Сканирующий многоволновой лидар для зондирования атмосферных объектов



Сканирующий многоволновой лидар для зондирования атмосферных объектов
Сканирующий многоволновой лидар для зондирования атмосферных объектов

 


Владельцы патента RU 2593524:

Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (RU)

Сканирующий многолучевой лидар содержит оптическую приемную систему, в которой используется зеркальный объектив, вторичное зеркало которого выполнено в виде зеркально-линзового компонента, за которым на оптической оси телескопа установлены дополнительная положительная линза и ТВ-камера. Зеркально-линзовый компонент имеет зеркальное покрытие в центральной зоне и выполняет функцию вторичного зеркала в приемной системе лидара, а кольцевая периферийная зона зеркально-линзового компонента с просветляющим покрытием работает как преломляющая линза и совместно с положительной линзой фокусирует изображение на телевизионную матрицу ТВ-камеры. ТВ-камера установлена на подвижке, позволяющей двигать ее вдоль оптической оси телескопа для осуществления фокусировки изображения при различных расстояниях до объекта. Технический результат заключается в обеспечении работы многоволнового лидара с непрерывным контролем за изображением окружающего исследуемый объект пространства с одновременным наблюдением объекта и регистрацией отраженного от него лидарного сигнала с минимизацией энергетических потерь, вызванных прохождением сигнала через оптические компоненты приемной системы лидара. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к технике лазерного зондирования и может быть использовано для создания систем контроля наведения лидара (лазерного локатора) на определенный объект в приемных зеркальных системах в лазерной дальнометрии, в оптической локации и в дистанционном лазерном зондировании.

Для дистанционного лазерного зондирования важной является задача точного наведения лазерного излучения на определенный исследуемый объект. Задача системы наведения состоит, с одной стороны, в обеспечении доставки лазерного излучения от источника излучения в нужную область пространства, а с другой стороны, в создании условия для получения рассеянно-отраженного излучения фотоприемниками, установленными в приемной системе лидара. Обычно у лидаров приемная система состоит из зеркального объектива либо из телескопической зеркальной или линзовой системы с дополнительным объективом, в фокальной плоскости которого расположен фотоприемник. Наведение на исследуемый объект осуществляется вращением платформы с одним или двумя сканирующими зеркалами, а выбор границ исследуемого пространства или объекта осуществляется с помощью дополнительного визира, состоящего из объектива и телевизионной камеры (ТВ-камеры). В телескопах наведение на исследуемый объект осуществляется при помощи визира-гида, установленного рядом с объективом телескопа. В сканирующих лидарных системах телевизионные визиры устанавливаются на поворотной колонке лидара, позволяющей совместить оптическую ось приемной системы лидара и телевизионного визира в определенной точке пространства [Балин Ю.С., Ершов А.Д., Коняев П.А., Ломакин Д.С. Контроль скорости перемещения атмосферных аэрозольных образований с использованием видео- и лидарной информации // Оптика атмосферы и океана. 2004. Т. 17. №12. С. 996-1002]. При работе с телескопом исследуемые объекты находятся на значительных расстояниях от телескопа, поэтому можно разместить визир-гид смещенным параллельно относительно приемной системы лидара, а при лидарных исследованиях расстояние до объектов наблюдения меняется от 200 м до 30 км, что приводит к неконтролируемому смещению изображения относительно центра лазерного пучка, вызванного несоосным расположением оптической оси приемной системы лидара и оптической осью визира.

В лидарном комплексе [Козырев А.В., Шаргородский В.Д. Лидарный комплекс контроля загрязнения воздуха. Патент Российской Федерации №2022251, дата публикации 30.10.1994] используется телевизионный визир, изображение на котором формируется с помощью поворотного зеркала, вводящегося в приемный канал лидара при необходимости, что обеспечивает совмещение оптических осей визира и системы приема лидара. Однако недостатком данного схемного решения является невозможность одновременно наблюдать объект и регистрировать лидарный сигнал, приходящий от него.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому эффекту является лидарный мобильный комплекс [Волков В.Г. Методы сопряжения лидара с приборами ночного видения // Межотраслевой научно-технический журнал "Оборонный комплекс - научно-техническому прогрессу России". 2011. №.2. С. 27-31], включающий в себя сканирующую систему наведения, лазерный источник излучения, приемную линзовую телескопическую систему, которая сопрягает излучение с помощью дихроичного зеркала, расположенного под углом 45° к оптической оси телескопической приемной системы, с последующей системой регистрации лидарных сигналов, а также канал телевизионного визирования, расположенный за дихроичным зеркалом на оптической оси приемной линзовой телескопической системы лидара, содержащий объектив, формирующий изображений объекта на матрицу ТВ-камеры. Схемное решение данного лидарного комплекса позволяет одновременно наблюдать за исследуемым объектом и регистрировать отраженный от него лидарный сигнал, однако недостатками такого схемного решения является то, что при работе лидара в многоволновом режиме приемная линзовая телескопическая система вносит хроматические аберрации, и дихроичное зеркало отражает только 75% излучения на рабочих длинах волн лидара, что приводит к ослаблению лидарного сигнала.

Целью изобретения является обеспечение работы многоволнового лидара с непрерывным контролем за изображением окружающего исследуемый объект пространства с одновременным наблюдением объекта и регистрацией отраженного от него лидарного сигнала с минимизацией энергетических потерь, вызванных прохождением сигнала через оптические компоненты приемной системы лидара.

Цель достигается тем, что в оптической приемной системе лидара используется зеркальный объектив, вторичное зеркало которого выполнено в виде зеркально-линзового компонента, за которым на оптической оси телескопа установлены дополнительная положительная линза и ТВ-камера. Зеркально-линзовый компонент имеет зеркальное покрытие в центральной зоне и выполняет функцию вторичного зеркала в приемной системе лидара, а кольцевая периферийная зона зеркально-линзового компонента с просветляющим покрытием работает как преломляющая линза и совместно с положительной линзой фокусирует изображение на телевизионную матрицу ТВ-камеры. ТВ-камера установлена на подвижке, позволяющей двигать ее вдоль оптической оси телескопа для осуществления фокусировки изображения при различных расстояниях до объекта.

На фиг. 1 изображена оптическая схема лидара (механическая сканирующая система, на которой устанавливается лидар, не изображена), где 1 - лазерный передатчик, 2 - первичное зеркало приемного телескопа, 3 - зеркально-линзовый компонент, 4 - диафрагма, 5 - линза, 6 - фотоприемник, 7 - система регистрации, 8 - положительная линза, 9 - ТВ-камера.

Устройство работает следующим образом: излучение лазерного передатчика (1) направляется в атмосферу, обратно рассеянное объектом излучение принимается зеркальным телескопом, состоящим из первичного зеркала (2) и вторичного зеркала (3), и фокусируется в плоскости диафрагмы (4), определяющей поле зрения лидара. Затем с помощью линзы (5) направляется на фотоприемник (4), сигнал с которого записывается системой регистрации (5). В многоволновых лидарах вместо линзы (5) может использоваться более сложная зеркально-линзовая система разделения принимаемого излучения по длинам волн.

Контроль за наведением лазерного пучка на исследуемый объект осуществляется с помощью оптического визира, размещенного за вторичным зеркалом телескопа и имеющего угол поля зрения больший, чем угол поля зрения приемной системы лидара, что позволяет видеть изображение окружающего исследуемый объект пространства. Визир состоит из положительной линзы (8) и ТВ-камеры (9) и установлен на оптической оси приемной системы лидара за вторичным зеркалом (3). Возможность размещения телевизионного визира за вторичным зеркалом обеспечена усовершенствованием конструкции вторичного зеркала телескопической приемной системы лидара, что является отличительной особенностью схемного решения данного изобретения. Вторичное зеркало выполнено как зеркально-линзовый компонент (3) (фиг. 2). Центральная область этого компонента (D) имеет отражающее покрытие и обеспечивает отражение светового пучка в канал приема (т.е. выполняет функцию вторичного зеркала), а кольцевая периферийная часть зеркально-линзового компонента с просветляющим покрытием работает как линзовый компонент, преломляя световой пучок, и совместно с положительной линзой (6) фокусирует изображение исследуемого пространства на приемную матрицу ТВ-камеры (6). Зеркально-линзовый компонент и положительная линза рассчитаны при условии минимизации хроматических и монохроматических аберраций. Подфокусировка ТВ-камеры при наблюдении за объектами, расположенными на разных расстояниях, осуществляется линейным перемещением камеры вдоль оптической оси телескопа.

Предложенное схемное решение осевого телевизионного визира, совмещенного с приемной системой лидара, можно использовать не только в рассмотренной приемной телескопической системе Кассегрена, но и в зеркальных системах Мерсена, Ричи-Кретьена, Несмитта и других модифицированных зеркальных схемах телескопов.

Преимущество изобретения состоит в том, что в предложенном схемном решении отсутствует дихроичное зеркало, вызывающее ослабление лидарного сигнала. Отсутствуют механические прогибы между креплениями визира и приемной системой лидара. При осевом размещении визира на оптической оси приемной системы лидара изображение для визира строят сами компоненты приемной системы лидара вместе с компонентами визира, что значительно облегчает юстировку системы наведения и приемной системы лидара. Обеспечивается непрерывный контроль за изображением окружающего исследуемый объект пространства с одновременным наблюдением объекта и регистрацией лидарного сигнала, отраженного от него.

1. Сканирующий многоволновой лидар для зондирования атмосферных объектов, включающий сканирующую приемо-передающую систему, лазерный источник излучения, приемный оптический телескоп с видеокамерой, оптическая ось которой совмещена с оптической осью телескопа, на выходе которого расположен фотоприемник, электрически связанный с входом системы регистрации лидарных сигналов, отличающийся тем, что приемный телескоп выполнен в виде зеркального объектива, при этом оптическая система фокусировки изображения на видеокамере состоит из оптически связанного зеркально-линзового компонента и положительной линзы, причем зеркально-линзовый компонент имеет зеркальное покрытие в центральной зоне и выполняет функцию вторичного зеркала в телескопе лидара, а кольцевая периферийная зона зеркально-линзового компонента с просветляющим покрытием работает как преломляющая линза и совместно с положительной линзой фокусирует изображение на видеокамеру.

2. Устройство по п. 1, отличающееся тем, что телевизионная камера закреплена на линейной подвижке, имеющей возможность перемещаться вдоль оптической оси, тем самым осуществляя фокусировку изображения объекта при наведении лидара на разные расстояния.



 

Похожие патенты:

Способ когерентного сложения включает в себя разделенное на каналы лазерное излучение, направленное на соответствующие каналам фазовые модуляторы. После прохождения фазовых модуляторов все каналы выставляют параллельно друг другу, при этом волновой фронт в каждом канале делают плоским.

Система содержит объектив, формирующий промежуточное изображение в промежуточной плоскости фокусировки, фильтр изображения, содержащий маску с отверстиями в промежуточной плоскости фокусировки; матрицу микролинз, параллельную промежуточной плоскости фокусировки; оптическую систему сопряжения, формирующую изображение матрицы микролинз в плоскости съемки изображения; и матрицу детектирования изображения, содержащую фоточувствительные элементы в плоскости съемки изображения.

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП).

Изобретение относится к области светотехники. Техническим результатом является повышение мощности.

Изобретение относится к области оптического приборостроения и касается оптического лучевого делителя. Оптический лучевой делитель представляет собой сборную дихроидную призму и выполнен в виде склейки нескольких прозрачных призм.

Печатное изделие содержит подложку, имеющую верхнюю поверхность и нижнюю поверхность; слой графического изображения, содержащий множество изображений, напечатанных по меньшей мере на одной поверхности подложки; и множество многоугольных линз, напечатанных по меньшей мере на одной поверхности подложки поверх слоя графического изображения, причем многоугольные линзы являются бесцветными увеличивающими выпуклыми линзами, при этом печатные линзы имеют высоту между 0,0001 и 0,005 дюйма, ширину между 0,0005 и 0,01 дюйма при виде сверху и расстояние между линзами между 0,0005 и 0,01 дюйма.

Изобретение относится к области лазерной техники и может быть использовано для создания пучков когерентного излучения с высокой плотностью мощности. .

Изобретение относится к лазерной технике, а именно к сумматорам оптического излучения, например, полупроводниковых лазеров, и может быть использовано для усиления мощности лазерного излучения в волоконно-оптических линиях связи, сетях, информационно-измерительных системах, технологическом оборудовании, в бытовых приборах, медицине, системах опознавания и наведения, для охраны объектов от посторонних и пожара, лазерном оружии и т.п.

Способ наведения на удаленный объект электромагнитного излучения, основанный на формировании в материальной среде излучения с заданной в направлении объекта диаграммой направленности с длиной волны λ0 длительностью импульса τ0 и одновременным пропусканием в пределах сформированной диаграммы направленности в направлении объекта когерентного излучения с длиной волны λ1 и длительностью τ1<τ0.

Изобретение относится к лазерным локационным системам и может быть использовано для распознавания замаскированных малозаметных наземных объектов (MHO) с борта пилотируемого или беспилотного летательного аппарата (ЛА).

Лазерное приемное устройство, которое может быть использовано в качестве приемного устройства для лазерной локационной системы и системы лазерной космической связи, основано на сверхрегенеративном приеме лазерных сигналов локации и связи в оптическом диапазоне, что позволяет реализовать приемное устройство, обладающее предельной квантовой (однофотонной) чувствительностью и одновременно высокой помехозащищенностью приема лазерных сигналов.

Способ определения пространственного положения объектов обеспечивает облучение объекта через двумерную дифракционную решетку, что обеспечивает образование матрицы смежных оптических каналов.

Лазерный локатор содержит систему автоматического слежения и управления согласованием волновых фронтов принимаемого и гетеродинного лазерных излучений в плоскости фоточувствительной площадки фотоприемного блока лазерного локатора.

Изобретение относится к измерительной технике и может найти применение в системах позиционирования транспортных средств. Технический результат - расширение функциональных возможностей.

Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных данных.

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты.

Изобретение относится к устройству для автоматического определения высоты и вертикальной скорости летательного аппарата. Устройство содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и измеритель дальности.

Изобретение относится к способу определения высоты и вертикальной скорости летательного аппарата. Способ включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, образующим ячейки дальности, и статистическую обработку зарегистрированных данных.
Наверх