущего активного сопротивления. 3 н. и 1 з.п. ф-лы.

Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги переменного тока при двухстороннем питании и числе электрифицированных путей два и более для определения удаленности места короткого замыкания. Сущность: в момент короткого замыкания измеряют токи на смежных тяговых подстанциях соответственно, питающих контактную сеть межподстанционной зоны с коротким замыканием, и значение тока присоединения на тяговой подстанции , питающего контактную сеть того пути, на котором произошло короткое замыкание. Дополнительно измеряют значение тока присоединения на тяговой подстанции, питающего в этой межподстанционной зоне неповрежденную контактную сеть любого другого пути. Определяют расстояние до места повреждения путем реализации вычислительного алгоритма в виде соответствующего математического выражения. 3 н.п. ф-лы, 1 ил.

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля. заявленный способ оптического контроля состояния изолирующей конструкции, находящейся под напряжением, включает подключение к участку изолирующей конструкции электрического светового излучателя, яркость свечения которого зависит от падения напряжения на его электродах, регистрацию светового излучения, определение дефекта по интенсивности свечения излучателя. При этом для повышения достоверности дополнительно регулируют чувствительность излучателя путем подбора размеров электродов, включения подстроечного токоограничивающего резистора и изменения положения электродов в пространстве. Для индикации наличия электрических разрядов дополнительно к электронам индикатора подключают катушку индуктивности. Технический результат - повышение надежности и достоверности контроля состояния изолирующих конструкций. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги переменного тока на многопутных участках для определения удаленности короткого замыкания в контактной сети при двухстороннем питании. Сущность изобретения: измеряют токи смежных тяговых подстанций, питающих межподстанционную зону с коротким замыканием контактной сети одного из путей, ток присоединения, питающего контактную сеть этого пути, и вычисляют расстояния до места повреждения контактной сети по соответствующим формулам. Технический результат: расширение области применения на участки с числом электрифицированных путей два и более. 2 н.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения угла между напряжениями и токами по концам линии при несинхронизированных замерах с двух ее концов и для уточнения места короткого замыкания на линиях электропередачи за счет выполнения расчетной синхронизации замеров с двух ее концов. Технический результат изобретения заключается в повышении точности определении места повреждения, который достигается за счет учета действительных и мнимых составляющих комплексных величин токов и напряжений путем расчетной синхронизации их по концам линии. Синхронизация выполняется путем поворачивания векторов комплексных величин токов и напряжений на одном из концов линии на угол, полученный расчетным путем. 3 ил.
Наверх