Способ одноосной ориентации космического аппарата вытянутой формы



Способ одноосной ориентации космического аппарата вытянутой формы

 


Владельцы патента RU 2594054:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и радиус-вектором КА. Закрутку производят при достижении углом между продольной осью КА и плоскостью орбиты величины максимального допустимого отклонения (β0) продольной оси КА от местной вертикали. При этом угол между радиус-вектором КА и вектором, направленным из центра масс КА в центр аэродинамического давления солнечных батарей КА, должен быть менее 90°. Угловую скорость закрутки (порядка орбитальной) выбирают в зависимости от угла β0 и отношения минимального момента инерции КА к среднему значению поперечных моментов инерции. Технический результат изобретения состоит в реализации длительного режима гравитационной ориентации КА с закруткой, при эволюции вращения КА в сторону замедления.

 

Изобретение относится к космической технике и может быть использовано для ориентации космического аппарата (КА) при выполнение экспериментов и исследований.

Известен способ ориентации КА, включающий выставку осей КА и поддержание углового положения КА с помощью двигателей ориентации (Алексеев К.Б., Бебенин Г.Г. «Управление космическими летательными аппаратами», М.: Машиностроение, 1974).

Однако для использования данного способа необходимо расходовать рабочее тело, что приводит, кроме того, к загрязнению оптических поверхностей КА и вызывает микроускорения на борту КА.

Известен способ, включающий выставку оси КА, соответствующую минимальному моменту инерции, на центр Земли и орбитальное смещение КА (Беляев М.Ю. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: Машиностроение, 1984). Данный способ используется для КА, имеющих вытянутую форму, т.е. когда момент инерции относительно продольной оси значительно меньше момента инерции относительно поперечных осей.

В этом случае обеспечивается гравитационная ориентация КА вытянутой формы, которая не требует для поддержания расхода рабочего тела и, следовательно, при этом не загрязняются оптические поверхности КА и не вызывают ускорения из-за работы двигателей управления ориентацией.

Однако вследствие неточной выставки оси КА на центр Земли появляются угловые скорости вокруг всех осей КА. Наличие угловых скоростей вокруг поперечных осей КА приводит к отклонению продольной оси аппарата от направления к центру Земли, вследствие чего ухудшается точность гравитационной ориентации КА.

Наиболее близким к предлагаемому является способ одноосной ориентации КА вытянутой формы (Патент РФ №2457159, приоритет от 30.08.2010, МПК (2006.01) B64G 1/34 - прототип), включающий выставку оси КА, соответствующей минимальному моменту инерции, на центр Земли и орбитальное смещение КА, при этом после выставки оси КА на центр Земли и орбитального смещения КА производят закрутку КА вокруг выставленной на центр Земли оси КА до требуемого момента с угловой скоростью , где Iyz - среднее значение близких по величине моментов инерции КА вокруг поперечных осей КА; Ix - момент инерции КА вокруг продольной оси; ω0 - модуль абсолютной угловой скорости орбитальной системы координат.

Способ-прототип позволяет повысить точность одноосной ориентации конкретно рассмотренного типа КА и тем самым снизить также микроперегрузки на КА, возникающие при раскачке и переходе КА в режим неуправляемого вращения. В общем случае вращение КА с указанной скоростью не является устойчивым для всех типов КА вытянутой формы - в общем случае со временем отклонение продольной оси КА от направления к центру Земли становится все более существенным, что приводит к «кувырканию» КА и разрушению гравитационной ориентации. Это в том числе ограничивает возможности проведения экспериментов, требующих наведения научной аппаратуры на Землю и/или низкого уровня микроускорений.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности одноосной ориентации КА при выполнении экспериментов и исследований в условиях вращательного движения КА.

Технический результат предлагаемого изобретения заключается в обеспечении реализации режима гравитационной ориентации КА с закруткой на длительных временных интервалах с эволюцией угловой скорости вращения КА в сторону ее замедления.

Технический результат достигается тем, что в способе одноосной ориентации КА вытянутой формы, включающем развороты КА и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, дополнительно перед выполнением закрутки космический аппарат разворачивают до совмещения продольной оси КА с плоскостью, образованной нормалью к плоскости орбиты и радиус вектором КА, и достижения углом между продольной осью КА и плоскостью орбиты максимального допустимого значения угла отклонения продольной оси КА от местной вертикали при значении угла между радиус-вектором КА и вектором, направленным из центра масс КА в центр аэродинамического давления солнечных батарей КА, <90°, после чего выполняют закрутку КА вокруг продольной оси, при этом величину угловой скорости закрутки определяют по формуле , где α≤1,

λ - отношение минимального главного центрального момента инерции к среднему значению поперечных главных центральных моментов инерции КА,

ω0 - угловая скорость орбитального движения КА,

β0 - максимальное допустимое значение угла отклонения продольной оси КА от местной вертикали.

Поясним предложенные в способе действия.

Запишем уравнения вращательного движения КА. КА считается твердым телом, геоцентрическое движение его центра масс - кеплеровым эллиптическим. Элементы этого движения находятся по данным радиоконтроля орбиты. Для записи уравнений введем две правые декартовы системы координат - орбитальную ОХ1Х2Х3 и образованную главными центральными осями инерции КА Ox1x2x3. Точка О - центр масс КА, оси ОХ3 и OX1 направлены, соответственно, вдоль геоцентрического радиуса-вектора точки О и по трансверсали к орбите в этой точке. Ось Ox1 направлена вдоль продольной оси КА.

Положение системы Ox1x2x3 относительно системы OX1X2X3 будем задавать углами γ, δ и β, которые введем следующим образом. Система OX1X2X3 может быть переведена в систему Ox1x2x3 тремя последовательными поворотами: 1) на угол δ+π/2 вокруг оси ОХ2, 2) на угол β вокруг новой оси ОХ3, 3) на угол γ вокруг новой оси ОХ1, совпадающей с осью Ох1. Матрицу перехода от системы Ox1x2x3 к системе ОХ1Х2Х3 обозначим , =1, где a i - косинус угла между осями OXi и Oxj. Элементы этой матрицы выражаются через введенные углы с помощью формул

а 11=-sinδcosβ,

а 12=cosδsinγ+sinδsinβcosγ,

a 13=cosδcosγ-sinδsinβsinγ,

a 21=sinβ, a 22=cosβcosγ, a 23=-cosβsinγ,

a 31=-cosδcosβ,

a 32=-sinδsinγ+cosδsinβcosγ,

a 33=-sinδcosγ-cosδsinβsinγ.

В уравнениях вращательного движения КА учитываются гравитационный и восстанавливающий аэродинамический моменты. Эти уравнения записываются в виде

,

,

,

,

Здесь ωi (i=1, 2, 3) - компоненты абсолютной угловой скорости КА в системе координат Ox1x2x3, ω0 - угловая скорость орбитального движения КА, Ii -моменты инерции КА относительно осей Oxi (главные центральные моменты инерции КА), М - вычисленный относительно точки О восстанавливающий аэродинамический момент, приложенный к КА.

Уравнения (1) позволяют оценить вращательные движения КА при различных условиях (Белецкий В.В. Движение искусственного спутника относительно центра масс. М., Наука, 1965; Белецкий В.В. Движение спутника относительно центра масс в гравитационном поле. М.: Издательство МГУ, 1975; Черноусько Ф.Л. Об устойчивости регулярной прецессии спутника. Прикладная математика и механика, 1963, т. 28, вып. 1, с. 155-157).

В предлагаемом способе рассматривается режим гравитационной ориентации с закруткой вытянутого вдоль продольной оси спутника. В этом режиме спутник вращается вокруг продольной оси, направленной приблизительно вдоль местной вертикали. Для применения такого режима необходимо выполнение трех условий. Во-первых, спутник должен иметь специфический центральный эллипсоид инерции: большая и средняя полуоси этого эллипсоида должны мало отличаться друг от друга и быть существенно больше (в три и более раз) малой полуоси. Во-вторых, приложенный к спутнику гравитационный момент должен существенно превышать другие действующие на спутник механические моменты. В-третьих, орбита спутника должна быть близка к круговой. Если перечисленные условия выполнены, то возможно существование движений спутника, близких так называемой конической прецессии осесимметричного твердого тела на круговой орбите с малым отклонением оси симметрии тела от местной вертикали.

В случае осесимметричного спутника на круговой орбите его продольная ось в номинальном невозмущенном режиме лежит в плоскости, проходящей через радиус-вектор центра масс и нормаль к плоскости орбиты, составляя с плоскостью орбиты угол

Здесь λ - отношение минимального главного центрального момента инерции (момент инерции КА вокруг продольной оси Ix) к среднему значению близких по величине поперечных главных центральных моментов инерции (среднее значение моментов инерции КА вокруг поперечных осей КА Iyz), ω1 - абсолютная угловая скорость закрутки КА вокруг продольной оси.

В случае λ<<1 даже при сравнительно большом отношении |ω10| угол β0 будет мал. Продольная ось спутника с неравными моментами инерции, но удовлетворяющего перечисленным выше условиям, будет совершать движение в окрестности номинального положения малые колебания.

В этом случае номинальными невозмущенными движением спутника следует считать его движения, принадлежащие двумерному интегральному многообразию уравнений движения. Это многообразие строится в виде формальных рядов по целым степеням малых параметров, характеризующих возмущения. В частности, возмущения, вызванные отличием спутника от осесимметричного, характеризуются параметром µ=(I2-I3)/I1, где I2≈I3; возмущения, вызванные эллиптичностью орбиты, характеризуются ее эксцентриситетом и т.п. Указанное интегральное многообразие параметризуется двумя перемененными. Одна из них близка угловой скорости ω1, вторая близка углу поворота спутника вокруг продольной оси. При малых параметрах, равных нулю, интегральное многообразие переходит в номинальный режим осесимметричного спутника, а его параметры в точности совпадают с ω1 и указанным углом.

Формальные ряды, представляющие интегральное многообразие, можно построить не при всех значениях ω1. Чтобы построение было возможно, величины ω0 и ω1 должны быть нерезонансными. Имеется в виду отсутствие резонансов между колебаниями продольной оси спутника в окрестности указанного выше номинального положения и вращением спутника вокруг этой оси. Вблизи резонанса амплитуда колебаний продольной оси спутника в окрестности номинального положения быстро возрастает, и режим разрушается.

Можно показать (Сарычев В.А. Вопросы ориентации искусственных спутников. - Итоги науки техники. Серия Исследования космического пространства. Т. 11. М.: ВИНИТИ, 1978; Хейл Дж. Колебания в нелинейных системах. М.: Мир, 1966; Черноусько Ф.Л. Об устойчивости регулярной прецессии спутника. Прикладная математика и механика, 1963, т. 27, №3, с. 474; Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы и теория нелинейных колебаний. М.: Физматгиз, 1963; Моисеев Н.Н. Асимптотические методы нелинейной механики. М.: Наука, 1969; Хайнбокел Дж., Страбл Р.А. Периодические решения систем дифференциальных уравнений, обладающих симметрией. - Механика. 1966. №1, с. 3; Пуанкаре А. Новые методы небесной механики. Избранные труды. Т. 1 и 2. М.: Наука, 1971-1972), что при λ<<1 «резонансные» значения угловой скорости вращения КА определяемых равенствами:

.

Здесь величина Ω - скорость изменения угла поворота КА вокруг продольной оси, отсчитываемого от плоскости орбиты.

С учетом (3) условие отсутствия резонансов выражается неравенствами

или

Условие отсутствия резонансов является довольно коварным. Аэродинамический момент, действующий на спутник, заставляет ω1 медленно изменяться - эволюционировать. По этой причине даже нерезонансное в начальный момент времени значение ω1 со временем может стать резонансным. Вблизи резонанса амплитуда колебаний продольной оси спутника в окрестности номинального положения быстро возрастает, и режим разрушается.

Условия (4) означают, что средняя угловая скорость вращения КА вокруг продольной оси не должна находиться в резонансе с собственными частотами колебаний этой оси по углам δ и β - углам, задающим положение продольной оси КА в орбитальной системе координат (β - угол между продольной осью КА и плоскостью орбиты, δ - угол между проекцией продольной оси КА на плоскость орбиты и направлением на Землю). Как указывалось выше такие частоты v определяются уравнением . При колебания продольной оси КА в плоскости орбиты и относительно этой плоскости с точностью до членов порядка O(β0) независимы и соответствующие им частоты приближенно равны и . Тогда условия (4) принимают вид

При нарушении одного из неравенств первой группы (6) имеет место резонанс между вращением КА вокруг продольной оси и колебаниями этой оси в плоскости орбиты (δ-резонанс), при нарушении одного из неравенств второй группы (6) имеет место резонанс между вращением КА вокруг продольной оси и колебаниями этой оси в направлении, перпендикулярном плоскости орбиты (β-резонанс). С учетом и (6) соотношения для соответствующих «резонансных» значений угловой скорости вращения спутника ω1 записываются в виде

Например, для КА с характеристикой λ≈0.15 (например, транспортный грузовой корабль (ТГК) «Прогресс») величины νδ0, νβ0 составляют значения соответственно ≈1.6 и ≈1.88, а резонанс первого порядка (n=1) реализуется при значениях ωδ,10 и ωβ,10 соответственно ≈0.83 и ≈0.98.

Считаем, что КА снабжен солнечными батареями (СБ) и что центр аэродинамического давления СБ КА расположен на продольной оси КА. Реализацию режима одноосной гравитационной ориентации КА осуществляем, принимая во внимание взаимное положение центров масс КА, Земли и центра аэродинамического давления СБ КА.

Рассматриваем ориентацию КА, в которой центр аэродинамического давления СБ КА расположен вне отрезка между центрами масс КА и Земли - в данной ориентации значение угла между радиус-вектором КА и вектором, направленным из центра масс КА в центр аэродинамического давления СБ КА, <90°. Тогда в процессе упомянутой выше эволюции убывает и КА со временем попадет в один из резонансов, в результате чего режим ориентированного движения быстро разрушается.

Таким образом в случае, когда центр аэродинамического давления СБ КА расположен вне отрезка между центрами масс КА и Земли, для обеспечения длительного поддержания рассматриваемого режима гравитационной ориентации необходимо, чтобы начальная угловая скорость закрутки спутника выбиралась близкой к своему максимально допустимому значению, определяемому в соответствии с соотношением (2) максимально допустимым значением угла отклонения продольной оси КА от местной вертикали, т.е. определялась формулой

где β0 - максимальное допустимое значение угла отклонения продольной оси КА от местной вертикали; а задаваемый коэффициент α≤1 определяет допустимое уменьшение угловой скорости закрутки КА относительно указанного максимально допустимого значения. Величина данного коэффициента определяется, в том числе точностями построения требуемой ориентации и отработки импульса для закрутки КА, реализуемых системой управления КА, и требованием к длительности поддержания гравитационной ориентации.

В качестве примера приведем результаты анализа возможности реализации длительного (сотни витков) поддержания гравитационной ориентации в случае, когда центр аэродинамического давления СБ КА расположен вне отрезка между центрами масс КА и Земли, для КА с характеристиками λ≈0.15, ω0≈0.065°/сек при высоте орбиты порядка 400 км и длительности витка порядка 1,5 часа. Например, при требовании отклонения продольной оси КА от местной вертикали не более величины 15÷10° в (6) можно принять α≈0.6÷1, что соответствует начальному значению угловой скорости вращения ΚΑ ω1≈0.25÷0.39°/сек, при которой начальное отклонение продольной оси КА от местной вертикали составляет величину β0≈15÷40°, при этом численное моделирование показывает, что длительность поддержания гравитационной ориентации до момента наступления резонанса (т.е. до нарушения заданного требования к точности поддержания гравитационной ориентации - разрушения гравитационной ориентации) составляет не менее, чем сотни витков.

Опишем технический эффект предлагаемого изобретения.

Предложенный способ обеспечивает поддержание требуемых параметров ориентации КА в процессе неуправляемого вращательного движения на длительных (сотни витков) интервалах времени, а именно обеспечивает реализацию режима гравитационной ориентации КА с закруткой на длительных временных интервалах с эволюцией угловой скорости вращения КА в сторону ее замедления.

Указанный результат достигается путем выполнения закрутки КА с предложенной угловой скоростью и из предложенной исходной ориентации, при этом предложенные параметры ориентации КА обеспечивают выполнение колебаний продольной оси КА в окрестности описанного номинального положения максимально длительное время и последующую эволюцию угловой скорости вращения КА в сторону ее замедления.

Предложенная закрутка КА из предложенной исходной ориентации в течение длительного интервала времени «усредняет» действие угловых скоростей вокруг поперечных осей - угловые скорости вокруг поперечных осей отклоняют продольную ось КА от положения, составляющего некоторый угол с местной вертикалью, а затем, за счет вращения КА вокруг продольной оси уменьшают это отклонение и возвращают продольную ось КА в положение, составляющее указанный угол с местной вертикалью. Вместе с тем предложенная закрутка КА вокруг продольной оси не приводит к гироскопической устойчивости этой оси в инерциальном пространстве и КА продолжает движение по орбите, сохраняя описанную одноосную ориентацию близкую к гравитационной. При этом при реализации описанного длительного режима гравитационной ориентации с закруткой угловая скорость вращения КА изменяется в сторону замедления (вращение КА «тормозится»).

В настоящее время технически все готово для реализации предложенного способа таком КА, как ТГК «Прогресс». Для реализации разворотов, закрутки и вычислений могут использоваться штатные средства системы управления ТГК «Прогресс» - система управления движением и навигацией, включая систему автономной навигации, солнечные датчики, датчики угловой скорости, двигатели ориентации, бортовой вычислитель и т.д.

Способ одноосной ориентации космического аппарата вытянутой формы, включающий развороты космического аппарата и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, отличающийся тем, что перед выполнением закрутки космический аппарат разворачивают до совмещения продольной оси космического аппарата с плоскостью, образованной нормалью к плоскости орбиты и радиус-вектором космического аппарата, и достижения углом между продольной осью космического аппарата и плоскостью орбиты максимального допустимого значения угла отклонения продольной оси космического аппарата от местной вертикали, при значении < 90° угла между радиус-вектором космического аппарата и вектором, направленным из центра масс космического аппарата в центр аэродинамического давления солнечных батарей космического аппарата, после чего выполняют закрутку космического аппарата вокруг продольной оси, при этом величину угловой скорости закрутки определяют по формуле

где: α ≤ 1,
λ - отношение минимального главного центрального момента инерции к среднему значению поперечных главных центральных моментов инерции космического аппарата,
ω0 - угловая скорость орбитального движения космического аппарата,
β0 - максимальное допустимое значение угла отклонения продольной оси космического аппарата от местной вертикали.



 

Похожие патенты:

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции.

Изобретение относится к управлению ориентацией космического аппарата (КА) и может быть использовано при выполнении экспериментов и исследований на его борту. .

Изобретение относится к космической технике, а именно к системам управления и угловой стабилизации космического аппарата. .

Изобретение относится к космическим летательным аппаратам и их управляющим устройствам, в частности, для ориентации и стабилизации аппаратов в пространстве с использованием градиента силы тяжести.

Изобретение относится к ракетно-космической технике и может быть использовано при выведении на орбиту нескольких космических аппаратов (КА) одной ракетой-носителем.

Изобретение относится к космической технике, а именно к стабилизирующим устройствам, предназначенным для обеспечения однозначной ориентации космических аппаратов.

Изобретение относится к системам ориентации и стабилизации спутников на орбитах. .

Изобретение относится к космической технике и может быть использовано при проектировании и разработке искусственных спутников, выводимых на эллиптические орбиты высотой от 200 до 700 км.

Изобретение относится к космической технике и может быть использовано при разработке космических аппаратов, выводимых на эллиптические орбиты высотой от 300 до 500 км.

Изобретение относится к космической технике и может быть использовано при проектировании и разработке искусственных спутников, выводимых на орбиты высотой от 200 до 700 км.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА.

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР).

Изобретение относится к инерционным и гироскопическим устройствам, которые могут быть использованы в космической технике. Устройство содержит две опоры, по меньшей мере одна из которых подвижна в окружном и осевом направлениях.

Группа изобретений относится к управлению угловым движением космического аппарата (КА) с помощью комплекса из трех коллинеарных пар двухстепенных силовых гироскопических приборов (ГП).

Группа изобретений относится к управлению ориентацией космических аппаратов (КА) с помощью гиромаховичных исполнительных органов (ГИО) и, более конкретно, к разгрузке ГИО при их насыщении.

Группа изобретений относится к управлению ориентацией космического аппарата (КА). В предлагаемом способе сигнал гироизмерений вектора угловой скорости (ВУС) используют для формирования сигнала управления.

Группа изобретений относится к способам и системам ориентации космического аппарата (КА). В предлагаемом способе формируют сигналы оценки: угла ориентации, угловой скорости вращения КА и управления.

Группа изобретений относится к бесплатформенным системам ориентации (БСО) космических аппаратов (КА) с гироинерциальными и астронавигационными элементами. Предлагаемый способ состоит в компенсации ошибок БСО, вызванных систематическими погрешностями датчиков угловой скорости (ДУС).

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и радиус-вектором КА. Закрутку производят при достижении углом между продольной осью КА и плоскостью орбиты некоторого значения, зависящего от скорости закрутки и соотношения моментов инерции КА. Угловую скорость закрутки выбирают из условия нерезонансности вращения КА по отношению к колебаниям его продольной оси в окрестности номинального положения. Технический результат изобретения состоит в обеспечении устойчивого характера движения КА в окрестности его номинального положения.
Наверх