Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку перемычки (абсорбера) из нормального металла или другого сверхпроводника, при этом этот слой перемычки наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм. Технический результат: обеспечение возможности повышения воспроизводимости многоэлементных интегральных сверхпроводниковых схем, снятия ограничения на форму площади переходов, толщину верхнего электрода, устранения паразитных закороток. 4 н.п. ф-лы, 1 ил.

 

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности, к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник - изолятор - сверхпроводник (СИС и СИСИС), структур сверхпроводник - изолятор - нормальный металл (СИН и СИНИС), болометров на холодных электронах, Андреевских интерферометров.

Известен способ-аналог: изготовление СИС туннельного перехода с разрывом вакуума [1]. По этому способу т.н. раздельной технологии выполняют следующие операции: выполняют обратную литографию, наносят первый слой металла, взрывают фоторезист, делают вторую литографию, чистку, окисление, нанесение верхней пленки металла, взрыв резиста. Недостатком аналога является низкое качество туннельного барьера за счет разрыва вакуума перед нанесением верхнего слоя туннельного перехода и необходимость проведения как минимум двух операций фото- или электронной литографии с необходимостью совмещения слоев.

Известен способ-аналог:

изготовление сверхпроводниковых туннельных переходов и одноэлектронных транзисторов теневым напылением под двумя углами через подвешенную маску из электронного резиста для уменьшения количества этапов литографии. Метод теневого напыления под разными углами через подвешенную двухслойную маску, сформированную с помощью электронно-лучевой литографии, впервые был предложен в 1977 году G.J. Dolan [2]. В этой технологии двухслойная маска используется для напыления под разными углами двух слоев металла и формирования трехслойной структуры сверхпроводник - изолятор - сверхпроводник. Окисление нижнего слоя алюминия в процессе изготовления позволяет получить, в частности, джозефсоновские туннельные переходы высокого качества. В случае, если нижний слой представляет собой нормальный металл, а верхний напыляют без окисления, образуется т.н. андреевский контакт. По этой методике можно изготавливать переходы размером 0.1 мкм и меньше.

Метод позволяет обойтись одним этапом литографии вместо двух как в предыдущем случае.

Известен способ-прототип:

технология изготовления СИС трехслойной структуры Гурвича, которая формируется без разрыва вакуума через окно в фоторезисте [3]. Это наиболее распространенная технология получения высококачественных туннельных переходов напылением без разрыва вакуума, в которой после напыления первого слоя металла производят его оксидирование в той же камере в атмосфере кислорода при определенном давлении, затем продолжают откачку и наносят второй слой пленки металла. Существенным усложнением является необходимость дополнительного анодного окисления торцов пленок ниобия для устранения закороток на краях пленок. Также недостатком является необходимость напылять достаточно толстые пленки последующих слоев металлов, чтобы избежать разрывов на краях предыдущих слоев. Этот способ достаточно хорошо зарекомендовал себя при изготовлении ниобиевых переходов, однако неприменим для алюминиевых структур, поскольку стандартные фоторезисты проявляются в щелочных проявителях, растворяющих алюминий.

Для формирования туннельных переходов по способу-прототипу

1) наносят без разрыва вакуума на всю подложку трехслойную структуру, состоящую из нижнего слоя сверхпроводника, обычно ниобия, тонкого слоя алюминия, который затем окисляют для формирования туннельного барьера толщиной 1-1.2 нм, верхнего слоя сверхпроводника, обычно ниобия,

2) наносят слой фоторезиста и запекают его,

3) проводят экспозицию с использованием фотолитографии для формирования нижнего электрода,

4) проявляют резист,

5) селективно химически стравливают всю трехслойную структуру вне области нижнего электрода),

6) проводят вторую литографию для формирования области туннельного перехода аналогично пп. 2, 3, 4,

7) проводят селективное травление верхнего слоя ниобия,

8) проводят анодное оксидирование открытых торцов пленок ниобия,

9) формируют соединительные проводники к верхнему электроду в третьем слое литографии с нанесением пленки проводников и ее удалением вне экспонированной области методом взрыва (обратная литография).

Технология создания высококачественных туннельных переходов требуется для одноэлектронных устройств [4], для электронных охладителей структуры сверхпроводник - изолятор - нормальный металл (СИН) [5], СИНИС болометров на холодных электронах [6], использующих прямое электронное охлаждение абсорбера. Для применений, использующих электронное охлаждение, требуются переходы относительно большой площади, тогда как классическая технология теневого напыления по способу-аналогу ограничена площадью перехода менее 1 мкм2, что определяется перехлестом напыляемых пленок, расположенных под подвешенным мостиком из фоторезиста. Также для болометров и охладителей требуется наносить слой нормального металла малой толщины, что противоречит требованию увеличения толщины последующих слоев для классической планарной технологии с целью избегания разрывов пленок последующих слоев.

Перечисленные приложения в случае серийного промышленного производства требуют применения современных методов магнетронного напыления и оптической литографии для снятия ограничения по площади, устранения паразитных теней, сохранения высокого качества туннельного барьера. Применение модифицированных методов теневого термического напыления в способах-аналогах, например метода изготовления самосовмещенных туннельных переходов большой площади [7, 8], не позволяет получить высокой степени воспроизводимости структур, а сам метод не является технологичным для серийного производства.

Недостатками аналогов являются ограничение площади перехода размером подтрава нижнего слоя резиста, что не позволяет получить туннельные переходы шире 0.2-0.3 мкм, и образование паразитных теней параллельно узкому слою нижнего электрода. Эти недостатки приводят к появлению паразитной шунтирующей емкости и паразитного сопротивления утечки. Недостатком прототипа является то, что в качестве материала абсорбера в СИНИС структурах используется тот же металл, что и для нормального электрода, тогда как для согласования импедансов необходимо иметь возможность варьировать удельное сопротивление абсорбера. Существенным недостатком прототипа является необходимость напылять толстые пленки верхнего нормального металла, что снижает чувствительность болометров и ухудшает характеристики электронного охлаждения.

Нами разработан способ изготовления высококачественных тонкопленочных туннельных переходов произвольной площади методом модифицированного трехслойной структуры с последующей планаризацией поверхности.

Целью предлагаемого изобретения является повышение воспроизводимости многоэлементных интегральных сверхпроводниковых схем, формирование произвольной формы высококачественных туннельных переходов, снятие ограничения на форму и площадь переходов, толщину верхнего электрода, снятие ограничения на применение одного металла для различных элементов нормального электрода, устранение паразитных закороток на торцах пленок без дополнительной анодизации структур, планаризация формируемой структуры, устранение ограничения на уменьшение толщины верхнего электрода.

Сущность изобретения поясняется чертежом на Фиг. 1, где приведено сечение слоев тонких пленок в последовательности их нанесения:

A. Подложка (1) и слой соединительных проводников (2).

B. То же, и трехслойная структура (3) после травления через маску фоторезиста.

C. То же, с дополнительным слоем изолятора (4) для планаризации структуры.

D. То же, с тонкопленочной перемычкой (5) между верхними электродами.

Предлагаемый способ изготовления устройств по п. 1 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - изолятор - нормальный металл (СИН) и сверхпроводник - изолятор - сверхпроводник (СИС), состоящими из двух слоев металла, разделенных туннельным переходом, характеризуется следующей последовательностью операций (см. Фиг. 1A-D):

1) На подложке (1) поверх сформированных соединительных проводников и контактных площадок (2), (Фиг. 1А) в едином цикле без разрыва вакуума наносят трехслойную структуру (3), состоящую из нижней пленки сверхпроводникового алюминиевого электрода, туннельного барьера толщиной 1-1.2 нм и верхней пленки нормального металла или сверхпроводника, в итоге получают трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН) или СИС.

2) Наносят фоторезист и запекают его для последующего формирования маски диэлектрика.

3) Проводят экспозицию с использованием фотолитографии с формированием топологии нижнего электрода.

4) Проявляют резист.

5) Проводят сквозное ионное травление всей трехслойной структуры (Фиг. 1В).

6) В открытые области наносят слой изолятора (4) толщиной, равной толщине удаленной трехслойной структуры.

7. Взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С).

8. Дополнительным этапом обратной (взрывной) фотолитографии и магнетронным распылением формируют перемычку из тонкой пленки нормального металла (5), в том числе другого, или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СИН структуры, с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода СИН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СИН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Предлагаемый способ изготовления устройств по п. 3 формулы изобретения с тонкопленочными сверхпроводниковыми андреевскими переходами структуры сверхпроводник - андреевский контакт - нормальный металл (САН), состоящими из сверхпроводящего и нормального металлов с андреевским контактом между ними, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А) в едином цикле без разрыва вакуума наносят тонкопленочную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, и пленку верхнего электрода нормального металла (например, палладия или гафния), между которыми образуется андреевский контакт сверхпроводник - нормальный металл, в итоге получают трехслойную структуру сверхпроводник - андреевский контакт - нормальный металл (САН),

2) наносят фоторезист и запекают его,

3) проводят экспозицию с использованием фото- или электронной литографии с формированием топологии нижнего электрода,

4) проявляют резист,

5) проводят сквозное травление всей трехслойной структуры (Фиг. 1В),

6) в открытые области наносят слой изолятора (4) толщиной, равной толщине удаленной трехслойной структуры,

7) взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С),

8 )формируют перемычку из тонкой пленки нормального металла (5), или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной САН структуры с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода САН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя САН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров и андреевских интерферометров.

Предлагаемый способ изготовления устройств по п. 3 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - полупроводник (супер-Шоттки), состоящими из сверхпроводникового и полупроводникового электродов с барьером Шоттки на границе, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А), в едином цикле без разрыва вакуума наносят тонкопленочную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, и верхнего полупроводникового электрода, между которыми формируется область с барьером Шоттки, в итоге получают трехслойную структуру сверхпроводник - барьер Шоттки - полупроводник СШП,

2) наносят фоторезист и запекают его,

3) проводят экспозицию с использованием фото- или электронной литографии с формированием топологии нижнего электрода,

4) проявляют резист,

5) проводят сквозное травление всей трехслойной СШП структуры (Фиг. 1В),

6) в открытые области наносят слой диэлектрика (4) толщиной, равной толщине удаленной трехслойной структуры,

7) взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С),

8) формируют перемычку из тонкой пленки нормального металла (5), в том числе другого, или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СШП структуры, с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода СШП структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СШП переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Предлагаемый способ изготовления устройств по п. 4 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - изолятор - нормальный металл (СИН) и сверхпроводник - изолятор - сверхпроводник (СИС), состоящими из двух слоев металла, разделенных туннельным переходом, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А) наносят резист, запекают, экспонируют, проявляют для получения рисунка нижнего электрода,

2) в едином цикле без разрыва вакуума наносят трехслойную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, туннельного барьера толщиной 1-1.2 нм и пленки верхнего электрода нормального металла или сверхпроводника, в итоге получают трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН) или СИС,

3) взрывают резист с удалением трехслойной структуры вне области нижнего электрода (Фиг. 1В),

4) наносят резист и проводят экспозицию с освещением через обратную сторону прозрачной подложки (либо засветку негативного резиста со стороны резиста),

5) проявляют резист, который остается в областях, покрытых пленками, и отсутствует в промежутках,

6) проводят напыление изолятора (4) толщиной, равной толщине трехслойной структуры, для планаризации поверхности между пленками,

7) взрывают резист с удалением изолятора из областей поверх металлических пленок (Фиг. 1С),

8) проводят последний этап литографии с напылением резистивного мостика (5) между туннельными СИН переходами (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СИН структуры, с использованием самосовмещенной фотомаски, что позволяет снизить толщину верхнего электрода СИН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СИН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Физический механизм достижения целей изобретения заключается в применении планаризации рельефа поверхности после нанесения трехслойной структуры, применении оптической литографии вместо электронной и магнетронного распыления вместо термического напыления. В способе-прототипе туннельные переходы требуют дополнительной анодизации для формирования окисла на торцах, имеют большую паразитную емкость подводящих проводников, не позволяют существенно уменьшать толщину верхней пленки абсорбера, а в предлагаемом способе за счет выбора материалов сверхпроводника и нормального металла и применения планаризации пленкой диэлектрика удается избавиться от необходимости анодизации, уменьшить паразитную емкость верхнего электрода, сократить объем абсорбера за счет уменьшения толщины пленки верхнего электрода. Перемычка между туннельными переходами может быть выполнена из другого материала, отличающегося от верхнего электрода трехслойной структуры. Для исключения операции травления трехслойной структуры в качестве второго варианта, вместо прямой литографии после нанесения трехслойной структуры, проводят обратную литографию с нанесением резиста, его экспозицией и проявлением до нанесения трехслойной структуры (п. 4 формулы изобретения). Затем проводят обратную литографию (взрыв резиста), после чего наносят новый слой резиста, экспонируют через обратную сторону прозрачной подложки, либо со стороны резиста, проявляют и наносят слой диэлектрика для планаризации.

У авторов изобретения имеется положительный опыт изготовления описанных структур по п. 1 формулы изобретения. Были изготовлены СИНИС структуры с нижним алюминиевым электродом толщиной 50 нм, туннельным барьером толщиной 1-2 нм и верхним палладиевым электродом толщиной 10 нм. Особенностью технологии является применение специфического фоторезиста SU8, для которого используется бесщелочной проявитель, что позволяет избежать паразитного химического травления нижнего алюминиевого электрода в процессе проявления фоторезиста. У авторов имеется успешный опыт изготовления переходов с барьером Шоттки, который формируется на основе окисла титана в переходах титан - оксид титана - алюминий. У авторов имеется успешный опыт изготовления андреевских контактов по приведенной технологии в случае применения трехслойной САН структуры палладий - андреевский контакт - алюминий.

Технический результат предлагаемого решения состоит в достижении поставленных целей: повышении воспроизводимости, снижении трудоемкости и времени изготовления структур, увеличении площади туннельных переходов более 1 мкм2 при снижении толщины верхнего электрода и перемычки абсорбера менее толщины нижнего электрода, снятии ограничения на форму переходов, устранении паразитных теней, устранении паразитных шунтирующих емкостей и сопротивлений утечки, уменьшении количества технологических ступеней литографии.

Литература

1. Лапир Г.М., Комаровских Н.И., Электронная промышленность, №6, 64, 1973.

2. G.J. Dolan, Offset masks for lift-off photoprocessing, Appl. Phys. Lett. 31, 337-339 (1977).

3. W. Rothmund, H. Downar, P. Meisterjahn, et al., NbN-MgO-NbN Josephson junctions prepared by window isolation process, IEEE Trans. Appl. Supercond., v. 3, N 1, pp. 2208-2210 (1993).

4. L.S. Kuzmin, Yu.V. Nazarov, D.B. Haviland, P. Delsing and T. Claeson. "Coulomb Blocade and Incoherent Tunneling of Cooper Pair in Ultra-Small Junctions Affected by strong Quantum Fluctuations", Phys. Rev. Lett. Vol. 67, 1161 (1991).

5. M. Naum, Т.M. Eiles, and J. Martinis. Electron Microrefrigeration Based on a Normal Metal-Insulator-Superconductor Tunnel Junction.

6. L. Kuzmin D. Golubev, Appl. Phys. Lett.

7. United States Patent 6365912, Superconducting tunnel junction device, Booth, Norman Ewart (Oxford, GB), Ullom, Joel Nathan (Cambridge, MA), Nahum, Michael (Cambridge, MA)

8. United States Patent 6,593,065, Method of fabricating nanometer-scale flow channels and trenches with self-aligned electrodes and the structures formed by the same, Scherer, July 15, 2003.

1. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами, предусматривающий нанесение без разрыва вакуума трехслойной структуры сверхпроводник - изолятор - нормальный металл (СИН контакт); нанесение резиста, экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, отличающийся тем, что после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку перемычки (абсорбера) из нормального металла или другого сверхпроводника, при этом этот слой перемычки наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.

2. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами, предусматривающий нанесение без разрыва вакуума трехслойной структуры сверхпроводник - андреевский контакт - нормальный металл; нанесение резиста, экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, отличающийся тем, что после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку абсорбера из нормального металла, при этом этот слой абсорбера наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.

3. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами, предусматривающий нанесение без разрыва вакуума трехслойной структуры полупроводник - барьер Шоттки - нормальный металл; нанесение резиста, экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, отличающийся тем, что после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку абсорбера из нормального металла, при этом этот слой абсорбера наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.

4. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами, предусматривающий нанесение резиста, экспозицию, проявление; нанесение без разрыва вакуума трехслойной структуры сверхпроводник - изолятор - нормальный металл (СИН переход); удаление пленок вместе с резистом в неэкспонированных областях, отличающийся тем, что после взрывной литографии трехслойной структуры наносят новый слой резиста и проводят экспозицию освещением через обратную сторону прозрачной подложки (либо засветкой негативного резиста со стороны резиста), проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку абсорбера из нормального металла, при этом этот слой абсорбера наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.



 

Похожие патенты:

Использование: для получения многослойного высокотемпературного сверхпроводящего материала. Сущность изобретения заключается в том, что способ получения включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере, одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксида-гидроксида выбранного элемента или нерастворимой соли выбранного элемента в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, нанесение на буферный слой, по меньшей мере, одного эпитаксиального слоя сверхпроводникового материала и его термообработку, при этом после нанесения эпитаксиального оксидного буферного слоя осуществляют его обработку в переменном магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой 10-40 Гц в течение 100 и более секунд.

Использование: для формирования в сверхпроводящих тонких пленках областей с требуемыми значениями плотности критического тока. Сущность изобретения заключается в том, что способ формирования областей переменной толщины сверхпроводящей тонкой пленки методом лазерного распыления мишени YBa2Cu3O7-x, в котором между мишенью и подложкой располагают затеняющую пластину, затем воздействуют на мишень лазерным излучением плотностью мощности Ρ=(1÷2)·109 Вт/см2, длиной волны λ=1,06 мкм, длительностью импульса τ=10÷20 нс и частотой следования импульсов ν=10 Гц в течение времени t=175÷185 с, при температуре мишени Тм=600÷700°С, температуре подложки Тп=800÷840°С, расстоянии между подложкой и затеняющей пластиной L=0,1÷0,2 мм, при этом вне затеняющей пластины формируется сверхпроводящая пленка толщиной D2=160÷200 нм с плотностью критического тока j>106 А/см2, а под затеняющей пластиной формируется сверхпроводящая пленка толщиной D2=40-50 нм с плотностью критического тока j=(1÷5)·103 А/см2.
Изобретение относится к текстурированной подложке для выращивания на ней эпитаксиальной пленки оксидного сверхпроводящего материала для использования в различных типах электросилового оборудования.

Изобретение относится к сверхпроводникам и технологии их получения. Оксидный сверхпроводящий провод включает лентообразный оксидный сверхпроводящий слоистый материал 1, сформированный путем нанесения промежуточного слоя 4 на стороне передней поверхности металлической лентообразной подложки 3, оксидного сверхпроводящего слоя 5 на промежуточном слое 4 и защитного слоя 6 на оксидном сверхпроводящем слое 5, и покрытие, включающее металлическую ленту 2 и слой металла с низкой точкой плавления 7, при этом ширина металлической ленты 2 больше, чем ширина оксидного сверхпроводящего слоистого материала 1, и лента 2 закрывает поверхность защитного слоя 6 оксидного сверхпроводящего слоистого материала 1, обе боковые поверхности оксидного сверхпроводящего слоистого материала 1 и оба концевых участка 3а задней поверхности подложки 3 в поперечном направлении, причем оба концевых участка металлической ленты 2 в поперечном направлении закрывают оба концевых участка 3а задней поверхности подложки 3а, слой металла с низкой точкой плавления 7 заполняет щели между оксидным сверхпроводящим слоистым материалом 1 и металлической лентой 2, окружающей оксидный сверхпроводящий слоистый материал 1, и соединяет металлическую ленту 2 и оксидный сверхпроводящий слоистый материал 1 друг с другом, а часть 7с заполняющего слоя металла с низкой точкой плавления продолжается в область углубленного участка 2d, сформированного между обоими концевыми участками металлической ленты 2 в поперечном направлении.

Изобретение относится к пленкам с чрезвычайно низким сопротивлением (ЧНС-пленки). Способ улучшения рабочих характеристик пленки с чрезвычайно низким сопротивлением, содержащей материал с чрезвычайно низким сопротивлением (ЧНС-материал), имеющий кристаллическую структуру, включает: наслаивание модифицирующего материала на грань ЧНС-материала, которая не является по существу параллельной с-плоскости кристаллической структуры ЧНС-материала ЧНС-пленки, чтобы создать модифицированную ЧНС-пленку, при этом модифицированная ЧНС-пленка обладает улучшенными рабочими характеристиками по сравнению с ЧНС-пленкой без модифицирующего материала.

Изобретение относиться к способам формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники.

Использование: для изготовления провода, кабеля, намотки и катушки. Сущность изобретения заключается в том, что высокотемпературный сверхпроводящий ленточный провод с гибкой металлической подложкой содержит по меньшей мере один промежуточный слой, который расположен на гибкой металлической подложке, и который на стороне, противоположной гибкой металлической подложке, содержит террасы, причем средняя ширина террас меньше 1 мкм, а средняя высота террас больше 20 нм, и который содержит по меньшей мере один расположенный на промежуточном слое высокотемпературный сверхпроводящий слой, который расположен на по меньшей мере одном промежуточном слое и имеет толщину слоя более 3 мкм, причем допустимая токовая нагрузка высокотемпературного сверхпроводящего ленточного провода, отнесенная к ширине провода, при 77 K превышает 600 А/см.

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере.

Использование: для создания сверхпроводящего объекта. Сущность изобретения заключается в том, что способ получения сверхпроводящего объекта включает: обеспечение оксида редкоземельного элемента-меди-бария, содержащего редкоземельный элемент, барий и медь, и проведение термической обработки указанного оксида редкоземельного элемента-меди-бария с образованием сверхпроводника, содержащего распределенные в нем зерна оксида редкоземельного элемента, при этом проведение указанной термической обработки включает: первую стадию термической обработки, на которой температуру повышают с обеспечением жидкой фазы указанного оксида редкоземельного элемента-меди-бария, содержащей оксид редкоземельного элемента, и вторую стадию термической обработки, на которой температуру и/или давление кислорода изменяют по сравнению с их значением на первой стадии термической обработки с получением монокристаллического оксида редкоземельного элемента-меди-бария. Технический результат: обеспечение возможности получения повышенной кристалличности и зерен редкоземельного элемента, действующих в качестве центров пиннинга в сверхпроводнике. 3 н. и 8 з.п. ф-лы, 14 ил.

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного сверхпроводника берут сверхпроводник состава REBa2Cu3O7, где RE - редкоземельный металл или иттрий. Технический результат: обеспечение возможности формирования слоев без дополнительного напыления ВТСП, что удешевляет производство и уменьшает вероятность разрушения изделия. 2 з.п. ф-лы, 1 ил., 1 пр.

Использование: для поддержки удлиненного сверхпроводящего элемента. Сущность изобретения заключается в том, что способ включает предоставление слоистого сплошного элемента, причем слоистый сплошной элемент включает нижний слой (303) и верхний слой (316), причем верхний слой расположен рядом с нижним слоем и, по меньшей мере частично, закрывает нижний слой, формирование нескольких разрывных полос в верхнем слое (316), посредством чего формируют несколько открытых областей (323) нижнего слоя (303), где каждая открытая область выполнена вдоль разрывной полосы, травление открытых областей (323), чтобы сформировать подтравленные объемы (330, 332) между верхним слоем (316) и нижним слоем (303), причем каждый подтравленный объем выполнен вдоль разрывной полосы, и причем применяют травитель, у которого скорость травления нижнего слоя (303) выше, чем скорость травления верхнего слоя (316). Технический результат: обеспечение возможности создания подложки с уменьшенными потерями переменного тока при непрерывной обработке ее больших длин. 8 н. и 12 з.п. ф-лы, 22 ил.

Использование: для осуществления гиперпроводимости и сверхтеплопроводности материалов. Сущность изобретения заключается в том, что используют невырожденный или слабовырожденный полупроводниковый материал, размещают на его поверхности или в его объеме электроды 1 и 2, образующие выпрямляющие контакты с материалом, такие как контакты металл-полупроводник, контакты Шоттки, при этом расстояние между электродами D выбирают не более 4Λ, D≤4Λ, где Λ - длина когерентности; размер площади контакта электрода с материалом а выбирают не более четверти длины упругой волны в материале а≤λ/4, λ=V/F, где V - скорость упругой волны в материале с частотой F=108 Гц; устанавливают и поддерживают согласованную электромагнитную связь части материала, примыкающей к электроду 1, или (и) части материала, примыкающей к электроду 2, или материала или части материала, расположенного между электродами 1 и 2, с высокочастотным (высокочастотными) (ВЧ) и (или) сверхвысокочастотным (сверхвысокочастотными) (СВЧ) замедляющим устройством (замедляющими устройствами), таким (такими) как коаксиальная линия, волноводная линия, полосковая линия, резонатор, колебательный контур, которые характеризуются резонансными частотами f в диапазоне от 106 Гц до 3⋅1015 Гц и добротностями Q≥10; материал нагревают до температуры Т, равной или превышающей температуру гиперпроводящего перехода Th, Th≤Т≤Т*; измеряют электрическое и (или) тепловое сопротивление материала между электродами и (или) эффект Мейснера; в результате электрическое сопротивление и тепловое сопротивление материала между электродами обращаются в ноль, то есть осуществляется гиперпроводимость и сверхтеплопроводность в материале между электродами 1 и 2, усиливается эффект Мейснера. Технический результат: обеспечение возможности увеличения эффективности. 20 з.п. ф-лы, 47 ил.

Изобретение относится к области технологий получения эпитаксиальных оксидных сверхпроводящих покрытий на металлической подложке, предварительно покрытой биаксиально текстурированным оксидным слоем и буферными оксидными слоями, или на биаксиально текстурированной металлической подложке, предварительно покрытой оксидными буферными слоями, и может быть использовано для получения сверхпроводящих проводников второго поколения. Способ получения многослойного высокотемпературного сверхпроводящего материала включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, при этом золь оксидных и гидроксидных наночастиц выбранных элементов предварительно обрабатывают в течение 100 и более секунд в переменном вращающемся магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой (10-40) Гц с последующей термообработкой буферного слоя и нанесением на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработкой. Изобретение обеспечивает получение многослойного высокотемпературного сверхпроводящего материала с улучшенной кристаллической структурой эпитаксиальных буферных слоев, полученных из прекурсоров в виде гидрозолей оксидных или гидроксидных наночастиц. 2 ил., 2 табл.

Изобретение относится к криогенной технике и может быть использовано для изготовления высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения. Сущность изобретения заключается в том, что способ получения высокотемпературной сверхпроводящей пленки на аморфной кварцевой подложке включает нанесение на предварительно очищенную поверхность подложки трехслойного покрытия, при этом первый слой покрытия формируют из кварца толщиной 100-400 нм методом магнетронного распыления, второй слой формируют из диоксида циркония, стабилизированного иттрием толщиной 100-300 нм, третий - из диоксида церия толщиной 150-350 нм. Технический результат: обеспечение возможности исключения растрескивания ВТСП пленки. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области тонкопленочной сверхпроводниковой микроэлектроники, в частности к изготовлению высокочувствительных болометров, электронных охладителей, одноэлектронных транзисторов, содержащих свободно висящий микромостик нормального металла и сверхпроводниковые переходы типа сверхпроводник-изолятор-нормальный металл (СИН), сверхпроводник-изолятор-другой сверхпроводник (СИС'), а также андреевские контакты (сверхпроводник-андреевский контакт-нормальный металл) и структуры с барьером Шоттки (сверхпроводник-барьер Шоттки-полупроводник). Предложенный способ состоит из нанесения без разрыва вакуума трехслойной тонкопленочной структуры; нанесения резиста, экспозиции, проявления; селективного химического травления нижнего электрода трехслойной структуры, при этом перед напылением трехслойной структуры типа сверхпроводник-изолятор-нормальный металл (СИН) проводят фотолитографию, методом взрыва формируют топологию СИН структуры, и проводят однократное травление в щелочном проявителе, совмещенное с проявлением резиста с рисунком окон, при этом разрыв верхнего электрода образуется на ступеньке на границе подводящих проводников, существенным признаком является необходимость выполнения условия, что толщина верхнего нормального электрода меньше, а толщина нижнего алюминиевого электрода больше толщины нижней пленки электрических проводников. Предложены четыре варианта способа. Технический результат состоит в повышении воспроизводимости, снижении трудоемкости и времени изготовления структур, увеличении площади туннельных переходов более 1 мкм2 при снижении толщины верхнего электрода и перемычки абсорбера менее толщины нижнего электрода, снятии ограничения на форму переходов, устранении паразитных теней, устранении паразитных шунтирующих емкостей и сопротивлений утечки, уменьшении количества технологических ступеней литографии. 4 н.п. ф-лы, 1 ил.
Наверх