Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах



Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах
Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах
Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах

 


Владельцы патента RU 2593445:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к области измерительной техники и касается устройства для измерения излучательной способности материалов. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель, спектрометр, компьютер и модель черного тела. При этом в нагревателе на равном расстоянии от оси вращения расположены датчик теплового потока, термопарные датчики и охлаждаемая трубка, верхний торец которой расположен на расстоянии, равном 0.3-0.5 расстояния от поверхности образца до нагревателя, а за нижним торцом трубки установлено плоское зеркало для вывода излучения к спектрометру через оптическое окно в вакуумной камере. Технический результат заключается в обеспечении возможности проведения измерений при температурах выше 1000 К. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано при оптико-физических исследованиях теплозащитных материалов при высоких температурах.

Известно устройство для измерения спектральных коэффициентов инфракрасного излучения, содержащее вакуумную камеру, исследуемый образец, монохроматор и приемник излучения (патент РФ №2339921, МПК G01J 5/00, 2006). Устройство предназначено для измерения спектральной излучательной способности электропроводящих материалов и материалов с высокой теплопроводностью.

Это устройство не позволяет измерять излучательную способность теплозащитных материалов при высоких температурах.

Известно устройство для измерения излучательной способности теплозащитных материалов при высоких температурах, содержащее вакуумную камеру, радиационный нагреватель с расположенным в нем датчиком тепловых потоков и механизм вращения исследуемого образца (Л.Я. Падерин, Б.В. Прусов, О.Д. Токарев. «Установка для исследования интегральной полусферической излучательной способности теплозащитных материалов и терморегулирующих покрытий». Ученые Записки ЦАГИ, т. XLII, №1, 2011, стр. 53-61). Устройство обеспечивает измерение при высоких температурах интегральной полусферической излучательной способности теплозащитных материалов, но не позволяет измерять спектральную излучательную способность материалов.

Задачей и техническим результатом настоящего изобретения является создание устройства, позволяющего измерять спектральную излучательную способность теплозащитных материалов при температурах выше 1000 К.

Решение задачи и указанный технический результат достигаются тем, что в устройстве для измерения спектральной излучательной способности теплозащитных материалов при высоких температурах, содержащем вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель с расположенным в нем датчиком тепловых потоков, спектрометр, компьютер и модель черного тела, в нагревателе на равном расстоянии от оси вращения расположены датчик теплового потока, термопарные датчики и охлаждаемая трубка, верхний торец которой расположен на расстоянии, равном 0.3-0.5 расстояния от поверхности образца до нагревателя, а за нижним торцом трубки установлено плоское зеркало для вывода излучения к спектрометру через оптическое окно в вакуумной камере.

На фиг.1 представлена оптическая схема устройства.

Фиг. 2 - вид сверху на омический нагреватель (при отсутствии испытываемого образца и механизма вращения).

Устройство (фиг. 1) содержит вакуумную камеру 1, омический нагреватель 2 с расположенным на нем термопарным датчиком 3 и датчиком теплового потока 4, механизм вращения образца 5, образец 6, термопарный датчик 7, расположенный в зазоре между исследуемым образцом и нагревателем, охлаждаемую трубку 8 для вывода собственного излучения образца, плоское зеркало 9, оптическое окно 10, перекидное зеркало 11, оптическое окно 12, плоское зеркало 13, спектрометр 14 с компьютером 16 и модель черного тела 15.

На фиг. 2 видно взаимное расположение на равном расстоянии от оси вращения термопарного датчика 3, датчика теплового потока 4, охлаждаемой трубки 8, установленных на омическом нагревателе, и термопарного датчика 7, расположенного в зазоре между исследуемым образцом и нагревателем.

Исследуемый образец материала устанавливается на узле крепления механизма вращения 5. Механизм вращения 5 служит для устранения возможной неравномерности температурного поля образца 6 из-за наличия в нагревателе 2 зон, занятых датчиком теплового потока 4 и трубкой 8.

Собственное излучение образца 6 выводится из вакуумной камеры 1 через оптическое окно 10. Потери, связанные с поглощением излучения в окне 10, учитываются при сравнении исследуемого излучения и излучения от модели черного тела 15 за счет установки симметрично относительно перекидного зеркала 11 оптического окна 12.

Измеренные сигналы анализируются в компьютере 16. Компьютер 16 обеспечивает автоматизацию процесса измерения излучательной способности материалов.

Трубка 8 обеспечивает вывод потока собственного излучения и его диафрагмирование для согласования с апертурой спектрометра 14 и модели черного тела 15.

Расположение верхнего торца трубки 8 вблизи поверхности образца 6 на расстоянии, равном 0.3-0.5 расстояния от поверхности образца до нагревателя, позволяет выводить через нее поток собственного излучения образца, отсекая потоки переизлучения.

Определение спектральной излучательной способности теплозащитных материалов основано на сравнении монохроматических энергий излучения образца и модели черного тела при равных температурах.

Измерения заключаются в фиксировании интегрального потока собственного излучения образца и спектров излучения образца и модели черного тела.

Процедура измерений состоит в следующем.

После выхода устройства на стационарный тепловой режим, фиксируемый температурными датчиками 3 и 7, образец 6 приводится во вращение и с помощью датчика 4 измеряется плотность собственного теплового потока. По результатам этих измерений по следующей зависимости, полученной из рассмотрения лучистого теплообмена между образцом 6 и нагревателем 2, вычисляется температура образца То

где q - плотность собственного излучения образца;

σ - постоянная Стефана-Больцмана;

Т3, Т7 - температуры, фиксируемые термопарами 3 и 7;

ε2 - интегральная полусферическая излучательная способность поверхности нагревателя.

По вычисленной температуре образца выставляется температура модели черного тела и затем измеряется спектр излучения образца и с помощью перекидного зеркала 11 - спектр излучения модели черного тела.

Излучательная способность ελ вычисляется по следующей зависимости

где Nλo - сигнал от приемника спектрометра при измерении излучения образца;

Nλmt - сигнал от приемника спектрометра при измерении излучения модели черного тела;

Nλp - сигнал от приемника спектрометра при измерении поглощения излучения оптическим стеклом окна вакуумной камеры.

Поглощательная способность Nλp=f(λ) оптического стекла окна вакуумной камеры определяется в предварительных испытаниях.

Предлагаемое устройство позволяет измерять излучательные характеристики материалов в важном для практики диапазоне температур вплоть до 2000 К.

Устройство для измерения спектральной излучательной способности материалов, содержащее вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель с расположенным в нем датчиком тепловых потоков, спектрометр, компьютер и модель черного тела, отличающееся тем, что в нагревателе на равном расстоянии от оси вращения расположены датчик теплового потока, термопарные датчики и охлаждаемая трубка, верхний торец которой расположен на расстоянии, равном 0.3-0.5 расстояния от поверхности образца до нагревателя, а за нижним торцом трубки установлено плоское зеркало для вывода излучения к спектрометру через оптическое окно в вакуумной камере.



 

Похожие патенты:

Изобретение относится к области создания детекторов излучения и касается фотоприемника ик-излучения с диафрагмой. Фотоприемник содержит держатель, фоточувствительный элемент, приклеенный на растре, и диафрагму.

Изобретение относится к области оптико-электронных приборов и касается пироэлектрического преобразователя электромагнитных волн. Пироэлектрический преобразователь включает в себя теплоизолированную пластину пиродиэлектрика с проводящими тонкопленочными обкладками на противоположных поверхностях пластины, подключенными к измерителю электрического сигнала.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры в расплавах, в особенности в расплавах металла или криолита с точкой плавления выше 600оС с температурным сенсором.

Изобретение относится к области оптоэлектроники, к конструкциям тепловых многоэлементных приемников, предназначенных для регистрации пространственно-энергетических характеристик импульсного и непрерывного лазерного излучения.

Изобретение относится к способу и устройству для точного бесконтактного определения температуры Т металлического расплава (2) в печи (1), которая содержит по меньшей мере один блок (3) горелки-копья, который направляется над металлическим расплавом (2) через стенку (1b) печи в печное пространство (1а).

Изобретение относится к способу измерения параметра ванны расплава с помощью оптического волокна, окруженного покрытием. .

Изобретение относится к области приборостроения, а именно к оптическим устройствам и приборам теплового контроля, используемым в металлургии. .

Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения электромагнитного излучения, в частности к охлаждаемым полупроводниковым приемникам инфракрасного излучения.
Наверх