Многофункциональный инновационный модульный дозиметр

Изобретение относится к радиационной безопасности. Способ измерения параметров ионизирующего излучения включает этапы, на которых измеряют четырьмя счетчиками Гейгера-Мюллера ионизирующее излучение, при этом регистрация гамма-излучения осуществляется с помощью четырех счетчиков Гейгера-Мюллера СБМ-20, на каждый из которых подано напряжение 400 В от высоковольтного преобразователя, преобразователь напряжения реализует числоимпульсный способ регулирования напряжения без использования обратной связи по высокому напряжению, при прохождении частицы через чувствительный объем СГМ возникает импульс тока, что ведет к просадке напряжения на электродах СГМ, падение напряжения усиливается предварительным усилителем, формируется в положительный электрический импульс и подается на вход микроконтроллера, данный процесс происходит в каждом канале независимо, по наличию импульсов, приходящих по всем каналам, определяется количество подключенных СГМ и выбирается необходимое время счета, подсчитанные за выбранное время счета импульсы корректируются с учетом нагрузочной характеристики СГМ, после чего откорректированное количество импульсов пересчитывается в мощность дозы в мкЗв/час и выводится на экран прибора, при включенном режиме подсчета накопленной дозы, полученное значение мощности дозы умножается на время измерения и сохраняется в ячейке памяти и в дальнейшем суммируется со следующим значением измеренной дозы и так до отключения режима подсчета накопленной дозы, схема контролирует наличие питающего напряжения и в случае его резкого пропадания или уменьшения последнее полученное значение дозы сохраняется в энергонезависимой быстродействующей памяти. Технический результат - повышение точности проводимых измерений параметров ионизирующего излучения. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к радиационной безопасности. Служит для измерения параметров ионизирующего излучения: мощности дозы гамма-излучения, плотности потока альфа- и бета-излучения, накопленной индивидуальной дозы гамма-излучения.

Известен Радиометр РКС-107. Профессиональный прибор. Внесен в государственный реестр средств измерений под номером 16925-97 Используется 2 датчика СБМ-20 с фильтрами. Датчики подключены параллельно. Измерение мощности амбиентной дозы гамма-излучений:

Диапазон измерений - 0,1-999,9 мкЗв/ч.

Погрешность измерения: ±(20-30)%.

Диапазон энергий (0,06-1,25) МэВ.

Время измерения 54 с.

К недостаткам данного прибора можно отнести: малый диапазон измерений, большое время измерения, отсутствие математической обработки результатов измерения, отсутствие возможности подключения к ПК и связи с мобильными устройствами.

Известен Дозиметр-радиометр МКС-05 «Терра». Профессиональный прибор. Внесен в государственный реестр средств измерений под номером 24975-08. В качестве детектора используется 1 датчик СБМ-20 с фильтром. Измерение мощности амбиентной дозы гамма-излучений:

Диапазон измерений - 0,1 до 9999.99 мкЗв/ч.

Погрешность измерения: ±(15+2/N)%, где N- безразмерная величина, численно равная измеренному значению МЭД в мкЗв/ч.

Диапазон энергий (0,05-3) МэВ.

Время измерения 60 с.

К недостаткам данного прибора можно отнести: большое время измерения, отсутствие возможности самостоятельного изменения кол-ва детекторов для оптимизации технических характеристик, отсутствие возможности подключения выносного детектора, отсутствие возможности измерения плотности потока α-частиц с поверхности, отсутствие возможности подключения к ПК.

Наиболее близким к заявленному изобретению может служить Дозиметр ДРГ-01Т1. Профессиональный прибор. Внесен в государственный реестр средств измерений под номером 11036-04. В качестве детектора используются 4 параллельно подключенных газоразрядных счетчика СБМ-20 и два счетчика СИ- 34Г (СИ-40Г) с корректирующими свинцовыми фильтрами.

Измерение мощности амбиентной дозы гамма-излучений:

Диапазон измерений - от 0,1 до 99999,99 мкЗв/ч. Разделен на 2 поддиапазона (I - от 0,010 мР/ч до 9,999 мР/ч; II - от 0,010 Р/ч до 9,999 Р/ч).

Погрешность измерения: ±(15+0,05(%, где - измеренное значение мощности экспозиционной дозы в единицах соответствующего поддиапазона измерения (мР/ч или Р/ч); х - предел измерения в единицах соответствующего поддиапазона (мР/ч или Р/ч). Диапазон энергий (0,05-3) МэВ.

Время измерения 25 с.

К недостаткам данного прибора можно отнести: достаточно большое время измерения при заданном уровне погрешности. Параллельная схема подключения детекторов приводит к возникновению так называемого «мёртвого времени» в результате резкого падения напряжения на счётчиках, а стабилизация питающего напряжения счётчика отсутствует. Отсутствует возможность подключения выносного детектора, отсутствует возможность подключения к ПК и связи с мобильными устройствами, отсутствует звуковая сигнализация.

Задача заявляемого решения - получение прибора повышенной точности с малым необходимым временем измерения, кроме того, с высокой энергоэффективностью, необходимой для длительной работы, также с возможностью подключения выносного детектора и с возможностью подключения прибора к ПК и связи с мобильными устройствами.

Технический результат - повышение точности проводимых измерений параметров ионизирующего излучения с использованием газоразрядных счетчиков Гейгера-Мюллера.

Технический результат достигается тем, что в качестве детектора используются 4 параллельно подключенных газоразрядных счетчика, но при этом применен поканальный принцип обработки информации, получаемой с детекторов ионизирующего излучения, сигнал, полученный с каждого счетчика Гейгера, обрабатывается отдельно, благодаря чему резкое снижение напряжения после попадания частицы на одном счетчике никак не влияет на другие счетчики, на которых продолжается регистрация частиц, вследствие чего исключается взаимное влияние детекторов и снижается погрешность показаний, кроме того, схема обладает стабилизированным питанием детекторов ионизирующего излучения, что позволяет снизить время измерения и повысить точность измерения, а также имеется возможность подключения выносного детектора и возможность подключения прибора к ПК и установления связи с мобильными устройствами считывания, хранения и обработки информации.

Структурная схема устройства дозиметра представлена на фиг. 1.

Центральным элементом прибора является 32-рязрядный микроконтроллер STM 32 повышенной энергоэффективности на ядре Cortex M3. Контроллер позволяет при помощи минимальных энергетических затрат обрабатывать информацию, поступающую по нескольким каналам одновременно. Данный микроконтроллер обладает достаточным быстродействием для того, чтобы обрабатывать сигналы от первичных преобразователей, находящихся в полях ИИ высокой интенсивности (предельно возможной для счетчика СБМ-20).

В качестве детекторов излучения в приборе используется 4 счетчика Гейгера-Мюллера СБМ-20, помещенных в специальный фильтр, выполненный из свинцовой фольги. Фильтр предназначен для выравнивания энергетической характеристики счетчика Гейгера-Мюллера (СГМ), в профессиональной литературе известной как «ход с жесткостью». Алгоритм обработки информации, полученной с СГМ, учитывает наличие у счетчика мертвого времени. На основе паспортной нагрузочной характеристики счетчика СБМ-20 нами была получена аналитическая зависимость нагрузочной характеристики с учетом мертвого времени счетчика. Данная зависимость внесена в программу контроллера и используется для подсчета мощности дозы и накопленной индивидуальной дозы гамма-излучения. Алгоритм работы прибора позволяет автоматически определить вышедший из строя детектор и исключить его из работы. В зависимости от комплектации прибор может работать с 1, 2, 3 и 4 счетчиками СБМ-20. Кроме того, предусмотрена возможность подключения различных выносных α- и (или) β-детекторов с предварительным заданием «мертвого времени» подключаемого детектора в меню прибора.

Электрическую схему дозиметра можно условно разделить на 3 системы:

1. Модуль питания.

2. Блок обработки информации.

3. Высоковольтный преобразователь.

Все 3 системы реализуют принцип максимальной энергоэффективности за счет применения высокоэффективных электронных компонентов и использования оптимальных алгоритмов управления силовыми элементами электрической схемы.

Основу системы питания составляет высокоэффективный преобразователь фирмы Texas Instruments. Питание может осуществляться с помощью аккумуляторов или с помощью батареек типоразмера АА.

Блок обработки информации реализуется на базе микроконтроллера STM 32. Этот же микроконтроллер управляет высоковольтным преобразователем. Высоковольтный преобразователь построен по схеме, реализующей числоимпульсный метод управления без обратной связи по высокому напряжению. Высокое напряжение стабилизировано и составляет В, что снижает погрешность, связанную с наклоном плато счетной характеристики счетчика СБМ-20 в пределах ±0,5%.

Принцип работы прибора представлен на фиг. 1.

Регистрация гамма-излучения осуществляется с помощью четырех счетчиков Гейгера-Мюллера СБМ-20 (1), на каждый из которых подано напряжение 400 В от высоковольтного преобразователя (2). Преобразователь напряжения (2) реализует числоимпульсный способ регулирования напряжения без использования обратной связи по высокому напряжению, что способствует повышению энергоэффективности прибора. При прохождении частицы через чувствительный объем СГМ возникает импульс тока, что ведет к просадке напряжения на электродах СГМ. Это падение напряжения усиливается предварительным усилителем, формируется в положительный электрический импульс и подается на вход микроконтроллера (3). Данный процесс происходит в каждом канале независимо. По наличию импульсов, приходящих по всем каналам, определяется количество подключенных СГМ и выбирается необходимое время счета. Подсчитанные за выбранное время счета импульсы корректируются с учетом нагрузочной характеристики СГМ (коррекция мертвого времени). После чего откорректированное количество импульсов пересчитывается в мощность дозы в мкЗв/час и выводится на экран прибора (4). В случае, если включен режим подсчета накопленной дозы, полученное значение мощности дозы умножается на время измерения и сохраняется в ячейке памяти (5) и в дальнейшем суммируется со следующим значением измеренной дозы, и так до отключения режима подсчета накопленной дозы. Схема контролирует наличие питающего напряжения. В случае его резкого пропадания или уменьшения, последнее полученное значение дозы сохраняется в энергонезависимой быстродействующей памяти. Питание схемы осуществляется от преобразователя напряжения (6). Для измерения α- и β-излучения к прибору подключен внешний СГМ (7). Возможна реализация беспроводной связи по радиоканалу при помощи модуля связи (8).

Регистрация гамма-излучения осуществляется с помощью четырех счетчиков Гейгера-Мюллера СБМ-20, на каждый из которых подано напряжение 400 В от высоковольтного преобразователя. Преобразователь напряжения 2 реализует числоимпульсный способ регулирования напряжения без использования обратной связи по высокому напряжению, что также способствует повышению энергоэффективности прибора.

В данной модели реализован способ повышения точности регистрации ионизирующего излучения дозиметром с использованием газоразрядных счетчиков Гейгера-Мюллера. Данный способ заключается в раздельной обработке сигнала каждого детектора. В отличие от прототипа счетчики работают независимо друг от друга. А значит, при попадании ионизирующей частицы на один из счетчиков, происходит падение напряжения только на этом счетчике, и только этот счетчик прекращает реагировать на другие частицы в течение 0,2 мс (мертвое время счетчика). В то время как другие счетчики продолжают работать в штатном режиме и получаемая с них информация продолжает поступать и непрерывно обрабатываться микроконтроллером. Данный подход увеличивает точность регистрации до 20% и уменьшает необходимое время измерения до 15 с при применении 4-х счетчиков Гейгера.

Технические характеристики модели (при использовании 4х счетчиков СБМ-20 и выносного счетчика СБТ-10 :

Параметры: Значения:
Детектор газоразрядный счётчик типа СБМ-20
Периодичность обновления полученных результатов 15 секунд
Диапазон измерений:
1. мощности дозы гамма-излучения, мкЗв/ч 0,05-1500
2. плотности потока бета-излучения, 1/(см2хс) 5-200
3. плотности потока альфа-излучения, 1/(см2хс) 5-200
4. энергии регистрируемых гамма-квантов, МэВ 0,05-3,0
Пороговые уровни:
1. мощности дозы гамма-излучения, мкЗв/ч можно установить в диапазоне от 0,1 до 10 с шагом 0,1
Статическая погрешность измерения при доверительной вероятности 0,95 20 %
Встроенная память есть, энергонезависимая
Материал корпуса Пластик ударопрочный
Звуковая и вибросигнализация при:
1. превышении пороговых уровней есть
2. разряде батареи есть
Питание от 2-х батарей АА
Время работы от одного комплекта элементов питания, часов 700

Многофункциональный инновационный модульный дозиметр предназначен для измерения следующих характеристик ионизирующего излучения (ИИ):

1) Мощности дозы гамма-излучения.

2) Индивидуальной дозы персонала, контактирующего с источником ИИ.

3) Плотности потока β-частиц с поверхности.

4) Плотности потока α-частиц с поверхности.

Возможности прибора:

- Изменяемое количество детекторов ИИ.

- Возможность подключения к ПК и обработки данных.

- Возможность использования выносного α- и (или) β-детектора.

- Возможность обновления микропрограммы устройства по USB.

- Различные виды питания (аккумуляторное, батарейное).

- Дозиметр предоставляет следующий набор технических функций:

- Функция определения мощности дозы гамма-излучения.

- Функция подсчета индивидуальной дозы.

- Функция определения плотности потока α- и β-частиц.

- Функция радиометра.

Также реализовано:

- Наличие быстродействующей энергонезависимой памяти для хранения данных о накопленной дозе. Применение быстродействующей энергонезависимой памяти, позволяет сохранить информацию о накопленной дозе в экстренных, внештатных ситуациях (отключение питания)

- Наличие режима повышенного энергосбережения.

- Наличие порогового сигнализатора. Порог сигнализации может устанавливаться пользователем. Тип сигнализации - звуковая, световая, вибрационная. Звук и вибросигнал пользователь может отключить.

- Возможность задания мертвого времени внешнего счетчика Гейгера-Мюллера.

- Наличие часов реального времени, необходимых для подсчета накопленной дозы.

- Возможность передачи данных на мобильные устройства по беспроводной линии связи.

- Простое и интуитивно понятное меню.

- Применен монохромный дисплей с целью обеспечения хорошей читаемости показаний в любых условиях освещения (яркое солнце, затемненное помещение). Кроме того, монохромный дисплей гораздо более экономичен.

Благодаря применению данного раздельного способа регистрации ионизирующего излучения уменьшается необходимое время регистрации до 15 секунд (у прототипа 25 с) при статистической погрешности в 20% для доверительной вероятности 0.95. Время регистрации данного прибора является наименьшим среди всех существующих дозиметров с газоразрядными детекторами Гейгера-Мюллера при аналогичной статистической погрешности в 20% для доверительной вероятности 0.95.

1. Способ измерения параметров ионизирующего излучения, включающий измерение четырьмя счетчиками Гейгера-Мюллера, отличающийся тем, что регистрация гамма-излучения осуществляется с помощью четырех счетчиков Гейгера-Мюллера СБМ-20, на каждый из которых подано напряжение 400 В от высоковольтного преобразователя, преобразователь напряжения реализует числоимпульсный способ регулирования напряжения без использования обратной связи по высокому напряжению, при прохождении частицы через чувствительный объем СГМ возникает импульс тока, что ведет к просадке напряжения на электродах СГМ, падение напряжения усиливается предварительным усилителем, формируется в положительный электрический импульс и подается на вход микроконтроллера, данный процесс происходит в каждом канале независимо, по наличию импульсов, приходящих по всем каналам, определяется количество подключенных СГМ и выбирается необходимое время счета, подсчитанные за выбранное время счета импульсы корректируются с учетом нагрузочной характеристики СГМ, после чего откорректированное количество импульсов пересчитывается в мощность дозы в мкЗв/час и выводится на экран прибора, при включенном режиме подсчета накопленной дозы полученное значение мощности дозы умножается на время измерения и сохраняется в ячейке памяти и в дальнейшем суммируется со следующим значением измеренной дозы и так до отключения режима подсчета накопленной дозы, схема контролирует наличие питающего напряжения и в случае его резкого пропадания или уменьшения последнее полученное значение дозы сохраняется в энергонезависимой быстродействующей памяти.

2. Устройство для измерения параметров ионизирующего излучения, включающее четыре счетчика Гейгера-Мюллера, отличающееся тем, что преобразователь напряжения соединен с высоковольтным преобразователем, который соединен с каждым из четырех счетчиков Гейгера-Мюллера, импульс от которых подается на вход микроконтроллера, соединенного с преобразователем напряжения и с энергонезависимой памятью, также соединенной с преобразователем напряжения, микроконтроллер соединен с экраном прибора, подключенным к преобразователю напряжения, также микроконтроллер имеет возможность подключения внешнего устройства и реализации беспроводной связи при помощи модуля связи, а устройство имеет возможность подключения внешнего СГМ для измерения α- и β-излучения.



 

Похожие патенты:

Изобретение относится к области протонной радиографии, в частности к способам формирования и регистрации протонных изображений с помощью магнитной оптики. Способ регистрации протонных изображений, сформированных с помощью магнитооптической системы, включает формирование протонного пучка, который пропускают через объект исследования, и получение цифровых изображений протонного пучка до пропускания его через объект исследования с помощью первой системы регистрации и после пропускания пучка через объект исследования с помощью второй системы регистрации, конвертор которой размещают в плоскости фокусировки магнитооптической системы, настроенной на энергию протонного пучка до прохождения им объекта исследования и обеспечивающей фокусировку протонов из плоскости объекта в плоскость изображения, последующее получение теневого изображения объекта исследования путем приведения полученных изображений пучка к одному ракурсу и попиксельного деления одного изображения на другое, при этом во второй системе регистрации перед конвертором устанавливают, по крайней мере, еще один конвертор с соответствующей регистрирующей аппаратурой и получают, по крайней мере, еще одно цифровое изображение протонного пучка, которое учитывают при получении теневого изображения объекта исследования путем приведения его с изображением пучка, полученного с помощью первой системы регистрации, к одному ракурсу и попиксельного деления одного изображения на другое, при этом расстояние L между конверторами выбирают, исходя из параметров объекта исследования и магнитооптической системы, из следующего соотношения: , где: m22 - соответствующий элемент матрицы перехода М магнитооптической системы, ∂m12/∂p - частная производная по импульсу протона соответствующих элементов матрицы перехода М, Δр - разница по средней величине импульса между протонами, которые прошли через области объекта исследования с различной оптической толщиной.

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений.

Изобретение относится к приборостроению и может быть использовано в высоковольтной импульсной технике для диагностики импульсных источников релятивистских электронных потоков в сильном магнитном поле путем измерения поперечных скоростей релятивистских электронов.

Изобретение относится к технике измерения ионизирующих излучений и предназначено для определения радионуклидного состава и активности упакованных в контейнеры РАО.

Изобретение относится к спектрометрам для обнаружения радионуклидов ксенона. Спектрометр для определения объемной активности радионуклидов ксенона, в котором измеряемая проба представляет собой смесь газов, содержит детектирующую часть, которая выполнена с возможностью детектирования бета-излучения и гамма-излучения и которая содержит измерительную камеру, блок детектирования бета-излучения и блок детектирования гамма-излучения, при этом блок детектирования бета-излучения содержит по меньшей мере два детектора бета-излучения, а блок детектирования гамма-излучения содержит по меньшей мере один детектор гамма-излучения.

Изобретение относится к детекторному узлу для сбора данных сканирования в системе интроскопии. Детекторный узел для сбора данных сканирования в системе интроскопии содержит источник ионизирующего излучения, имеющий корпус детекторного узла, в котором размещены чувствительные элементы, выполненные с возможностью приема ионизирующего излучения и его преобразования в электрический сигнал, связанные с платами аналогово-цифровых преобразователей, при этом корпус детекторного узла выполнен в форме дуги окружности с центром в точке генерации излучения источника ионизирующего излучения, причем чувствительные элементы расположены на одинаковом расстоянии от точки генерации излучения источника ионизирующего излучения и ориентированы перпендикулярно лучам, исходящим из источника ионизирующего излучения.

Изобретение относится к системе интроскопического сканирования инспекционно-досмотрового комплекса, содержащей линейный ускоритель электронов, генерирующий импульсы с чередованием низкой и высокой энергии с минимальным интервалом t между двумя соседними импульсами, и детекторный узел для сбора данных сканирования, включающий в себя детекторные модули, аналого-цифровые преобразователи (АЦП) и каналы детектирования, каждый из которых содержит два интегратора для обработки сигналов одного детекторного модуля.

Изобретение относится к проблеме радиационного анализа материалов, конкретно к способам численной оценки плотности и эффективного атомного номера твердых и жидких многокомпонентных материалов.

Изобретение относится к области медицинских исследований с использованием рентгеновского излучения. Способ изготовления матрицы фоточувствительных элементов плоскопанельного детектора рентгеновского изображения, где каждый фоточувствительный элемент, включающий фотоприемную часть и подложку, размещают на общей подложке с обеспечением плоскостности фоточувствительной поверхности матрицы и фиксируют посредством клея, предварительно нанесенного на указанную подложку, при этом перед размещением фоточувствительных элементов на общей подложке в ней выполняют технологические отверстия, упорядоченно расположенные, по меньшей мере, на части площади общей подложки, соответствующей площади подложки каждого фоточувствительного элемента; устанавливают подложку на эталонной плоскости, имеющей средства прижима и обеспечивающей компенсацию неплоскостности общей подложки путем создания усилия прижима, при этом, по крайней мере, часть средств прижима выполнена в виде упорядоченной совокупности выступов, соотнесенных с упомянутыми технологическими отверстиями, и выполненных с возможностью приложения через них в осевом направлении силы прижима; размещают выступы в указанных технологических отверстиях, причем высота указанных выступов выполнена с возможностью обеспечения плоскостности фоточувствительной поверхности матрицы; затем на них устанавливают и временно фиксируют фоточувствительные элементы, опускают плоскость с установленными на указанных выступах фоточувствительными элементами до их контакта с клеем и выдерживают до полного отверждения клея.

Изобретение относится к медицине, а именно к хирургической онкологии и радионуклидной диагностике, и может использоваться при биопсии сигнальных лимфоузлов (СЛУ) у больных раком молочной железы.

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя заключается в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, при этом дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту. Технический результат - повышение информативности способа диагностики сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя. 5 ил.

Изобретение относится к охранной технике. Техническим результатом является обеспечение визуализации изображения по заданным координатам и времени. Способ включает определение координат видеокамер и реперных точек в пределах сектора обзора видеокамеры и внесение изображения местности в базу данных компьютера и вывод изображения на экран монитора, на секторы обзора каждой видеокамеры накладывают координатную сетку с заранее заданным интервалом между ее линиями для формирования элементарных ячеек и определяют методом интерполирования или экстраполирования координаты всех узлов сетки, вносят в базу данных одновременно изображения местности в пределах элементарной ячейки, ее географические координаты и время фиксации видеоизображения и при необходимости вводят в компьютер время и координаты интересующей элементарной ячейки и выводят из памяти компьютера на монитор изображение на этой элементарной ячейке и соседних ячейках с указанного момента времени в динамике, при этом в базу данных вводят третью географическую координату элементарной ячейки - высоту над уровнем моря, а видеоизображение интересующей элементарной ячейки выводят в режиме он-лайн. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области измерения параметров ионизирующего излучения. Способ оценки достоверности результатов измерения носимым измерителем мощности дозы на радиоактивно загрязненной местности в период формирования следа радиоактивного облака заключается в том, что определяют факт радиоактивного загрязнения поверхности блока детектирования измерителя мощности дозы при ведении радиационной разведки пешим порядком, при этом для выявления факта радиоактивного загрязнения блока детектирования проводят два измерения мощности дозы на высотах 0,1 и 3 метра над радиоактивно загрязненной местностью и сравнивают отношение полученных показаний с контрольным числом, равным 1,7, которое соответствует случаю, когда детекторный блок не загрязнен радиоактивными веществами; в случае наличия загрязненности блока детектирования радиоактивными веществами полученное отношение будет меньше контрольного значения. Технический результат - упрощение способа измерения параметров ионизирующего излучения. 2 ил., 2 табл.

Изобретение относится к медицинским инструментам, и более конкретно к системам и способам графического планирования и помощи в медицинских процедурах с использованием графического интерфейса инструмента. Система планирования содержит процессор; запоминающее устройство, соединенное с процессором и сохраняющее модуль планирования; и пользовательский интерфейс, соединенный с процессором и выполненный с возможностью позволять пользователю выбирать путь через систему (148) путей; модуль планирования, выполненный с возможностью последовательного отображения одного или более двухмерных срезов объема изображения, соответствующих положению курсора, управляемого пользователем посредством пользовательского интерфейса таким образом, что при движении вдоль пути один или более срезов обновляются в соответствии с глубиной положения курсора на пути, причем путь включает в себя положения в пределах и за пределами границ полости. Технический результат – упрощение рабочего процесса проведения медицинских процедур. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к приборам для дозиметрии и измерения спектров заряженных частиц. Спектрометр заряженных частиц содержит полупроводниковые детекторы, образующие телескоп, с которыми последовательно соединены спектрометрические усилители и аналого-цифровые преобразователи, причем сцинтилляционный детектор снабжен усилителем, при этом для измерения потока и частиц с двух противоположных направлений установлено четное количество полупроводниковых детекторов, при этом крайние детекторы выполнены с толщиной, меньшей толщины средних детекторов, выходы детекторов соединены с входами спектрометрических усилителей, а выходы усилителей – с входами аналого-цифровых преобразователей, выходы аналого-цифровых преобразователей соединены с входами программируемой логической матрицы. Технический результат – увеличение информативности устройства. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения источников ионизирующего излучения (ИИИ), и предназначается для поиска точечных источников гамма-излучения. Способ определения местоположения точечного источника гамма-излучения на местности заключается в измерении мощности дозы гамма-излучения в процессе полета, при этом измерения осуществляются детектором гамма-излучения с коллиматором в виде круговой щели конической формы, размещенным на базе беспилотного летательного аппарата, в три последовательные стадии: вертикальный подъем аппарата с заданной точки на земле до достижения высоты, на которой срабатывает датчик обнаружения излучения, с последующим проведением геометрического определения участка в форме кольца с центром в точке взлета; второй подъем с любой точки внутри первого кольца с повторением всех операций первой стадии и геометрическим определением точек пересечения обоих колец; подлет на малой высоте к одной из точек, определенных на второй стадии, для точного определения местоположения источника на местности. Технический результат – повышение оперативности поиска точечного источника ионизирующего излучения на большой по площади территории. 5 ил.

Изобретение относится к термоэкзоэлектронной (ТЭЭ) дозиметрии электронного излучения и может быть пригодно для высокодозной дозиметрии электронного излучения высоких энергий (до 10 МэВ). Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения высоких энергией на основе кристаллов фторида натрия дополнительно содержит фторид лития и хлорид меди при следующем соотношении компонентов (мол. %): NaF 98,3-98,9, LIF 1-1,5, CuCl2 0,1-0,2. Технический результат – обеспечение повышенной чувствительности дозиметрического тракта. 4 ил.

Изобретение относится к области урановой промышленности. Способ измерения обогащения в образце урана или его соединениях заключается в измерении скорости генерации в образце гамма-квантов, при этом измеряется скорость мгновенных гамма-квантов с энергией Еγ>4 МэВ, рождающихся только при спонтанном делении ядер урана-235 и 238. Технический результат – повышение оперативности определения обогащения урана. 1 табл., 1 ил.

Изобретение относится к области радиационной безопасности. Дозиметр поисковый содержит блок операционный, состоящий из детекторов гамма- и нейтронного излучений и блока обработки информации, блок индикации, состоящий из блока световой и звуковой сигнализации и дисплея, выносной блок вибрационной сигнализации, причем блок вибрационной сигнализации может стыковаться с блоком индикации с помощью контактного разъемного соединения, при этом блоки операционный и индикации представляют собой индивидуальные ударопрочные корпуса, которые при работе дозиметра без удлинительной штанги стыкуются между собой с помощью дополнительного контактного разъемного соединения, а при работе дозиметра с удлинительной телескопической штангой с проводной линией связи внутри, блок операционный стыкуется с ней в верхней ее части с помощью контактного разъемного соединения, а блок индикации с помощью контактного разъемного соединения стыкуется с ней в нижней ее части возле ручки, образуя при этом проводную электрическую связь между выходом блока обработки информации и входом блока индикации. Технический результат – повышение радиационной безопасности при поиске и регистрации ионизирующего излучения, повышение информативности об уровне ионизирующего излучения, упрощение при работе с дозиметром. 2 ил.

Группа изобретений относится к керамическим фосвич-детекторам со сплавленными оптическими элементами. Сцинтиллятор содержит большое количество композиций граната в едином блоке, имеющих структурную формулу (1): M1aM2bM3cM4dO12, в которой O представляет собой кислород, М1, М2, М3 и М4 представляет собой первый, второй, третий и четвертый металл, которые отличаются друг от друга, причем сумма a+b+c+d составляет около 8, где «а» имеет значение от 2 до 3,5, «b» - от 0 до 5, «c» - от 0 до 5, «d» - от 0 до 1, где «b» и «c», «b» и «d» или «c» и «d» не могут быть оба равны нулю одновременно, в которой М1 представляет собой редкоземельный элемент, включая гадолиний, иттрий, лютеций или их комбинацию, М2 представляет собой алюминий или бор, М3 представляет собой галлий, а M4 представляет собой ко-допант; где две композиции, имеющие одинаковые структурные формулы, не расположены рядом друг с другом и где единый блок лишен оптических поверхностей раздела между различными композициями. Технический результат – повышение временного разрешения. 3 н. и 17 з.п. ф-лы, 3 ил.
Наверх