Способ определения коэффициента теплопроводности жидких теплоизоляционных покрытий

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности жидких теплоизоляционных покрытий. Предложенный способ определения коэффициента теплопроводности жидких теплоизоляционных покрытий заключается в использовании приборов Elcometer 319 и PosiTektor DPM для измерения температуры на поверхности покрытия. На источник тепла устанавливается металлическая пластина с нанесенной жидкой керамической теплоизоляцией. Пластина закрывает всю площадь нагревательного элемента, чтобы свести к минимуму влияние конвективных потоков от нагретой поверхности плиты. Нагрев производится ступенчато с интервалами времени для релаксации температуры с постепенным повышением температуры. Измерения проводятся прибором Elcometer 319 или PosiTektor DPM через 3 часа после включения источника тепла. После чего производится замер температуры на поверхности жидкой теплоизоляции, а также температуры источника тепла и окружающей среды. Расчет коэффициента теплопроводности производится по формуле:

где δ - толщина жидкой теплоизоляции;

αн - коэффициент теплоотдачи с поверхности;

tп - температура на поверхности теплоизоляции;

tо - температура окружающего воздуха;

tп - температура источника тепла.

Технический результат - повышение точности измерения коэффициента теплопроводности жидких теплоизоляционных покрытий.

 

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности жидких теплоизоляционных покрытий.

Известный способ определения коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий заключается в использовании многослойной плоскопараллельной стенки, состоящей из двух слоев материала, установленных на источник тепла, измерении температуры источника тепла tт, температур между двумя слоями материала t и наружной поверхности tн, в определении λu по расчетной формуле. Температуру неизолированной наружной поверхности верхнего слоя tн вычисляют как разность удвоенной температуры между слоями материала и температуры источника тепла по равенству: tн=2t-tт, затем закрепляют на наружной поверхности верхнего слоя материала тонкую металлическую пластину с нанесенным на нее сверхтонким жидким теплоизоляционным покрытием, измеряют температуру в контактной поверхности верхнего слоя материала и металлической пластины с теплоизоляцией tu и определяют коэффициент теплопроводности сверхтонкого жидкого теплоизоляционного покрытия λu по формуле:

где λu - коэффициент теплопроводности сверхтонкого теплоизоляционного покрытия,

δu - толщина сверхтонкого теплоизоляционного покрытия,

δ - толщина слоя материала,

λ - коэффициент теплопроводности материала,

tн - температура неизолированной наружной поверхности верхнего слоя,

tu - температура в контактной поверхности верхнего слоя материала и металлической пластины с теплоизоляцией (RU 2478936, опубл. 10.04.2013).

Недостатком данного способа, принятого за прототип, является то, что на наружную поверхность верхнего слоя теплоизоляционного покрытия закрепляют тонкую металлическую пластину, что в свою очередь ухудшает теплоизоляционные свойства материала. Это происходит из-за принципа действия жидких теплоизоляционных покрытий - низкая теплоотдача с поверхности, которая в свою очередь в большой степени зависит от того, с каким материалом соприкасается поверхность. По той же причине не корректно применение стандартных контактных приборов для измерения температуры, которые основаны на измерении температуры с помощью термопары.

Задачей заявляемого изобретения является получение наиболее точного коэффициента теплопроводности, это достигается тем, что, в отличие от известного технического решения, учитываются свойства жидких теплоизоляционных покрытий.

Сущность изобретения заключается в следующем.

Способ определения коэффициента теплопроводности жидких теплоизоляционных покрытий, включающий использование приборов Elcometer 319 и PosiTektor DPM для измерения температуры на поверхности покрытия, согласно которому на источник тепла устанавливают металлическую пластину с нанесенной жидкой керамической теплоизоляцией, причем пластина закрывает всю площадь нагревательного элемента, чтобы свести к минимуму влияние конвективных потоков от нагретой поверхности пластины, осуществляют ступенчатый нагрев с интервалами времени для релаксации температуры с постепенным повышением температуры, измеряют прибором Elcometer 319 или PosiTektor DPM через 3 часа после включения источника тепла температуру на поверхности жидкой теплоизоляции, измеряют температуру источника тепла и окружающей среды, а расчет коэффициента теплопроводности производят по формуле:

где δ - толщина жидкой теплоизоляции;

αн - коэффициент теплоотдачи с поверхности;

tп - температура на поверхности теплоизоляции;

tо - температура окружающего воздуха;

tп - температура источника тепла.

Технический результат - метод позволяет наиболее точно измерять коэффициент теплопроводности жидких теплоизоляционных покрытий, способ является простым и доступным.

Способ определения коэффициента теплопроводности жидких теплоизоляционных покрытий, включающий использование приборов Elcometer 319 и PosiTektor DPM для измерения температуры на поверхности покрытия, согласно которому на источник тепла устанавливают металлическую пластину с нанесенной жидкой керамической теплоизоляцией, причем пластина закрывает всю площадь нагревательного элемента, чтобы свести к минимуму влияние конвективных потоков от нагретой поверхности пластины, осуществляют ступенчатый нагрев с интервалами времени для релаксации температуры с постепенным повышением температуры, измеряют прибором Elcometer 319 или PosiTektor DPM через 3 часа после включения источника тепла температуру на поверхности жидкой теплоизоляции, измеряют температуру источника тепла и окружающей среды, а расчет коэффициента теплопроводности производят по формуле:

где δ - толщина жидкой теплоизоляции;
αн - коэффициент теплоотдачи с поверхности;
tп - температура на поверхности теплоизоляции;
tо - температура окружающего воздуха;
tп - температура источника тепла.



 

Похожие патенты:

Изобретение относится к тепловым испытаниям и может быть использовано при измерениях теплофизических свойств веществ. Предметом изобретения является способ определения теплопроводности материалов методом параллельного нагрева двух цилиндрических образцов одинаковых размеров при идентичных условиях теплообмена на поверхности, в котором один из образцов выполнен полностью из материала с известными свойствами, а другой - составной, одна часть его выполнена из материала первого образца, а другая - из исследуемого материала.

Изобретение относится к области теплофизических измерений и может быть использовано для измерения коэффициента температуропроводности тонких слоев материалов.

Изобретение относится к измерительной технике и может быть использовано для определения суммарного теплового сопротивления текстильных материалов. Предложен контрольно-измерительный прибор для определения теплотехнических параметров текстильных материалов, включающий тепловой аккумулятор, состоящий из геля в герметической упаковке, термопары с электроиндикатором и сам образец исследуемых материалов.

Изобретение относится к измерительной технике и может быть использовано при теплофизических исследованиях теплозащитных покрытий. Заявлена установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий, содержащая вакуумную камеру и источник нагрева образца с теплозащитным покрытием.

Изобретение относится к технологиям сушки и термовлажностной обработки пористых проницаемых материалов, в частности к способам определения коэффициентов тепло- и массопроводности пористых материалов.

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть использовано для исследования эффективности влияния теплозащитного покрытия на температуру поршня.

Изобретение относится к области измерения теплофизических характеристик физических сред и может быть использовано в морской биологии и химии для расчета температурных условий существования биологических объектов и течения химических реакций в верхнем слое донных осадков в условиях изменяющейся температуры водного слоя.

Изобретение относится к способам измерения теплофизических свойств веществ и может быть использовано в геофизике для оценки глубинных тепловых полей, условий образования и разрушения гидратов углеводородных газов в флюидонасыщенных породах пластовых резервуаров месторождений углеводородов, исследования анизотропии теплопроводности насыщенных горных пород.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с частотой не менее 10 ГГц, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела.

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора.

Изобретение относится к области геофизики и может быть использовано для исследования подземных структур. Раскрыт способ оценивания распределений температур по геологической среде на основании трехмерной модели теплопроводности для геологического пласта. Согласно предложенному способу получают измеренные данные, соответствующие представляющему интерес геологическому подземному пласту, содержащие данные сейсмических исследований, внутрискважинную температуру, измерения теплового потока на дне и поверхности моря и лабораторные измерения пористости керна. Оценивают зависимость между скоростью сейсмической волны и теплопроводностью. При этом скорость сейсмической волны линейно зависит от пористости и теплопроводность экспоненциально или линейно зависит от пористости. Калибруют указанную модель по указанным измеренным внутрискважинным данным и лабораторным измерениям пористости керна. Технический результат - повышение точности и достоверности результатов моделирования. 9 з.п. ф-лы, 5 ил.

Изобретение относится к области строительной теплотехники и может быть использовано для измерения теплового потока, проходящего через конструкцию. Конструкция имеет толщину (D), по которой в поперечном направлении формируется разность (ΔT) температур. Согласно изобретению по меньшей мере два датчика (G1, G2) температуры устанавливают на первой поверхности (S1), причем по меньшей мере один из них, например первый датчик (G1), теплоизолирован от второго датчика (G2). В результате на температуру (T1′), воспринимаемую теплоизолированным датчиком (G1), проходящий через конструкцию (К) тепловой поток воздействует в большей степени, чем на температуру (T1″), детектируемую вторым датчиком. Определяют перепад температур (T1″ - T1′) между вторым датчиком (G2) и первым датчиком (G1), после чего на первый датчик (G1) подают энергию, нагревая первую поверхность в зоне, окружающей данный датчик и, тем самым, уменьшая данный перепад. Далее, исходя из количества приложенной энергии (EQ), определяют, в виде функции от разности (ΔТ) температур, тепловой поток (J), проходящий через конструкцию. Технический результат - повышение точности определения для конкретной конструкции коэффициента теплопередачи. 2 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к области исследования теплофизических характеристик теплоизоляционных материалов. Предложенный способ измерения теплофизических свойств теплоизоляционных материалов методом плоского импульсного источника теплоты заключается в том, что образец исследуемого материала изготавливают в виде трех пластин, причем тонкую пластину размещают между двумя массивными. Между нижней массивной и тонкой пластинами размещают плоский электронагреватель, а термоэлектрический преобразователь располагают между верхней массивной и тонкой пластинами. Полученную систему предварительно выдерживают при заданной начальной температуре, затем на электронагреватель подают электрический импульс, длительность которого находится в диапазоне 18≤τu≤24 сек. В течение активной стадии эксперимента осуществляют измерение и регистрацию температуры с постоянным шагом во времени, определяют максимальное значение температуры, рассчитывают значение температуры T′ и момент времени τ′. Затем определяют ориентировочные значения коэффициентов температуропроводности a op и теплопроводности λop исследуемого материала при заданном ориентировочном значении параметра γop=0,5, находят оптимальные значения параметра γопт, конструкционных размеров , и оптимальную длительность теплового импульса . Толщину средней пластины рассчитывают как , а затем путем проведения серии экспериментов осуществляют измерения и последующую обработку полученных данных и в результате получают значения искомых коэффициентов температуропроводности a и теплопроводности λ исследуемого материала. Технический результат - повышение точности измерений. 4 ил.

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и промышленной теплоэнергетике для исследования в натурных условиях теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий. Сущность способа заключается в замерах температуры внутренней и наружной поверхностей плоской наружной стены, а также плотности теплового потока, проходящего из отапливаемого помещения через исследуемую плоскую наружную стену в окружающую среду, перед нанесением слоя жидкой тепловой изоляции на одну из поверхностей плоской наружной стены. После нанесения слоя жидкой тепловой изоляции известной толщины на одну из поверхностей плоской наружной стены производят аналогичные замеры (с учетом слоя жидкой тепловой изоляции). По известным значениям температуры поверхностей плоской наружной стены и плотности теплового потока до и после нанесения слоя жидкой тепловой изоляции известной толщины вычисляют по специальной расчетной формуле коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции в натурных условиях. 3 ил.

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов. Согласно заявленному способу исследуемый образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт с эталонным образцом, термостатируют при заданной температуре исследуемый и эталонный образец и измеряют температуру. Воздействуют тепловым потоком с заданной плотностью на первый эталонный образец длиной L, значение которой составляет не более расстояния между нагревателями, и расположенные ему параллельно и соосно соединенные между собой другой эталонный образец длиной l, изготовленный из того же материала, что первый эталонный образец длиной L, и исследуемый образец, сумма длин которых составляет L. Причем между параллельно установленными образцами расположена термопара, соединяющаяся с контактом другой эталонный образец длиной l и исследуемый образец, и бегунок, расположенный на первом эталонном образце длиной L, который плавно передвигают до достижения равных температур на контакте и бегунке. Измеряют расстояния от концов первого эталонного образца длиной L до места нахождения бегунка l1 и l2. Затем вычисляют термосопротивление исследуемого образца , а по полученному значению термосопротивления находят значение теплопроводности исследуемого образца. По полученному значению коэффициента теплопроводности судят о теплопроводящих свойствах исследуемого материала. Технический результат - повышение точности определения теплопроводности как объемных, так и плоских материалов. 6 табл., 1 ил.

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий на поверхностях плоских источников теплоты. Сущность способа заключается в локальном нанесении на поверхность плоского источника теплоты слоя жидкой тепловой изоляции известной толщины. По известным значениям температуры поверхности плоского источника теплоты, температуры поверхности теплоизолированного участка и температуры окружающей среды, а также по толщине слоя тепловой изоляции вычисляют по специальной расчетной формуле в зависимости от расположения в пространстве поверхности плоского источника теплоты коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты. 5 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения пожароопасных свойств материалов и веществ. Предлагается установка по определению критического значения лучистого теплового потока. Установка включает плоскую радиационную панель, выполненную в виде рядов из металлических спиралей, намотанных на керамические трубки; рамку для образца и измерительную аппаратуру. При этом установка дополнительно содержит блок управления для регулирования теплового потока от радиационной панели, который регулирует тепловой поток в предложенной установке, с помощью термопары, установленной в керамических трубках. Кроме того, измерительная аппаратура представляет собой термопары, закрепленные на испытуемом образце. Технический результат - повышение точности измерений и уменьшение теплопотерь при проведении испытаний. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области исследования теплофизических характеристик анизотропных материалов. Заявлен способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты, заключающийся в том, что образец исследуемого материала изготавливают в виде двух массивных пластин, между которыми размещают линейный электронагреватель и измеритель температуры. На подготовительной стадии эксперимента полученную систему выдерживают при заданной начальной температуре T0, с постоянным шагом во времени Δτ, измеряют разности температур и, начиная с n-го шага, контролируют величину показателя , n = const выбирают из диапазона 2≤n≤10. При выполнении критерия Ei≤0,01 на линейный электронагреватель подают тепловой импульс, длительность которого находится в диапазоне 18≤τu≤24 с. В течение активной стадии эксперимента с постоянным шагом во времени осуществляют измерение и регистрацию изменения во времени разности температур [T(r,τi)-T0]. По полученным данным находят максимальное значение этой разности. Затем определяют ориентировочные значения коэффициента температуропроводности aop и объемной теплоемкости cρop исследуемого материала, находят величины и , расстояния между линейным электронагревателем и измерителем температуры и , а также оптимальную длительность теплового импульса . Расстояние между измерителем температуры и линейным нагревателем рассчитывают как среднее значение , а затем, путем проведения серии экспериментов при заданной ориентации линейного электронагревателя и измерителя температуры относительно главных осей симметрии образца, осуществляют измерения и последующую обработку полученных данных при найденных значениях , , , . В результате получают зависимости значений искомых коэффициента температуропроводности а и объемной теплоемкости cρ исследуемого материала от ориентации линейного нагревателя и измерителя температуры относительно главных осей симметрии образца. Технический результат - повышение точности измерения теплофизических свойств анизотропных материалов. 3 ил.

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов. Способ определения удельной теплоемкости сыпучих материалов заключается в том, что герметизируют объем с образцом известной массы, образец приводят в тепловой контакт по плоскости с источниками тепла, подводят тепло к образцу, измеряют температуру источников тепла и их удельную мощность, вычисляют тепловые потоки через образец. На протяжении всего процесса измерения обеспечивают постоянство давления в герметичном объеме, занимаемом газовой фазой образца, за счет непрерывного изменения этого объема. Регистрируют изменение объема и изменение среднеобъемной температуры образца, после чего вычисляют удельную теплоемкость исследуемого материала. Технический результат - повышение точности измерения удельной теплоемкости образца сыпучего материала за счет учета в результатах измерения температурного расширения газовой фазы образца. 1 ил.

Изобретение относится к области исследования и анализа технологических сыпучих материалов, в т.ч. пищевых, характеризующихся насыпной плотностью. Способ предусматривает определение параметров теплофизических характеристик слоя сыпучего материала и основан на принципах импульсного теплового неразрушающего контроля материала. Для регистрации температурного поля поверхности слоя сыпучего материала после воздействия теплового импульса используют тепловизор. Для формирования образца слоя сыпучего технологического материала используют контейнер с несъемными боковыми стенками и съемными передней и задней стенками. В передней и задней стенках выполнены соосные отверстия для формирования фокального пятна. Отверстия затянуты полипропиленом. Для расчета коэффициента объемной теплоемкости используют избыточную температуру задней необлучаемой поверхности образца по отношению к ее начальной температуре. Технический результат - повышение точности и достоверности определения параметров теплофизических характеристик слоя сыпучего технологического материала. 5 з.п. ф-лы, 6 ил., 2 табл.
Наверх