Способ определения коррозии обсадных колонн в эксплуатационных скважинах



Способ определения коррозии обсадных колонн в эксплуатационных скважинах
Способ определения коррозии обсадных колонн в эксплуатационных скважинах

 


Владельцы патента RU 2593926:

Нургалеев Венер Галеевич (RU)
Ураков Дмитрий Витальевич (RU)

Использование: для контроля технического состояния нефтегазовых скважин. Сущность изобретения заключается в том, что способ определения коррозии обсадных колонн в эксплуатационных скважинах включает измерение толщины обсадной колонны по стволу скважины импульсной электромагнитной дефектоскопией, дополнительно регистрируют амплитуды низкочастотных акустических шумов, по которым выделяют интервалы заколонных перетоков жидкости, в выявленных интервалах перетоков по пониженным значениям суммарной ЭДС импульсов магнитной проницаемости и электропроводимости обсадной колонны определяют ее толщину и путем сравнения ее с толщиной соседнего беспереточного интервала, определяемого по отсутствию акустических шумов, в котором толщина обсадной колонны понижена только за счет коррозии ее внутренней стенки, по разности этих толщин судят о коррозии наружной стороны колонны. Технический результат: обеспечение возможности определения наружной коррозии. 2 ил.

 

Предлагаемое изобретение относится к области нефтегазовой промышленности и может быть использовано для контроля технического состояния нефтегазовых скважин.

Известен способ выделения и оценки зон коррозии обсадных колонн в скважинах [Патент РФ №2330276, МПК G01 N27/82. Бюлл. №21, 2008. Способ электромагнитной дефектоскопии обсадных колонн в скважине и электромагнитный дефектоскоп для его реализации]. Этот способ обеспечивает выделение зон коррозии обсадной колонны по стволу скважины и последующую оценку ее толщины. Однако в основном при хорошем качестве цементирования по стволу скважины коррозии подвержена лишь внутренняя поверхность обсадной колонны. В хорошо зацементированной части колонны коррозионные процессы отсутствуют. А в интервалах с плохим качеством цементирования, в которых имеют место заколонные перетоки, они непременно присутствуют.

Таким образом, недостатком способа является невозможность разделения внутренней и наружной коррозии обсадной колонны по ее толщине и, соответственно, невозможность определения наружной коррозии как наиболее опасной, приводящей к аварийному техническому состоянию обсадной колонны.

В интервалах низкого качества цементирования в заколонном пространстве скважины могут иметь место перетоки агрессивной пластовой жидкости с высокой минерализацией из одного водоносного пласта с более высоким пластовым давлением в другой с более низким. При добыче нефти при депрессии на пласт может быть «подсос» в интервал перфорации из вышележащего или нижележащего водоносных пластов, что приводит к обводнению продукции.

Экспериментальным путем установлено, что в основном перетекаемый поток жидкости имеет вихревой, турбулентный режим движения [См. Casing Corrosion Measurement to Extend Asset Life. Изучение коррозии обсадной колонны для продления срока службы. Oilfield Review. Autumn 2013, Vol.25, №3, p. 18-31]. С внешней стороны колонны при плохом контакте цементного камня имеют место как площадная, так и «ручейковая» коррозии. Последняя приводит к прорезанию каналов вплоть до сквозных щелей в теле колонны перетекаемыми агрессивными жидкостями.

Заколонные водопритоки в продуктивный пласт и межпластовые перетоки жидкости определяются известным способом [Авторское свидетельство СССР №1379757, МПК G01V 1/40. Способ определения заколонных водопритоков]. Способ выявляет по повышенным амплитудам акустических низкочастотных шумов интервалы водопритоков и перетоков жидкости в заколонном пространстве скважины и может быть использован для локализации в скважине интервалов с плохой гидроизоляцией, т.е. с плохим качеством цементирования.

Целью предлагаемого изобретения является устранение вышеупомянутого недостатка. Поставленная цель достигается тем, что импульсным электромагнитным дефектоскопом производят измерения суммарной ЭДС импульсов магнитной проницаемости и электропроводимости обсадной колонны по стволу скважины с последующим вычислением толщины обсадной колонны, дополнительно регистрируют амплитуды низкочастотных акустических шумов, по повышенным аномалиям шумов выявляют интервалы заколонных перетоков жидкости, в которых по пониженным значениям ЭДС импульсов магнитной проницаемости и электропроводимости обсадной колонны определяют ее толщину и путем сравнения ее с толщиной соседнего беспереточного по отсутствию акустических шумов интервала, в котором толщина обсадной колонны понижена только за счет коррозии ее внутренней стенки, по разности этих толщин судят о коррозии наружной стороны обсадной колонны.

На фиг.а, б представлены диаграммы импульсов электромагнитной дефектоскопии и низкочастотная акустическая шумограмма в эксплуатационной скважине в интервале глубин 815-910 м.

На фиг.а показана диаграмма импульсного электромагнитного дефектоскопа МИД-К. На фиг.б приведена низкочастотная акустическая шумограмма, зарегистрированная акустическим шумомером АШИМ-36. На диаграмме акустического шума выделен интервал перетока жидкости на глубине 830-892 м. На этой же глубине выделена аномалия пониженных значений импульсов суммарной ЭДС магнитной проницаемости и электропроводимости. При сопоставлении двух диаграмм явно просматривается корреляция амплитуды низкочастотных акустических шумов с импульсами электромагнитной дефектоскопии - суммарной ЭДС магнитной проницаемостью и электропроводимостью обсадной колонны. Амплитуды акустических шумов пропорциональны скорости заколонных перетоков жидкости. Суммарная ЭДС импульсов магнитной проницаемости и электропроводимости пропорциональна величине коррозии обсадной колонны. С утончением обсадной колонны в результате коррозии (потери массы обсадной трубы) уменьшаются ее магнитная проницаемость и электропроводимость, поэтому ЭДС импульсов имеет преимущественно отрицательное значение. Положительная часть импульсов обусловлена переходными процессами.

Предлагаемый способ осуществляется следующим образом.

Сначала по стволу эксплуатационной скважины проводится импульсная электромагнитная дефектоскопия, а затем низкочастотная акустическая шумометрия. В выделенных шумометрией интервалах, где имеет место заколонный межпластовый переток или «подсос» жидкости в зону перфорации проводят определение коррозии наружной стороны обсадной колонны. Границы интервалов с импульсами пониженных значений магнитной проницаемости и электропроводимости всегда совпадают с границами интервалов низкочастотной акустической шумометрии.

На примере эксплуатационной скважины границы заколонных перетоков жидкости, выделенные по акустической шумограмме (фиг.б), совпадают с границами аномалии импульсов с пониженными значениями суммарной ЭДС магнитной проницаемости и электропроводимости (фиг.а), пропорциональной пониженной толщине обсадной колонны. Определение коррозии наружной стороны обсадной колонны в интервале перетоков жидкости осуществляют по ее толщине путем сравнения с толщиной в соседнем беспереточном по отсутствию акустических шумов интервале, в котором толщина обсадной колонны понижена только за счет коррозии ее внутренней стенки. По разности этих толщин судят о коррозии наружной стороны обсадной колонны.

Технический эффект: Определение коррозии наружной стороны обсадных колонн в эксплуатационных скважинах, повышение надежности оценки технического состояния скважин.

Способ определения коррозии обсадных колонн в эксплуатационных скважинах, включающий измерение толщины обсадной колонны по стволу скважины импульсной электромагнитной дефектоскопией, отличающийся тем, что дополнительно регистрируют амплитуды низкочастотных акустических шумов, по которым выделяют интервалы заколонных перетоков жидкости, в выявленных интервалах перетоков по пониженным значениям суммарной ЭДС импульсов магнитной проницаемости и электропроводимости обсадной колонны определяют ее толщину и путем сравнения ее с толщиной соседнего беспереточного интервала, определяемого по отсутствию акустических шумов, в котором толщина обсадной колонны понижена только за счет коррозии ее внутренней стенки, по разности этих толщин судят о коррозии наружной стороны колонны.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля качества изделий методом магнитных потоков рассеяния и предназначено, прежде всего, для дефектоскопического контроля канатов из стальной ферромагнитной проволоки и устройству для осуществления способа.

Использование: для магнитной дефектоскопии. Сущность изобретения заключается в том, что магнитная дефектоскопия трубопровода проводится с учетом различных магнитных свойств материалов, связанных с применением при строительстве трубопроводов труб из различных марок стали и влиянием направления намагничивания относительно направления проката листа.

Предложенный комплекс внутритрубной дефектоскопии с тросовой протяжкой относится к средствам для проверки технического состояния коротких прямолинейных или изгибных отрезков трубопровода.

Изобретение относится к области неразрушающего контроля и может быть использовано для магнитной дефектоскопии как плоских изделий, так и изделий сложной формы (шестерни, болты, ступенчатые и коленчатые валы, галтельные переходы и др.).

Изобретение относится к измерительной технике, представляет собой устройство для вихретоковой дефектоскопии и может быть использовано для выявления и определения параметров подповерхностных дефектов в ферромагнитных объектах.

Изобретение относится к измерительной технике и предназначено для наружного неразрушающего контроля стенок труб (обнаружение дефектов, потери металла и растрескиваний в стенках труб) непосредственно во время проведения ремонтных работ, замены изоляции труб трубопроводов, транспортирующих природный и промышленный газы, нефть и нефтепродукты.

Изобретение относится к измерительной технике, в частности средствам бесконтактной диагностики, представляет собой устройство для диагностики технического состояния металлических трубопроводов и может быть использовано при дефектоскопическом контроле состояния, например напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и изоляционного покрытия и т.п., подводных и/или подземных нефте- и газопроводов и других металлических трубопроводов.

Изобретение относится к области магнитной дефектоскопии в промышленности и на транспорте. Сущность: протяженные конструкции в процессе их эксплуатации, изготовленные из однородного ферромагнитного материала и имеющие сечение профиля простой симметричной формы, намагничивают с образованием полюсов симметричного магнитного поля на оси симметрии сечения профиля по всей длине объекта наблюдения.

Изобретение относится к способам и средствам неразрушающего контроля материалов и может быть использовано для диагностики рельсов и других протяженных объектов.

Предлагаемое техническое решение относится к области дефектоскопического контроля состояния трубопровода и может быть использовано для обнаружения и оконтуривания зон напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и его изоляционного покрытия, выявления несанкционированных врезок, а также диагностики технического состояния других подземных металлических трубопроводов и металлоконструкций.
Наверх