Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы



Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы
Офтальмологическое устройство с изменяемыми оптическими свойствами, содержащее формованные жидкокристаллические элементы и поляризационные элементы

 

A61F9/00 - Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке (шапки, кепки с приспособлениями для защиты глаз A42B 1/06; смотровые стекла для шлемов A42B 3/22; приспособления для облегчения хождения больных A61H 3/00; ванночки для промывки глаз A61H 33/04; солнцезащитные и другие защитные очки с оптическими свойствами G02C)

Владельцы патента RU 2594437:

ДЖОНСОН ЭНД ДЖОНСОН ВИЖН КЭА, ИНК. (US)

В настоящем изобретении раскрыты способы и устройство для подготовки офтальмологической линзы с изменяемой оптической силой. Вставка с изменяемыми оптическими свойствами может иметь внутри поверхности с различающимися радиусами кривизны. Вставка с изменяемыми оптическими свойствами может также содержать поляризационные элементы. В некоторых вариантах осуществления вставка с изменяемыми оптическими свойствами может по-разному воздействовать на компоненты поляризации света и позволяет создать офтальмологическое устройство бифокального типа. Источник энергии способен питать вставку с изменяемыми оптическими свойствами, включенную в офтальмологическую линзу. В некоторых вариантах осуществления офтальмологическая линза отлита из силикон-гидрогеля. Различные элементы офтальмологической линзы могут включать в себя электроактивные жидкокристаллические слои для того, чтобы электрическим способом управлять рефракционными характеристиками. 3 н. и 17 з.п. ф-лы, 12 ил.

 

ОТСЫЛКИ НА СМЕЖНЫЕ ЗАЯВКИ

Настоящая заявка на патент испрашивает приоритет по предварительной заявке на патент США № 61/878,723, поданной 17 сентября 2013 г.

УРОВЕНЬ ТЕХНИКИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

1. Область применения изобретения

Настоящее изобретение относится к офтальмологическому линзовому устройству с изменяемыми оптическими свойствами, а более конкретно, в некоторых вариантах осуществления, к изготовлению офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы.

2. Обсуждение смежной области

Традиционно офтальмологическая линза, такая как контактная или интраокулярная линза, обладает заданными оптическими характеристиками. Контактная линза, например, может предоставлять одно или более из: коррекции характеристик зрения, косметического улучшения и терапевтического воздействия, но только набор функций коррекции зрения. Каждая из перечисленных функций обусловлена определенной физической характеристикой линзы. По существу, конфигурация линзы с использованием светопреломляющих свойств позволяет корректировать характеристики зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в материал линзы активного агента позволяет использовать линзу в терапевтических целях.

На сегодняшний день оптические характеристики офтальмологической линзы обусловливаются ее физическими характеристиками. По существу, оптические свойства определяют и затем придают их линзе в процессе изготовления, например отливкой или токарной обработкой. После того как линза изготовлена, ее оптические характеристики остаются постоянными. Однако пользователям может оказаться полезной возможность периодически иметь более одной доступной оптической силы для обеспечения аккомодации зрения. В отличие от тех, кто пользуется очками и может менять очки для изменения оптической коррекции, пользователи контактных либо интраокулярных линз до сих пор не имели возможности менять оптические характеристики при таких способах коррекции зрения без значительных усилий или ношения очков в дополнение к контактным либо интраокулярным линзам.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Соответственно, настоящее изобретение включает в себя инновации, относящиеся к вставке с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, которая может обладать энергообеспечением и быть включена в офтальмологическое устройство и выполнена с возможностью изменения оптических свойств линзы. Примеры таких офтальмологических устройств могут включать в себя контактную линзу или интраокулярную линзу. К тому же здесь представлены способы и устройство для изготовления офтальмологических линз со вставкой с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы. Ряд вариантов осуществления изобретения также включает в себя литую силикон-гидрогелевую контактную линзу с жесткой или формируемой вставкой с энергообеспечением, которая дополнительно включает в себя часть с изменяемыми оптическими свойствами, при этом вставка включена в офтальмологическую линзу биосовместимым образом.

Таким образом, настоящее изобретение включает в себя описание офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, устройство изготовления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, а также способы их производства. Источник энергии может быть размещен или собран на вставке с изменяемыми оптическими свойствами, а вставка может быть размещена вблизи от одной или обеих частей формы для литья: первой части формы для литья и второй части формы для литья. Композицию, содержащую реакционную смесь мономера (в дальнейшем называемую «реакционная смесь мономера»), помещают между первой частью формы для литья и второй частью формы для литья. Первую часть формы для литья располагают в непосредственной близости от второй части формы для литья, тем самым образуя полость линзы с несущей вставкой с энергообеспечением и по меньшей мере некоторым количеством реакционной смеси мономера в полости линзы; реакционная смесь мономера подвергается воздействию актиничного излучения для образования офтальмологических линз. Линзы формируют посредством управления потоком актиничного излучения, которым облучают реакционную смесь мономера. В некоторых вариантах осуществления край офтальмологической линзы или герметизирующий вставку слой может быть образован из стандартных гидрогелевых составов для офтальмологической линзы. Примеры материалов с характеристиками, которые могут обеспечивать приемлемое сочетание со множеством материалов вставки, могут включать в себя, например, материалы семейства нарафилкона (включая нарафилкон A и нарафилкон B), семейства этафилкона (включая этафилкон A), галифилкон А и сенофилкон А.

Способы изготовления вставки с изменяемыми оптическими свойствами, использующей жидкокристаллические элементы, и получаемые в результате вставки представляют собой важные аспекты различных вариантов осуществления. В ряде вариантов осуществления жидкий кристалл могут размещать между слоями центрирования, которые могут устанавливать ориентацию покоя жидкого кристалла. Два упомянутых слоя центрирования могут быть электрически связаны с источником энергии электродами, размещенными на слоях подложки, которая содержит часть с изменяемыми оптическими свойствами. Электроды могут иметь энергообеспечение через промежуточное соединение с источником энергии или непосредственно через компоненты, встроенные во вставку.

Подача питания к слоям центрирования может вызывать сдвиг жидкого кристалла из ориентации покоя в ориентацию с энергообеспечением. В примерах осуществления, использующих два уровня подачи питания, запитанный и незапитанный, жидкий кристалл может иметь только одну ориентацию с энергообеспечением. В других альтернативных вариантах осуществления, где подача питания происходит по шкале энергетических уровней, жидкий кристалл может иметь множество ориентаций с энергообеспечением. Могут быть реализованы также дополнительные варианты осуществления, в которых процесс подачи питания может вызывать переключение между различными состояниями за счет импульса подачи питания.

Результирующее центрирование и ориентация молекул могут воздействовать на свет, проходящий через слой жидкого кристалла, вызывая таким образом изменение во вставке с изменяемыми оптическими свойствами. Например, рефракционные характеристики, получаемые в результате центрирования и ориентации, могут влиять на падающий свет. К тому же такое воздействие может включать в себя эффект нарушения поляризации света. Некоторые варианты осуществления могут включать вставку с изменяемыми оптическими свойствами, в которой подача питания изменяет фокальную характеристику линзы.

В некоторых вариантах осуществления слой жидкого кристалла может быть образован способом, при помощи которого вызывают полимеризацию полимеризуемой смеси, содержащей молекулы жидкого кристалла. Управляя полимеризацией различными способами, можно отделять капли, состоящие из молекул жидкого кристалла, от полимеризованного слоя в процессе его образования. В некоторых вариантах осуществления процессом можно управлять таким образом, чтобы капли были наноразмерными, т.е. чтобы средний или медианный диаметр скопления капель был меньше, чем приблизительно 1 микрон в длину. В некоторых дополнительных вариантах средний или медианный диаметр может также быть меньше, чем приблизительно 0,1 микрона в длину.

Соответственно, в некоторых вариантах осуществления офтальмологическое устройство может быть образовано путем введения вставки с изменяемыми оптическими свойствами, содержащей молекулы жидкого кристалла, внутрь офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, размещенную в оптической зоне офтальмологического устройства. Вставка с изменяемыми оптическими свойствами может содержать передний элемент вставки и задний элемент вставки. Любая или обе поверхности переднего и заднего элемента вставки могут быть искривлены различным образом, при этом в некоторых вариантах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны передней поверхности заднего элемента вставки. В состав линзы и вставки могут входить источник энергии, при этом в некоторых вариантах осуществления источник энергии может размещаться таким образом, чтобы по меньшей мере часть источника энергии находилась в неоптической зоне устройства.

Вставка может содержать по меньшей мере первый жидкокристаллический материал, при этом жидкокристаллический материал может также находиться в каплях, где средний или медианный диаметр скопления капель может быть меньше микрона в длину или рассматриваться в качестве наноразмерного.

В некоторых вариантах осуществления офтальмологическое устройство может представлять собой контактную линзу.

В некоторых вариантах осуществления вставка офтальмологического устройства может содержать электроды, изготовленные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова в качестве примера, не имеющего ограничительного характера. Первый электрод может размещаться в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод может размещаться в непосредственной близости от передней поверхности заднего криволинейного элемента. Когда к первому и второму электродам прикладывают электрический потенциал, в слое жидкого кристалла, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к слою жидкого кристалла может вызвать физическое центрирование молекул жидкого кристалла в направлении электрического поля. В некоторых вариантах осуществления молекулы жидкого кристалла могут размещаться в составе капель внутри слоя, при этом в некоторых вариантах осуществления капли могут иметь средний диаметр меньше 1 микрона. Когда молекулы жидкого кристалла центрируются в направлении электрического поля, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидкого кристалла. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых вариантах осуществления изменение оптических характеристик может привести к изменению фокальных свойств линзы, содержащей слой с молекулами жидкого кристалла.

В некоторых вариантах осуществления описываемые офтальмологические устройства могут включать в себя процессор.

В некоторых вариантах осуществления описываемые офтальмологические устройства могут включать в себя электрическую схему. Электрическая схема может управлять электрическим током или направлять его для обеспечения его протекания через офтальмологическое устройство. Электрическая схема может управлять электрическим током для обеспечения его протекания от источника энергии к первому или второму электродным элементам.

Устройство-вставка может быть образовано более чем из переднего элемента вставки и заднего элемента вставки в некоторых вариантах осуществления. Между передним элементом вставки и задним элементом вставки могут размещаться промежуточный элемент или элементы. В одном из примеров слой, содержащий жидкий кристалл, может размещаться между передним элементом вставки и промежуточным элементом. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, размещенную в оптической зоне офтальмологического устройства. Любая или обе поверхности переднего, промежуточного и заднего элемента вставки могут быть искривлены различным образом, при этом в некоторых вариантах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны передней поверхности промежуточного элемента вставки. В состав линзы и вставки может входить источник энергии, при этом в некоторых вариантах осуществления источник энергии может размещаться таким образом, чтобы по меньшей мере часть источника энергии находилась в неоптической зоне устройства.

Вставка с передним элементом вставки, задним элементом вставки и по меньшей мере первым промежуточным элементом вставки может содержать по меньшей мере первую молекулу жидкого кристалла, при этом молекула или молекулы могут также находиться в составе капель, где средний или медианный диаметр скопления капель может иметь меньше микрона в длину или рассматриваться в качестве наноразмерного.

В некоторых вариантах осуществления с передним элементом вставки, задним элементом вставки и по меньшей мере первым промежуточным элементом вставки офтальмологическое устройство может представлять собой контактную линзу.

В некоторых вариантах осуществления вставка офтальмологического устройства с передним элементом вставки, задним элементом вставки и по меньшей мере первым промежуточным элементом вставки может содержать электроды, изготовленные из различных материалов, включая прозрачные материалы, такие как оксид индия и олова в качестве примера, не имеющего ограничительного характера. Первый электрод может размещаться в непосредственной близости от задней поверхности переднего криволинейного элемента, при этом второй электрод может размещаться в непосредственной близости от передней поверхности промежуточного элемента. Когда к первому и второму электродам прикладывают электрический потенциал, в слое жидкого кристалла, размещенном между электродами, может образоваться электрическое поле. Приложение электрического поля к слою жидкого кристалла может вызвать физическое центрирование молекул жидкого кристалла в направлении электрического поля. В некоторых вариантах осуществления молекулы жидкого кристалла могут размещаться в составе капель внутри слоя, при этом в некоторых вариантах осуществления капли могут иметь средний диаметр меньше 1 микрона. Когда молекулы жидкого кристалла центрируются в направлении электрического поля, такое центрирование может вызвать изменение оптических характеристик, при котором световой луч может восприниматься как проходящий через слой, содержащий молекулы жидкого кристалла. В качестве примера, не имеющего ограничительного характера, можно привести изменение коэффициента преломления, вызванное изменением центрирования. В некоторых вариантах осуществления изменение оптических характеристик может привести к изменению фокальных свойств линзы, содержащей слой с молекулами жидкого кристалла.

В некоторых вариантах осуществления промежуточный элемент может содержать множество элементов, соединенных вместе.

В некоторых вариантах осуществления, где вставка может состоять из переднего элемента вставки, заднего элемента вставки и промежуточного элемента или элементов вставки, слой, содержащий жидкий кристалл, может размещаться между передним элементом вставки и промежуточным элементом, или между промежуточным элементом и задним элементом вставки. Кроме того, поляризационный элемент также может размещаться внутри устройства-вставки с изменяемыми оптическими свойствами. Вставка с изменяемыми оптическими свойствами может содержать по меньшей мере часть, размещенную в оптической зоне офтальмологического устройства. Любая или обе поверхности переднего, промежуточного и заднего элемента вставки могут быть искривлены различным образом, при этом в некоторых вариантах осуществления радиус кривизны задней поверхности переднего элемента вставки может отличаться от радиуса кривизны на передней поверхности промежуточного элемента вставки. В состав линзы и вставки могут входить источник энергии, при этом в некоторых вариантах осуществления источник энергии может размещаться таким образом, чтобы по меньшей мере часть источника энергии находилась в неоптической зоне устройства.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеизложенные и прочие элементы и преимущества настоящего изобретения станут понятны после следующего более подробного описания предпочтительных вариантов осуществления настоящего изобретения, проиллюстрированных с помощью прилагаемых чертежей.

На Фиг. 1 представлен пример компонентов устройства узла формы для литья, которые могут быть подходящими для реализации некоторых вариантов осуществления настоящего изобретения.

На Фиг. 2А и 2В представлен пример осуществления офтальмологической линзы с энергообеспечением и вставкой с изменяемыми оптическими свойствами.

На Фиг. 3 приводится сечение вставки с изменяемыми оптическими свойствами, где передний и задний криволинейные элементы вставки с изменяемыми оптическими свойствами могут иметь различную кривизну и где часть с изменяемыми оптическими свойствами может быть образована жидким кристаллом.

На Фиг. 4 представлено поперечное сечение варианта осуществления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована жидким кристаллом.

На Фиг. 5 представлен пример варианта осуществления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована жидким кристаллом.

На Фиг. 6A представлен альтернативный пример варианта осуществления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, часть с изменяемыми оптическими свойствами может быть образована жидким кристаллом.

На Фиг. 6B представлен альтернативный пример варианта осуществления вставки с изменяемыми оптическими свойствами, в котором часть с изменяемыми оптическими свойствами может быть образована жидким кристаллом, а вставка может также содержать поляризационный элемент.

На Фиг. 6C представлен альтернативный пример варианта осуществления вставки с изменяемыми оптическими свойствами, в котором вставка с изменяемыми оптическими свойствами может быть образована жидким кристаллом, и приводятся возможные варианты изменения компонента поляризованного света при прохождении линзы такого варианта осуществления.

На Фиг. 7 представлены этапы способа изготовления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, которая может быть образована жидким кристаллом.

На Фиг. 8 представлен пример компонентов устройства, предназначенного для помещения вставки с изменяемыми оптическими свойствами из жидкого кристалла в часть формы для литья офтальмологической линзы.

На Фиг. 9 представлен процессор, который можно использовать для реализации некоторых вариантов осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Настоящее изобретение включает в себя способы и устройства, предназначенные для изготовления офтальмологической линзы со вставкой с изменяемыми оптическими свойствами, причем вставка с изменяемыми оптическими свойствами образована из жидкого кристалла или композитного материала, который сам включает в себя жидкокристаллические составляющие. К тому же настоящее изобретение включает в себя офтальмологическую линзу со вставкой с изменяемыми оптическими свойствами, образованной из жидкого кристалла, встроенного в офтальмологическую линзу.

В соответствии с настоящим изобретением сформирована офтальмологическая линза, содержащая встроенную вставку и источник энергии, такой как электрохимический элемент или аккумуляторная батарея, в качестве средства для хранения энергии. В некоторых примерах осуществления материалы, содержащие источник энергии, могут быть герметизированы и изолированы от среды, в которую помещают офтальмологическую линзу. В некоторых примерах осуществления источник энергии может включать в себя щелочной электрохимический элемент, который можно использовать в первичной схеме или в схеме с перезарядкой.

Для изменения оптической части можно использовать регулирующее устройство, управляемое пользователем. Регулирующее устройство может включать в себя, например, электронное или пассивное устройство для увеличения или уменьшения напряжения на выходе или для подключения или отключения источника энергии. Некоторые примеры осуществления также могут включать в себя автоматизированное регулирующее устройство, предназначенное для изменения части с изменяемыми оптическими свойствами посредством автоматизированного устройства в соответствии с измеренным параметром или данными, введенными пользователем. Введение данных носителем возможно, например, с помощью переключателя, контролируемого беспроводным устройством. Беспроводное управление может включать в себя, например, радиочастотное управление, электромагнитное переключение, световое излучение с упорядоченной структурой и индуктивное переключение. В другом примере осуществления активация может происходить в ответ на воздействие биологической функции или в ответ на показания датчика внутри офтальмологической линзы. В других примерах осуществления, не имеющих ограничительного характера, активация может происходить также в результате изменения освещенности окружающей среды.

Изменение оптической силы может происходить тогда, когда электрические поля, создаваемые подачей питания к электродам, вызывают перецентрирование внутри слоя жидкого кристалла, сдвигая, таким образом, молекулы из ориентации покоя в ориентацию с энергообеспечением. В других альтернативных примерах осуществления изобретения можно использовать другие эффекты, вызванные изменением слоев жидкого кристалла за счет подачи питания к электродам, например, изменением состояния поляризации света, в частности вращением плоскости поляризации.

В некоторых примерах осуществления изобретения со слоями жидкого кристалла в неоптической зоне офтальмологической линзы могут присутствовать элементы с энергообеспечением, в то время как другие примеры осуществления изобретения не требуют подачи питания. В примерах осуществления, не требующих подачи питания, жидкий кристалл может изменяться пассивно в результате воздействия какого-либо внешнего фактора, такого как, например, температура окружающей среды или естественное освещение.

Жидкокристаллическая линза может обеспечивать электрически изменяемый коэффициент преломления поляризованного света, падающего на тело линзы. Комбинация двух линз, в которой ориентация оптической оси второй линзы поворачивается относительно первой линзы, позволяет получить линзу, которая может быть способна изменять коэффициент преломления неполяризованного окружающего освещения.

Комбинирование электрически активных слоев жидкого кристалла с электродами может сформировать физический объект, которым можно управлять приложением электрического поля к электродам. Если в периферической зоне жидкокристаллического слоя присутствует диэлектрический слой, то поле диэлектрического слоя и поле жидкокристаллического слоя могут объединяться в поле электродов. Характер трехмерной формы комбинации полей слоев можно оценить, основываясь на принципах электродинамики и геометрии диэлектрического слоя и жидкокристаллического слоя. Если эффективная электрическая толщина диэлектрического слоя неоднородна, то воздействие поля на электроды может иметь «форму» эффективной формы диэлектрика и может создавать размерные изменения показателя преломления в жидкокристаллических слоях. В ряде примеров осуществления такое придание формы может приводить к образованию линз, способных приобретать изменяемые фокальные свойства.

Альтернативный пример осуществления может предусматривать вариант, при котором физические элементы линзы, содержащие слои жидких кристаллов, меняют свою форму таким образом, чтобы обеспечивать изменение фокальных свойств. При этом электрически регулируемый показатель преломления слоя жидких кристаллов можно использовать для внесения изменений в фокальные свойства линзы в зависимости от прилагаемого электрического поля в слое жидкого кристалла за счет применения электродов. Показатель преломления слоя жидких кристаллов можно назвать эффективным показателем преломления, при этом каждую обработку, относящуюся к показателю преломления можно рассматривать как в равной мере относящуюся к эффективному показателю преломления. Эффективный показатель преломления можно получить, например, в результате наложения множества зон с различными показателями преломления. В некоторых примерах осуществления эффективным аспектом может быть среднее значение вкладов различных зон, в других примерах осуществления эффективным аспектом может быть наложение зональных или молекулярных эффектов на падающий свет. Форма, которую передняя поверхность оболочки придает слою жидкого кристалла, и форма, которую задняя поверхность оболочки придает жидкому кристаллу, могут в первую очередь определять фокальные свойства системы.

В последующих разделах документа приводятся подробные описания вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления изобретения являются только примерами осуществления изобретения, предполагается, что специалисту в области, к которой относится изобретение, могут быть понятны возможности создания модификаций и других вариантов осуществления изобретения. Поэтому следует учитывать, что область, охватываемая настоящим изобретением, не ограничивается описанными примерами осуществления изобретения.

СПИСОК ТЕРМИНОВ

В приведенном ниже описании и пунктах формулы настоящего изобретения может быть использован ряд терминов, для которых будут приняты следующие определения.

Слой центрирования: в рамках настоящего изобретения относится к слою, смежному с жидкокристаллическим слоем, воздействующим и центрирующим ориентацию молекул внутри жидкокристаллического слоя. Результирующее центрирование и ориентация молекул могут воздействовать на свет, проходящий через слой жидкого кристалла. Например, рефракционные характеристики, получаемые в результате центрирования и ориентации, могут влиять на падающий свет. К тому же, такое воздействие может включать в себя эффект нарушения поляризации света.

Электрическая связь: в рамках настоящего изобретения относится к состоянию под воздействием электрического поля. В случае использования проводящих материалов воздействие может происходить в результате протекания электрического тока или приводит к протеканию электрического тока. При использовании других материалов воздействие, такое как, например, стремление ориентировать постоянные и индуцированные дипольные молекулы вдоль линий поля, к примеру, может вызывать поле электрического потенциала.

С энергообеспечением: при использовании в настоящем документе относится к состоянию, в котором устройство может поставлять электрический ток или аккумулировать электрическую энергию.

Ориентация с энергообеспечением: в рамках настоящего изобретения относится к ориентации молекул жидкого кристалла при воздействии на них потенциального поля, подключенного к источнику энергии. Например, устройство, содержащее жидкие кристаллы, может иметь одну ориентацию с энергообеспечением, если источник работает только в режиме вкл. и выкл. В других вариантах осуществления ориентация с энергообеспечением может изменяться по шкале в зависимости от количества переданной энергии.

Энергия: в настоящем документе обозначает способность физической системы к совершению работы. В рамках настоящего изобретения способность, как правило, может относиться к способности выполнения электрических действий при совершении работы.

Источник энергии: в настоящем документе обозначает устройство, выполненное с возможностью поставлять энергию или приводить биомедицинское устройство в состояние с энергообеспечением.

Устройство сбора энергии: при использовании в настоящем документе термин относится к устройствам, способным извлекать энергию из окружающей среды и преобразовывать ее в электрическую энергию.

Интраокулярная линза: в рамках настоящего изобретения относится к офтальмологической линзе, встроенной в глаз.

Линзообразующая смесь, или реакционная смесь, или реакционная смесь мономера (РСМ): при использовании в настоящем документе термин относится к мономерному или форполимерному материалу, который можно полимеризовать и поперечно сшить или поперечно сшить с образованием офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как УФ-блокаторы, оттеночные добавки, фотоинициаторы или катализаторы, а также прочие желаемые добавки для офтальмологических линз, например контактных или интраокулярных линз.

Линзообразующая поверхность: в настоящем документе обозначает поверхность, используемую для литья линзы. В ряде вариантов осуществления любая такая поверхность может представлять собой поверхность оптической чистоты и качества, что указывает на то, что данная поверхность является достаточно гладкой и сформирована таким образом, что поверхность линзы, образованная при полимеризации линзообразующей смеси, находящейся в непосредственном контакте с поверхностью формы для литья, обладает оптически приемлемым качеством. Дополнительно, в ряде вариантов осуществления линзообразующая поверхность может иметь такую геометрию, которая необходима для придания поверхности линзы желаемых оптических характеристик, включая, например, сферическую, асферическую и цилиндрическую силу, коррекцию аберраций волнового фронта и коррекцию топографии роговицы.

Жидкий кристалл: при использовании в настоящем документе термин относится к состоянию вещества, имеющего свойства и стандартной жидкости, и твердого кристалла. Жидкий кристалл невозможно рассматривать как твердое вещество, но его молекулы показывают определенную степень центрирования. Используемый в настоящем документе термин «жидкий кристалл» не ограничивается конкретной фазой или структурой, но такой жидкий кристалл может иметь конкретную ориентацию в состоянии покоя. Ориентацию и фазы жидкого кристалла можно изменять с помощью внешних воздействий, таких как, например, температура, магнитное или электрическое поле, в зависимости от класса жидкого кристалла.

Литий-ионный элемент: при использовании в настоящем документе термин относится к электрохимическому элементу, в котором электрическая энергия вырабатывается в результате движения ионов лития через элемент. Такой электрохимический элемент, как правило, называется батареей и в стандартных формах допускает возможность подзарядки или перезарядки.

Несущая вставка или вставка: в настоящем документе обозначает формуемую или жесткую подложку, способную поддерживать источник энергии внутри офтальмологической линзы. В некоторых вариантах осуществления несущая вставка также включает в себя одну или более частей с изменяемыми оптическими свойствами.

Форма для литья: в настоящем документе обозначает жесткий или полужесткий объект, который можно применять для формования линз из неполимеризованных составов. Некоторые предпочтительные формы для литья включают в себя две части формы для литья: часть формы для литья, формирующая переднюю криволинейную поверхность, и часть формы для литья, формирующая заднюю криволинейную поверхность.

Офтальмологическая линза, или линза: при использовании в настоящем документе термин относится к любому офтальмологическому устройству, расположенному в или на глазу. Эти устройства могут обеспечивать оптическую коррекцию или применяться в косметических целях. Например, термин «линза» относится к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или иному устройству подобного назначения, служащему для коррекции или модификации зрения или для косметической коррекции физиологии глаза (например, изменения цвета радужной оболочки) без ущерба для зрения. В некоторых вариантах осуществления предпочтительные линзы, составляющие предмет настоящего изобретения, представляют собой мягкие контактные линзы, полученные из силиконовых эластомеров или гидрогелей, которые включают в себя, например, силикон-гидрогели и фтор-гидрогели.

Оптическая зона: в настоящем документе обозначает область офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.

Оптическая сила: в настоящем документе обозначает совершенную работу или переданную энергию за единицу времени.

Перезаряжаемый или перезапитываемый: в настоящем документе обозначает возможность быть перезаряженным или переведенным в состояние с более высокой способностью к совершению работы. Множество вариантов применения в рамках настоящего изобретения могут относиться к возможности восстановления указанной способности, при которой электрический ток определенной величины генерируется в течение определенного восстановленного периода времени.

Перезапитывать или перезаряжать: в настоящем документе означает возвращение источника энергии в состояние с большей способностью выполнять работу. Множество вариантов применения в рамках настоящего изобретения могут быть связаны с восстановлением способности устройства генерировать электрический ток определенной величины в течение определенного восстановленного периода времени.

Высвобожденный из формы для литья: в рамках настоящего изобретения относится к линзе, которая либо полностью отделена от формы для литья, либо лишь слабо закреплена на ней таким образом, что ее можно отделить легким встряхиванием или сдвинуть с помощью тампона.

Ориентация покоя: в рамках настоящего изобретения относится к ориентации молекул жидкокристаллического устройства в состоянии покоя, то есть без энергообеспечения.

С изменяемыми оптическими свойствами: при использовании в настоящем документе термин относится к способности изменять оптические характеристики: например оптическую силу линзы или угол поляризации.

ОФТАЛЬМОЛОГИЧЕСКИЕ ЛИНЗЫ

На Фиг. 1 представлено устройство 100 для образования офтальмологических устройств, содержащих герметизированные и герметично закрытые вставки. Устройство включает в себя пример формы для литья передней криволинейной поверхности 102 и соответствующей ей формы для литья задней криволинейной поверхности 101. Вставку с изменяемыми оптическими свойствами 104 и тело 103 офтальмологического устройства можно разместить внутри формы для литья передней криволинейной поверхности 102 и формы для литья задней криволинейной поверхности 101. В некоторых примерах осуществления материал тела 103 может представлять собой гидрогелевый материал и окружать вставку с изменяемыми оптическими свойствами 104 на всех поверхностях.

Вставка с изменяемыми оптическими свойствами 104 может содержать множество жидкокристаллических слоев 109 и 110. Другие примеры осуществления могут включать в себя один жидкокристаллический слой; некоторые из этих вариантов описаны в следующих разделах. Применение устройства 100 может позволить создать новое офтальмологическое устройство, образованное из комбинации компонентов со множеством герметизированных областей.

В ряде примеров осуществления линза со вставкой с изменяемыми оптическими свойствами 104 может включать в себя конфигурацию с жесткой центральной частью и мягкими краями, в которой центральный жесткий оптический элемент, содержащий жидкокристаллические слои 109 и 110, непосредственно контактирует с атмосферой и поверхностью роговицы передней и задней поверхностями, соответственно. Мягкие края материала линзы (как правило, материала на основе гидрогеля) прикрепляют по периферической зоне жесткого оптического элемента, и жесткий оптический элемент также может обеспечивать энергию и функциональность для полученной офтальмологической линзы.

На виде сверху 200 на Фиг. 2А и поперечном сечении 250 на Фиг. 2В показан пример осуществления вставки с изменяемыми оптическими свойствами. На данной фигуре источник энергии 210 показан в части периферической зоны 211 вставки с изменяемыми оптическими свойствами 200. Источник энергии 210 может включать в себя, например, тонкую пленку, перезаряжаемую литий-ионную батарею или батарею щелочных аккумуляторов. Источник энергии 210 может быть соединен с соединительными элементами 214 для обеспечения взаимосвязи. Дополнительные соединительные элементы, например 225 и 230, могут связывать источник питания 210 со схемой, например, показанной позицией 205. В других примерах осуществления вставка может иметь элементы взаимосвязи, расположенные на ее поверхности.

В некоторых примерах осуществления вставка с изменяемыми оптическими свойствами 200 может включать в себя гибкий субстрат. Данный гибкий субстрат может иметь форму, приближенную к типичной форме линзы, аналогичным образом с тем, что было описано выше, или иными средствами. Однако для придания дополнительной гибкости вставка с изменяемыми оптическими свойствами 200 может включать в себя дополнительные элементы формы, такие как радиальные продольные разрезы. Возможна установка множества электронных компонентов, например, обозначенных 205, в частности интегральных схем, отдельных компонентов, пассивных компонентов, а также других устройств, установка которых также может быть включена.

Часть с изменяемыми оптическими свойствами 220 также изображена на фигурах. Часть с изменяемыми оптическими свойствами 220 может изменяться по команде при пропускании тока через вставку с изменяемыми оптическими свойствами, что, в свою очередь, приводит, как правило, к изменению электрического поля, приложенного к жидкокристаллическому слою. В ряде примеров осуществления часть с изменяемыми оптическими свойствами 220 содержит жидкокристаллический тонкий слой между двумя слоями прозрачной подложки. Может существовать множество способов электронной активации и регулирования компонента с изменяемыми оптическими свойствами, как правило, с помощью электронной схемы 205. Электронная схема может принимать различного рода сигналы и соединяться с сенсорными элементами, которые могут находиться во вставке, например, элемент 215. В некоторых примерах осуществления вставку с изменяемыми оптическими свойствами можно инкапсулировать в края линзы 255, которые могут быть образованы из гидрогелевого материала или другого подходящего материала для изготовления офтальмологической линзы. В таких примерах осуществления офтальмологическая линза может содержать края 255 офтальмологической линзы и инкапсулированную вставку 200 офтальмологической линзы, которая сама по себе может содержать слои или зоны жидкокристаллического материала или состоять из жидкокристаллического материала.

ВСТАВКА С ИЗМЕНЯЕМЫМИ ОПТИЧЕСКИМИ СВОЙСТВАМИ, СОДЕРЖАЩАЯ ЖИДКОКРИСТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ

На Фиг. 3, позиция 300, можно найти пример действия линзы для двух элементов линзы различной формы. Как отмечалось ранее, обладающая признаками изобретения вставка с изменяемыми оптическими свойствами, описанная в настоящем документе, может быть образована при введении системы электрода и жидкокристаллического слоя между двумя элементами линзы различной формы. Как показано в 350, система электрода и жидкокристаллического слоя может занимать пространство между двумя элементами линзы. Такими участками могут быть передний криволинейный элемент 320 и задний криволинейный элемент 310.

В примере, не имеющем ограничительного характера, передний криволинейный элемент 320 может иметь вогнутую по форме поверхность, которая соприкасается с пространством 350. В некоторых вариантах осуществления форма может дополнительно характеризоваться радиусом кривизны, который обозначается 330, и фокусной точкой 335. В соответствии со сферой охвата настоящего изобретения могут быть изготовлены более сложные формы с различными параметрическими характеристиками; однако для наглядности можно использовать простую сферическую форму.

Точно так же и без ограничительного характера задний криволинейный элемент 310 может иметь выпуклую по форме поверхность, которая соприкасается с пространством 350. В некоторых вариантах осуществления форма может дополнительно характеризоваться радиусом кривизны, который обозначается 345, и фокусной точкой 340. В соответствии со сферой охвата настоящего изобретения могут быть изготовлены более сложные формы с различными параметрическими характеристиками; однако для наглядности можно использовать простую сферическую форма.

Чтобы проиллюстрировать работу линзы типа, обозначенного позицией 300, укажем, что материал, содержащий элементы 310 и 320, может обладать коэффициентом преломления, имеющим значение n. В качестве примера, не имеющего ограничительного характера, в пространстве 350 можно выбрать слой жидкокристаллического композитного материала, имеющего соответствующее значение коэффициента преломления. Таким образом, когда световые лучи проходят через элементы линзы 310 и 320 и пространство 350, они не будут взаимодействовать с различными поверхностями раздела так, чтобы корректировать фокальные свойства. Выполняя свое назначение, части линзы, не показанные на чертеже, могут активировать подачу питания к различным компонентам, вследствие чего жидкокристаллический слой в пространстве 350 может принимать другое значение показателя преломления падающего света. В примере, не имеющем ограничительного характера, результирующий показатель преломления может быть понижен. Далее, на каждой границе раздела материалов можно моделировать нарушение хода светового луча с учетом фокальных свойств поверхности и изменения показателя преломления.

Модель может быть основана на законе преломления света: sin (theta1)/sin (theta2)=n2/n1. Например, граница раздела может быть образована элементом 320 и пространством 350, theta1 может представлять собой угол, образуемый падающим лучом с нормалью к поверхности на границе раздела. Theta2 может представлять собой моделируемый угол, образуемый лучом с нормалью к поверхности при выходе за пределы границы раздела. n2 может представлять собой показатель преломления пространства 350, а n1 - показатель преломления элемента 320. Когда n1 не равен n2, углы theta1 и theta2 также будут различными. Таким образом, когда электрически изменяемый коэффициент преломления в жидкокристаллическом слое в пространстве 350 изменяется, траектория светового луча на границе раздела также изменяется.

На Фиг. 4 показана офтальмологическая линза 400 со встроенной вставкой с изменяемыми оптическими свойствами 410. Офтальмологическая линза 400 может иметь переднюю криволинейную поверхность 401 и заднюю криволинейную поверхность 402. Вставка 410 может иметь часть с изменяемыми оптическими свойствами 403 с жидкокристаллическим слоем 404. В некоторых примерах осуществления вставка 410 может иметь множество жидкокристаллических слоев 404 и 405. Части вставки 410 накладываются на оптическую зону офтальмологической линзы 400.

На Фиг. 5 показана часть с изменяемыми оптическими свойствами 500, которую можно вставить в офтальмологическую линзу, а также жидкокристаллический слой 530. Часть с изменяемыми оптическими свойствами 500 может иметь похожее разнообразие материалов и структурного соответствия, как уже обсуждалось в других разделах данного описания. В ряде примеров осуществления первый прозрачный электрод 545 могут размещать на первой прозрачной подложке 550. Первая поверхность линзы 540 может быть образована диэлектрической пленкой и, в примерах осуществления, слоями центрирования, которые могут размещаться на первом прозрачном электроде 545. В таких примерах осуществления форма диэлектрического слоя первой поверхности линзы может формировать изменяемую по диэлектрической толщине форму, как показано на фигуре. Такая изменяемая по диэлектрической толщине форма может сообщать дополнительную фокусирующую оптическую силу линзе сверх геометрических эффектов, обсуждавшихся со ссылкой на Фиг. 3. В дополнительных примерах осуществления сформированный слой можно образовать литьем под давлением на комбинации первого прозрачного электрода 545 и подложки 550.

В некоторых примерах осуществления первому прозрачному электроду 545 и второму прозрачному электроду 520 может быть придана различная форма. В некоторых примерах придание формы может приводить к образованию отдельных четко выраженных зон, к которым подачу питания могут осуществлять отдельно. В других примерах электроды могут формировать определенные структуры, такие как спираль, идущая от центра линзы к периферической зоне, вследствие чего к жидкокристаллическому слою 530 прикладывается переменное электрическое поле. В любом случае такое придание формы электродам могут выполнять в дополнение к приданию формы диэлектрическому слою на электроде или вместо него. Придание формы электродам таким способом может также сообщать дополнительную фокусирующую оптическую силу линзе в процессе эксплуатации.

Жидкокристаллический слой 530 может быть размещен между первым прозрачным электродом 545 и вторым прозрачным электродом 520. Второй прозрачный электрод 520 может быть расположен на верхнем слое подложки 510, причем устройство, образованное от верхнего слоя подложки 510 к нижнему слою подложки 550, может содержать часть с изменяемыми оптическими свойствами 500 офтальмологической линзы. Два слоя центрирования могут также размещаться в позициях 540 и 525 на диэлектрическом слое и окружать жидкокристаллический слой 530. Слои центрирования 540 и 525 могут функционировать для образования ориентации покоя офтальмологической линзы. В ряде примеров осуществления прозрачные слои электродов 520 и 545 могут находиться в электрической связи с жидкокристаллическим слоем 530 и вызывать сдвиг ориентации от ориентации покоя к по меньшей мере одной ориентации с энергообеспечением.

На Фиг. 6A показан альтернативный вариант части с изменяемыми оптическими свойствами 600, которую можно вставлять в офтальмологическую линзу, а также два жидкокристаллических слоя: 640 и 620. Каждый из аспектов различных слоев, окружающих жидкокристаллическую зону, может отличаться подобным разнообразием, как описано выше применительно к вставке с изменяемыми оптическими свойствами 500, показанной на Фиг. 5. В некоторых примерах осуществления слои центрирования могут вносить поляризационную чувствительность в функционирование единственного жидкокристаллического элемента. Комбинируя первый элемент на основе жидких кристаллов, образованный первой подложкой 610, где промежуточные слои в пространстве вокруг 620 и вторая подложка 630 могут иметь первый поляризационный приоритет, со вторым элементом на основе жидких кристаллов, образованным второй поверхностью на второй подложке 630, промежуточными слоями в пространстве вокруг 640 и третьей подложкой 650 со вторым поляризационным приоритетом, можно сформировать комбинацию, позволяющую получить электрически изменяемые фокальные свойства линзы, нечувствительной к поляризационным аспектам падающего на нее света.

В приведенном примере элемента 600 комбинацию двух электрически активных жидкокристаллических слоев различного типа и разнообразие, связанное с примером 500, можно получить при помощи трех слоев подложки. В других примерах устройство может быть образовано комбинацией четырех различных подложек. В таких примерах промежуточная подложка 630 может подразделяться на два слоя. Если подложки объединяют позднее, можно получить устройство, функционирующее аналогично элементу 600. Комбинация четырех слоев представляет собой удобный пример изготовления элемента, в котором вокруг жидкокристаллических слоев 620 и 640 можно выполнить аналогичные устройства, где различия при обработке могут быть связаны с частью стадий, определяющих элементы центрирования жидкокристаллического элемента. В дополнительных примерах, если линза, образованная вокруг одного жидкокристаллического слоя, такого, как показан позицией 500, является сферически-симметричной или симметричной при повороте на девяносто градусов, то два элемента можно собрать в конструкцию того же типа, который показан позицией 600, путем поворота этих двух элементов на девяносто градусов друг относительно друга перед сборкой.

Альтернативный пример осуществления, нечувствительный к поляризационным аспектам падающего на него света, может быть показан на Фиг. 6B и обозначен позицией 660. В варианте осуществления, обозначенном позицией 660, единственный оптический элемент типа, который обсуждали со ссылкой на Фиг. 5, показан содержащим первый и второй элементы вставки, 610 и 630 соответственно, окружающие активный жидкокристаллический слой, содержащий жидкокристаллические элементы и обозначенный позицией 620. Как упоминалось выше, центрированные жидкокристаллические элементы могут по-разному действовать на различные компоненты поляризации падающего света. Однако вместо комбинирования двух ортогонально развернутых ориентированных жидкокристаллических слоев в этом случае можно разместить поляризационный фильтр, обозначенный позицией 665 на Фиг. 6B. В некоторых примерах осуществления поляризационный фильтр может позволять поляризованному свету, соответствующему центрированию элемента 620, проходить через него, одновременно блокируя ортогональную компоненту поляризации. Поэтому электрически активные фокальные аспекты жидкокристаллического слоя 620 могут создавать одиночный эффект, воздействующий на свет, падающий на линзу, хотя и только на одну компоненту поляризации падающего света.

В варианте осуществления 660 на Фиг. 6B изображен поляризационный фильтр 665, который в некоторых вариантах осуществления может быть статическим, а в других вариантах осуществления - электрически активным. Этот слой могут размещать, например, между двумя элементами вставки, служащими в качестве оболочки. Такой пример осуществления приведен на Фиг. 6B, где поляризационный элемент 665 могут размещать между вторым элементом вставки 630 и третьим элементом вставки 650. Возможны многие варианты осуществления, связанные с применением поляризационного элемента в оптическом устройстве, содержащем центрированный жидкий кристалл, в том числе не имеющие ограничительного характера, в которых поляризационный элемент создают на первом или втором элементе вставки, не помещая его между двумя элементами вставки. Альтернативно жидкокристаллический слой 620 и соответствующий поляризационный элемент 665 могут вместе размещаться между, например, первым и вторым элементами вставки.

БИФОКАЛЬНЫЕ ОФТАЛЬМОЛОГИЧЕСКИЕ УСТРОЙСТВА, СОДЕРЖАЩИЕ ОДНОПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ЖИДКОКРИСТАЛЛИЧЕСКИЕ СЛОИ С АКТИВНЫМИ И ПАССИВНЫМИ АСПЕКТАМИ

На Фиг. 6C представлен другой класс устройств, которые можно получить путем формирования офтальмологического устройства с жидкокристаллическими слоями. В вариантах осуществления, представленных на Фиг. 6A и Фиг. 6B, свойство одного слоя из ориентированных жидкокристаллических слоев, состоящее в различном взаимодействии с разными компонентами поляризации падающего света, различными способами использовали для создания устройств, обеспечивающих единственное оптическое или фокальное световое воздействие на сетчатку пользователя. В другом классе устройств, относящихся к Фиг. 6C, тот факт, что одиночный центрированный слой жидкокристаллического материала по-разному воздействует на различные компоненты поляризации падающего света, определяет часть функций офтальмологического устройства. Такое устройство можно охарактеризовать как разновидность бифокального офтальмологического устройства, содержащего однополяризационно-чувствительные жидкокристаллические слои. Офтальмологическая линза, представленная на Фиг. 4, позиция 400, можно оснастить вставкой 500, содержащей жидкокристаллический слой. Слой, принадлежащий к различным описанным выше типам, можно центрировать при помощи слоев центрирования, и поэтому он обладает чувствительностью к конкретному состоянию поляризации. Если устройство обладает функцией регулирования фокуса и имеет одинарный ориентированный жидкокристаллический слой, или, альтернативно, представляет собой двухслойное устройство, в котором один жидкокристаллический слой ориентирован в ортогональном направлении по отношению к другому жидкокристаллическому слою, при этом один из жидкокристаллических слоев имеет электрическое энергообеспечение до другого уровня по сравнению со вторым слоем, свет 670, падающий на офтальмологическую линзу 400, можно разложить на две составляющие с различными фокальными свойствами для каждого из направлений поляризации. Как показано на Фиг., один из компонентов 681 можно сфокусировать на оптическом пути 680 в фокусную точку 682, тогда как другой компонент поляризации 691 можно сфокусировать на оптическом пути 690 в фокусную точку 692.

Среди офтальмологических устройств существующего уровня техники известен класс бифокальных устройств, одновременно представляющих глазу пользователя несколько сфокусированных изображений. Человеческий мозг обладает способностью разделять эти два изображения и воспринимать различные изображения. Устройство, изображенное на Фиг. 6C, может обладать превосходными возможностями для обеспечения бифокальности. Вместо того, чтобы выделять зоны полного изображения и по-разному их фокусировать, жидкокристаллический слой типа, изображенного на Фиг. 6C, может разделять свет 670 на две компоненты поляризации 681 и 691 во всем видимом окне. До тех пор пока падающий свет 670 не обладает поляризационным приоритетом, изображения будут выглядеть так, как выглядели бы при наличии только одной фокальной характеристики. В других вариантах осуществления такое офтальмологическое устройство может быть сопряжено с источниками света, проектируемыми с определенными типами поляризации для получения различных эффектов, таких как отображение информации с выбранной поляризацией для получения увеличенного изображения. Жидкокристаллические дисплеи могут обладать внутренними свойствами, позволяющими создавать такую внешнюю среду, поскольку свет, исходящий от такого дисплея, может обладать определенной поляризационной характеристикой. Возможны многие варианты осуществления, полученные благодаря возможности усовершенствования устройств за счет использования множества фокальных характеристик.

В других примерах осуществления способность активного управления фокусом устройства позволяет получать устройства, обладающие целым диапазоном бифокальных состояний. В состоянии покоя или в состоянии без энергообеспечения может достигаться бифокальность с одной несфокусированной и с одной сфокусированной компонентой поляризации на средних расстояниях. После активации компонента, наблюдаемая на среднем расстоянии, может дополнительно фокусироваться для получения близкого изображения, если линза обладает двумя устойчивыми состояниями, или диапазона фокусных расстояний в других вариантах осуществления. Бифокальная характеристика позволяет пользователю воспринимать разнообразие окружающей среды одновременно со сфокусированным изображением, что обеспечивает ряд преимуществ.

МАТЕРИАЛЫ

Варианты осуществления микроинъекционного литья могут включать в себя, например, поли(4-метилпент-1-ен) сополимер смолы, использующийся для образования линз с диаметром от приблизительно 6 мм до 10 мм, радиусом передней поверхности от приблизительно 6 мм до 10 мм, радиусом задней поверхности от приблизительно 6 мм до 10 мм и толщиной центра от приблизительно 0,050 мм до 1,0 мм. Ряд примеров осуществления включает в себя вставку диаметром приблизительно 8,9 мм, радиусом кривизны передней поверхности приблизительно 7,9 мм, радиусом кривизны задней поверхности приблизительно 7,8 мм, толщиной в центральной части приблизительно 0,200 мм и профилем края приблизительно 0,050 мм радиуса.

Вставку с изменяемыми оптическими свойствами 104, показанную на Фиг. 1, можно поместить в часть формы для литья 101 и 102, используемую с образованием офтальмологической линзы на Фиг. 1. Материал части формы для литья 101 и 102 может включать в себя, например, полиолефин одного или более из полипропилена, полистирола, полиэтилена, полиметилметакрилата, а также модифицированных полиолефинов. Другие формы для литья могут включать в себя керамический или металлический материал.

Предпочтительный алициклический сополимер содержит два разных алициклических полимера. Различные марки алициклических сополимеров могут иметь температуру стеклования от 105°C до 160°C.

В некоторых примерах осуществления формы для литья настоящего изобретения могут включать в себя такие полимеры, как полипропилен, полиэтилен, полистирол, полиметилметакрилат, модифицированные полиолефины с алициклической группой в основной цепи и циклические полиолефины. Смесь можно использовать на любой из половин формы для литья или на обеих половинах, причем предпочтительно данная смесь используется для выполнения задней криволинейной поверхности, а передняя криволинейная поверхность состоит из алициклических сополимеров.

В некоторых предпочтительных способах получения форм для литья 100 в соответствии с настоящим изобретением используется литье под давлением в соответствии с известными методиками; однако варианты осуществления могут также включать в себя формы для литья, выполненные другими способами, включая, например: токарную обработку, алмазную обточку, а также лазерную резку.

Как правило, линзы образуются по меньшей мере на одной поверхности обеих частей формы для литья 101 и 102. Тем не менее в некоторых вариантах осуществления одна из поверхностей линзы может быть образована из части формы для литья 101 или 102, а другая поверхность линзы может быть образована способом токарной обработки или другими способами.

В некоторых вариантах осуществления предпочтительный материал включает в себя силиконсодержащий компонент. Под «силиконсодержащим компонентом» подразумевают любой компонент, имеющий по меньшей мере один [-Si-O-] блок в составе мономера, макромера или форполимера. Полное содержание Si и непосредственно связанного с ним O в рассматриваемом силиконсодержащем компоненте предпочтительно составляет более чем приблизительно 20% вес., и более предпочтительно более чем 30% вес. полного молекулярного веса силиконсодержащего компонента. Подходящие силиконсодержащие компоненты предпочтительно содержат полимеризуемые функциональные группы, такие как акрилатную, метакрилатную, акриламидную, метакриламидную, винильную, N-виниллактамовую, N-виниламидную и стирильную функциональные группы.

В некоторых примерах осуществления края офтальмологической линзы, также называемые герметизирующим вставку слоем, окружающие вставку, могут быть образованы стандартными гидрогелевыми составами для офтальмологической линзы. Примеры материалов с характеристиками, которые могут обеспечивать приемлемое сочетание с множеством материалов вставки, могут включать в себя материалы семейства нарафилкона (включая нарафилкон A и нарафилкон B) и семейства этафилкона (включая этафилкон A). Ниже приведено более полное с технической точки зрения описание природы материалов, которые могут применяться при создании настоящего изобретения. Специалист в данной области может обнаружить, что другие материалы, отличные от описанных ниже, также могут формировать приемлемую оболочку или частичную оболочку для герметизированных и герметично закрывающих вставок и должны рассматриваться как последовательные и включенные в объем формулы изобретения.

Подходящие силиконсодержащие компоненты включают в себя соединения Формулы I

,

где

R1 независимо выбирают из группы, включающей моновалентные реакционноспособные группы, моновалентные алкильные группы или моновалентные арильные группы, причем каждая из перечисленных химических групп может дополнительно содержать в своем составе функциональные группы, выбранные из гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамата, карбоната, галогена, а также их различных комбинаций; а моновалентные силоксановые цепи содержат 1-100 повторяющихся Si-O блоков и могут дополнительно содержать функциональные группы, выбранные из алкила, гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамата, галогена, а также их различных комбинаций;

где b = от 0 до 500, причем подразумевается, что если b отлично от нуля 0, то по b имеется распределение с модой, равной указанному значению;

причем по меньшей мере один фрагмент R1 содержит моновалентную реакционно-способную группу, а в некоторых вариантах настоящего изобретения от одного до 3 фрагментов R1 содержат моновалентные реакционноспособные группы.

Используемый в настоящей заявке термин «моновалентные реакционноспособные группы» относится к группам, способным к реакциям свободнорадикальной и/или катионной полимеризации. Характерные, но не имеющие ограничительного характера примеры свободнорадикальных реакционно-способных групп включают в себя (мет)акрилаты, стирилы, винилы, виниловые простые эфиры, C1-6алкил(мет)акрилаты, (мет)акриламиды, C1-6алкил(мет)акриламиды, N-виниллактамы, N-виниламиды, C2-12алкенилы, C2-12алкенилфенилы, C2-12алкенилнафтилы, C2-6алкенилфенил-C1-6алкилы, O-винилкарбаматы и O-винилкарбонаты. Характерные, но не имеющие ограничительного характера примеры катионных реакционно-способных групп включают в себя винилэфирные или эпоксидные группы, а также их смеси. В одном варианте осуществления свободнорадикальные реакционноспособные группы содержат (мет)акрилаты, акрилокси, (мет)акриламиды и их смеси.

Подходящие моновалентные алкильные и арильные группы включают в себя незамещенные моновалентные C1-C16алкильные группы, C6-C14арильные группы, такие как замещенные и незамещенные метил, этил, пропил, бутил, 2-гидроксипропил, пропоксипропил, полиэтиленоксипропил, а также их различные комбинации и т.п.

В одном примере осуществления b равно нулю, один R1 представляет собой моновалентную реакционноспособную группу, и по меньшей мере 3 R1 выбраны из моновалентных алкильных групп, имеющих от одного до 16 атомов углерода, и в другом примере осуществления - из моновалентных алкильных групп, имеющих от одного до 6 атомов углерода. Не имеющие ограничительного характера примеры компонентов, содержащих силикон, в данном примере осуществления включают в себя 2-метил-,2-гидрокси-3-[3-[1,3,3,3-тетраметил-1-[(триметилсилил)окси]дисилоксанил]пропокси]пропиловый эфир (SiGMA),

2-гидрокси-3-метакрилоксипропилоксипропил-трис(триметилсилокси)силан,

3-метакрилоксипропилтрис(триметилсилокси)силан (TRIS),

3-метакрилоксипропилбис(триметилсилокси)метилсилан и

3-метакрилоксипропилпентаметилдисилоксан.

В другом примере осуществления b составляет от 2 до 20, от 3 до 15 или, в некоторых вариантах осуществления, от 3 до 10; по меньшей мере один концевой R1 содержит моновалентную реакционноспособную группу, а остальные R1 выбраны из моновалентных алкильных групп, имеющих от 1 до 16 атомов углерода, а в другом варианте осуществления - из моновалентных алкильных групп, имеющих от 1 до 6 атомов углерода. Еще в одном примере осуществления настоящего изобретения b равно от 3 до 15, один концевой R1 содержит моновалентную реакционноспособную группу, другой концевой R1 содержит моновалентную алкильную группу, имеющую от 1 до 6 атомов углерода, и оставшийся R1 содержит моновалентную алкильную группу, имеющую от 1 до 3 атомов углерода. Не имеющие ограничительного характера примеры силиконсодержащих компонентов такого варианта осуществления включают в себя (полидиметилсилоксан (МВ 400-1000) с концевой моно-(2-гидрокси-3-метакрилоксипропил)-пропил эфирной группой) (OH-mPDMS), (полидиметилсилоксаны (МВ 800-1000) с концевыми моно-н-бутильными и концевыми монометакрилоксипропильными группами), (mPDMS).

В другом примере осуществления b равно от 5 до 400 или от 10 до 300, оба концевых R1 содержат моновалентные реакционноспособные группы, а остальные R1 независимо выбраны из моновалентных алкильных групп, имеющих от 1 до 18 атомов углерода, которые могут иметь эфирные связи между атомами углерода и могут дополнительно содержать галоген.

В одном примере осуществления, когда необходимо изготовить силикон-гидрогелевую линзу, линзу, составляющую предмет настоящего изобретения, изготовляют из реакционной смеси, содержащей по меньшей мере приблизительно 20 и предпочтительно приблизительно от 20 до 70% вес. силиконсодержащих компонентов в расчете на общий вес содержащих реакционноспособный мономер компонентов, из которых изготовляют полимер.

В другом примере осуществления от одного до четырех R 1 содержат винилкарбонат или карбамат с формулой

Формула II

,

где Y означает O-, S- или NH-;

R означает водород или метил; d равен 1, 2, 3 или 4; и q равен 0 или 1.

Силиконсодержащие винилкарбонатные или винилкарбаматные мономеры конкретно включают в себя: 1,3-бис[4-(винилоксикарбонилокси)бут-1-ил]тетраметилдисилоксан; 3-(винилоксикарбонилтио)пропил-[трис(триметилсилокси)силан]; 3-[трис(триметилсилокси)силил]пропилаллилкарбамат; 3-[трис(триметилсилокси)силил]пропилвинилкарбамат; триметилсилилэтилвинилкарбонат; триметилсилилметилвинилкарбонат, и

Если необходимы биомедицинские устройства с модулем упругости менее приблизительно 200, только один из фрагментов R1 должен содержать моновалентную реакционноспособную группу и не более двух из остальных фрагментов R1 должны содержать моновалентные силоксановые группы.

Другой класс силиконсодержащих компонентов включает полиуретановые макромеры со следующими формулами:

Формулы IV-VI

(*D*A*D*G)a *D*D*E1;

E(*D*G*D*A)a *D*G*D*E1 или;

E(*D*A*D*G)a *D*A*D*E1,

где

D обозначает алкильный бирадикал, алкилциклоалкильный бирадикал, циклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, имеющий от 6 до 30 атомов углерода,

G обозначает алкильный бирадикал, циклоалкильный бирадикал, алкилциклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, имеющий от 1 до 40 атомов углерода, который может иметь в основной цепи эфирные, тиоэфирные или аминовые мостиковые группы;

*обозначает уретановую или уреидо мостиковую группу;

a равен по меньшей мере 1;

A обозначает дивалентный полимерный радикал формулы

Формула VII

R11 независимо обозначает алкильную или фторзамещенную алкильную группу, имеющую от 1 до 10 атомов углерода, которая может иметь эфирные связи между атомами углерода; y равно по меньшей мере 1; и p обеспечивает молекулярную массу фрагмента от 400 до 10 000; каждый из E и E1 независимо обозначает полимеризуемый ненасыщенный органический радикал, представленный формулой

Формула VIII

,

где R12 представляет собой водород или метил; R13 представляет собой водород, алкильный радикал, имеющий от 1 до 6 атомов углерода, или радикал -CO-Y-R15, в котором Y представляет собой -O-,Y-S- или -NH-; R14 представляет собой бивалентный радикал, имеющий от 1 до 12 атомов углерода; X означает -CO- или -OCO-; Z означает -O- или -NH-; Ar означает ароматический радикал, имеющий от 6 до 30 атомов углерода; w равно от 0 до 6; x равно 0 или 1; y равно 0 или 1 и z равно 0 или 1.

Предпочтительный силиконсодержащий компонент представляет собой полиуретановый макромер, представленный следующей формулой:

Формула IX

,

где R16 представляет собой бирадикал диизоцианата после удаления собственно изоцианатной группы, например, бирадикал изофорондиизоцианата. Другим подходящим силиконсодержащим макромером является соединение формулы X (где x + y представляет собой число в диапазоне от 10 до 30), образованное при реакции фторэфира, полидиметилсилоксана с концевой гидроксильной группой, изофорондиизоцианата и изоцианатоэтилметакрилата.

Формула X

Другие силиконсодержащие компоненты, подходящие для применения при создании настоящего изобретения, включают в себя макромеры, содержащие полисилоксановые, полиалкиленэфирные, диизоцианатные, полифторуглеводородные, полифторэфирные и полисахаридные группы; полисилоксаны с полярной фторированной привитой или боковой группой, содержащей атом водорода, присоединенный к концевому дифторзамещенному атому углерода; гидрофильные силоксанилметакрилаты, содержащие эфирные и силоксанильные мостиковые группы, а также поперечно-сшиваемые мономеры, содержащие полиэфирные и полисилоксанильные группы. Любые из вышеуказанных полисилоксанов также можно использовать как силиконсодержащий компонент в настоящем изобретении.

ЖИДКОКРИСТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

Возможно существование многочисленных материалов, которые могут обладать характеристиками, соответствующими типам жидкокристаллических слоев, рассмотренных выше. Можно предположить, что жидкокристаллические материалы с подходящими токсическими свойствами могут оказаться предпочтительными и что природные жидкокристаллические материалы на основе холестерина могут быть подходящими. В других примерах технология инкапсуляции и материалы офтальмологических вставок могут обеспечить широкий выбор материалов, которые могут включать в себя материалы, относящиеся к ЖК-дисплею, которые, как правило, могут охватывать широкие категории, связанные с нематическими (N), холестерическими или смектическими жидкими кристаллами или жидкокристаллическими смесями. Коммерчески доступные смеси, такие как смеси Licristal на основе специализированных химических реагентов Merck для применений в технологиях TN, VA, PSVA, IPS и FFS, и другие коммерчески доступные смеси создают широкие возможности выбора для формирования жидкокристаллического слоя.

Не имея ограничительного характера, смеси или составы могут содержать следующие жидкокристаллические материалы: жидкий кристалл 1-(транс-4-гексилциклогексил)-4-изотиоцианатобензол, соединения бензойной кислоты, включая (4-октилбензойную кислоту и 4-гексилбензойную кислоту), карбонитрильные соединения, включая (4'-пентил-4-бифенилкарбонитрил, 4'-октил-4-бифенилкарбонитрил, 4'-(октилокси)-4-бифенилкарбонитрил, 4'-(гексилокси)-4-бифенилкарбонитрил, 4-(транс-4-пентилциклогексил)бензонитрил, 4'-(пентокси)-4-бифенилкарбонитрил, 4'-гексил-4-бифенилкарбонитрил) и 4,4'-азоксианизол.

Не имея ограничительного характера, составы, демонстрирующие особенно высокое двупреломление, составляющее nпар-nперп>0,3 при комнатной температуре, можно использовать в качестве материала для формирования жидкокристаллического слоя. Например, такой состав под названием W1825 можно приобрести у компаний AWAT и BEAM Engineering for Advanced Measurements Co. (BEAMCO).

Для реализации концептов, обладающих признаками изобретения, могут быть подходящими и другие классы жидкокристаллических материалов. Например, ферроэлектрические жидкие кристаллы могут обеспечивать выполнение основной функции при варианте осуществления с жидкими кристаллами с ориентацией вдоль электрического поля, но могут вносить и другие эффекты, такие как взаимодействие с магнитным полем. Виды взаимодействия электромагнитного излучения с материалами также могут различаться.

МАТЕРИАЛЫ СЛОЕВ ЦЕНТРИРОВАНИЯ

Во многих примерах осуществления, раскрытых выше, может возникнуть необходимость центрирования жидкокристаллических слоев внутри офтальмологических линз различными способами на границах вставок. Центрирование может быть, например, параллельным или перпендикулярным границам вставок, при этом такое центрирование может быть получено в результате надлежащей обработки различных поверхностей. Обработка может включать в себя покрытие подложек вставок, содержащих жидкий кристалл (ЖК) слоями центрирования. Эти слои центрирования раскрыты в настоящем описании.

В устройствах на основе жидких кристаллов различных типов могут широко применять способ шлифовки. Способ можно применить, чтобы учесть кривизну поверхностей, таких как поверхности элементов вставки, используемые для образования оболочки жидкого кристалла. В одном из примеров поверхности могут покрыть слоем поливинилового спирта (ПВС). Например, на слой ПВС покрытие могут наносить методом центрифугирования с использованием водного раствора, 1% масс. Раствор можно наносить в процессе центрифугирования при 1000 об/мин в течение приблизительно 60 с, а затем высушивать. После этого просушенный слой можно отшлифовать мягкой тканью. В качестве примера, не имеющего ограничительного характера, мягкая ткань может представлять собой бархат.

В качестве другого способа получения слоев центрирования на жидкокристаллических оболочках можно применять фотоцентрирование. В некоторых примерах осуществления фотоцентрирование наиболее востребовано вследствие своего бесконтактного характера и возможности осуществления крупносерийного производства. В качестве примера, не имеющего ограничительного характера, слой фотоцентрирования, используемый в части жидкого кристалла с изменяемыми оптическими свойствами, может состоять из дихроичного азобензольного красителя (азокрасителя), способного к ориентации преимущественно в направлении, перпендикулярном поляризации линейно поляризованного света типичных ультрафиолетовых волн. Такое центрирование можно получить в результате повторяющихся транс-цис-транс-фотоизомеризационных процессов.

В качестве примера азокрасители серии PAAD могут наносить методом центрифугирования с использованием водного раствора, 1% масс., в DMF при 3000 об/мин в течение 30 с. В дальнейшем полученный слой можно подвергнуть воздействию линейно поляризованного светового луча, имеющего длину волны в УФ-диапазоне (например, 325 нм, 351 нм, 365 нм), или даже в видимом диапазоне (400-500 нм). Источник света может иметь различные формы. В некоторых примерах осуществления свет может поступать, например, от лазерных источников. Другими примерами, не имеющими ограничительного характера, могут служить такие световые источники, как СИД, галогенные источники и лампы накаливания. До или после поляризации различных форм света, выполняемой согласно различным схемам в зависимости от конкретного случая, свет можно коллимировать различными способами, например, при помощи применения оптических линзовых устройств. Например, свет от лазерного источника может обладать некоторой степенью коллимирования, внутренне присущей источнику.

В настоящее время известно большое количество фотоанизотропных материалов на основе азобензольных полимеров, полиэфиров, жидких кристаллов из фотосшитого полимера с боковыми группами мезогенного 4-(4-метоксициннамоилокси)бифенила и т.п. Примеры таких материалов включают в себя сульфоновый биазокраситель SD1 и другие азобензольные красители, в частности материалы серии PAAD, доступные от компании BEAM Engineering for Advanced Measurements Co. (BEAMCO), поли(винилциннаматы) и другие.

В некоторых примерах осуществления может быть желательным применение водных или спиртовых растворов азокрасителей серии PAAD. Некоторые азобензольные красители, например, метиловый красный краситель, можно использовать для фотоориентации путем создания жидкокристаллического слоя путем прямого легирования. Воздействие поляризованного света на азобензольный краситель может вызвать диффузию азокрасителей внутрь объема жидкокристаллического слоя и их сцепление с граничными слоями, что создает требуемые условия центрирования.

Азобензольные красители, такие как метиловый красный краситель, можно также использовать в комбинации с полимером, например, ПВС. В настоящее время известны также другие фотоанизотропные материалы, способные улучшать центрирование смежных слоев жидких кристаллов. Такие примеры могут включать в себя материалы на основе кумаринов, полиэфиров, жидкие кристаллы из фотосшитого полимера с боковыми группами мезогенного 4-(4-метоксициннамоилокси)бифенила, поли(виниловые циннаматы) и другие. Технология фотоцентрирования может быть преимущественной в вариантах осуществления, содержащих упорядоченную ориентацию жидкого кристалла.

В другом примере осуществления производства слоев центрирования слой центрирования можно получить посредством вакуумного напыления оксида кремния на подложки элемента вставки. Например, SiO2 можно напылять при низком давлении, таком как ~0,1 мПа (~10-6 мбар). Элементы центрирования можно получить в наноразмерном масштабе с помощью инжекционного формования при создании переднего и заднего элементов вставки. Эти формованные элементы можно покрывать различными способами с помощью материалов, упомянутых выше, или других материалов, которые могут непосредственно взаимодействовать с физическими элементами центрирования и передавать центрирование формируемого чертежа в центрированную ориентацию молекул жидкого кристалла.

Ионно-лучевое центрирование может представлять собой еще один способ получения слоев центрирования на жидкокристаллических оболочках. В некоторых примерах осуществления слой центрирования могут бомбардировать коллимированным аргоновым ионным или сфокусированным галлиевым ионным лучом, имеющим определенный угол/ориентацию. Этот тип центрирования можно также использовать для ориентации оксида кремния, алмазоподобного углерода, полиимида и других материалов центрирования.

Дополнительные примеры осуществления могут быть связаны с созданием физических элементов центрирования элементов вставки после их формования. Методы шлифовки, общепринятые в других областях применения жидких кристаллов, можно реализовать на формованных поверхностях для создания механических желобков. Поверхности могут также подвергать процессу выдавливания рельефа после формования с целью создания на них небольших желобчатых элементов. Дополнительные примеры осуществления можно реализовать с применением методов травления, которые могут включать оптические процессы формирования рисунка различного типа.

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ

В настоящем описании раскрыты диэлектрические пленки и диэлектрики. В качестве примеров, не имеющих ограничительного характера, диэлектрические пленки или диэлектрики, используемые в части жидкого кристалла, которая характеризуется изменяемыми оптическими свойствами, обладают характеристиками, подходящими для настоящего изобретения, раскрытого в настоящем документе. Диэлектрик может содержать один или более слоев материала, функционирующих по отдельности или вместе в качестве диэлектрика. Несколько слоев можно использовать для достижения диэлектрических характеристик, превосходящих характеристики одиночного диэлектрика.

Диэлектрик может допускать наличие бездефектного изолирующего слоя толщиной, требующейся для части с дискретно изменяемыми оптическими свойствами, например, между 1 и 10 мкм. Как известно специалистам в данной области, дефект может называться «микроотверстием», которое представляет собой отверстие, допускающее возможность электрического и/или химического контакта через диэлектрик. Диэлектрик при данной толщине может отвечать требованиям в отношении напряжения пробоя, согласно которым, например, диэлектрик должен выдерживать напряжение 100 вольт или больше.

Диэлектрик может допускать изготовление с образованием криволинейных, конических, сферических и сложных трехмерных поверхностей (например, криволинейных поверхностей или неплоских поверхностей). Можно использовать типовые способы покрытия методом погружения и центрифугирования, или применять другие способы.

Диэлектрик может сопротивляться повреждению из-за воздействия химических веществ в части с изменяемыми оптическими свойствами, например, жидкого кристалла или жидкокристаллической смеси, растворителей, кислот и оснований или других материалов, которые могут присутствовать при формировании жидкокристаллической зоны. Диэлектрик может сопротивляться повреждению из-за воздействия инфракрасного, ультрафиолетового и видимого света. Нежелательное повреждение может включать в себя ухудшение параметров, раскрытых в настоящем описании, например, напряжения пробоя и светопропускания. Диэлектрик может сопротивляться проникновению ионов. Диэлектрик могут прикреплять к нижележащему электроду и/или подложке, например, с применением слоя, повышающего адгезию. Диэлектрик могут изготовлять с использованием способа, обеспечивающего низкий уровень загрязнения, малую концентрацию поверхностных дефектов, однородное покрытие и низкую шероховатость поверхности.

Диэлектрик может обладать относительной диэлектрической проницаемостью или диэлектрической постоянной, совместимой с электрической эксплуатацией системы, например, низкой относительной диэлектрической проницаемостью для уменьшения емкости в данной зоне электрода. Диэлектрик может обладать высоким удельным сопротивлением, таким образом пропуская лишь очень небольшой ток, даже если приложено высокое напряжение. Диэлектрик может обладать свойствами, желательными для оптического устройства, например, высоким пропусканием, низкой дисперсией и показателем преломления в определенном диапазоне.

В качестве примера, не имеющего ограничительного характера, диэлектрические материалы включают в себя один или более из: парилен-C, парилен-HT, диоксида кремния, нитрида кремния и тефлона AF.

ЭЛЕКТРОДНЫЕ МАТЕРИАЛЫ

Электроды, раскрытые в настоящем описании, служат для приложения электрического потенциала с целью получения электрического поля в жидкокристаллической зоне. По существу, электрод содержит один или более слоев материала, функционирующих по отдельности или вместе в качестве электрода.

Электрод могут прикреплять к нижележащей подложке, диэлектрическому покрытию или другими объектами в системе, возможно, с применением усилителя адгезии (например, метакрилоксипропилтриметоксисилана). Электрод может образовывать оказывающий полезное воздействие естественный оксид или подвергаться обработке для создания полезного оксидного слоя. Электрод может быть прозрачным, по существу прозрачным или непрозрачным, обладать высоким светопропусканием и слабым отражением. Электрод могут подвергать структурированию или травлению с помощью известных способов обработки. Например, электроды могут подвергать испарению, металлизации напылением или гальванизации с использованием формирования рисунка методом фотолитографии и/или взрывной литографии.

Конструкцию электрода могут выполнить с возможностью иметь удельное сопротивление, подходящее для применения в электрической системе, раскрытой в настоящем описании, например, в соответствии с требованиями к сопротивлению в данной геометрической конструкции.

Электроды можно изготовлять из одного или более материалов, таких как оксид индия и олова (ITO), оксид цинка с примесью алюминия (AZO), золото, нержавеющая сталь, хром, графен, слои легированного графена и алюминий. Следует понимать, что данный список не является исчерпывающим.

СПОСОБЫ

Перечисленные ниже стадии описанных способов приводятся как примеры процессов, которые можно реализовать в соответствии с некоторыми аспектами настоящего изобретения. Как должно стать понятно, порядок, в котором представлены отдельные стадии описываемых способов, ни в коей мере не является ограничивающим, и настоящее изобретение можно реализовать и при ином их порядке. Кроме того не все перечисленные стадии необходимы для успешной реализации настоящего изобретения, и в различных вариантах осуществления настоящего изобретения могут вводить дополнительные стадии. Специалисту в данной области может быть очевидно, что на практике возможны дополнительные варианты осуществления, и такие способы находятся в рамках объема формулы изобретения.

На Фиг. 7 представлена блок-схема с примерами стадий, которые можно использовать для реализации настоящего изобретения. На этапе 701 происходит формирование первого слоя подложки, который может содержать заднюю криволинейную поверхность и иметь верхнюю поверхность с формой первого типа, которая может отличаться от формы поверхности других слоев подложки. В некоторых примерах осуществления разница может включать в себя различный радиус кривизны поверхности по меньшей мере в части, расположенной в оптической зоне. На этапе 702 происходит формирование второго слоя подложки, который может содержать переднюю криволинейную поверхность или промежуточную поверхность или часть промежуточной поверхности для более сложных устройств. На этапе 703, электродный слой можно осадить на первый слой подложки. Осаждение может происходить, например, осаждением из паровой фазы или методом нанесения гальванического покрытия. В ряде примеров осуществления первый слой подложки может быть частью вставки, которая имеет участки, как в оптической зоне, так и в неоптической зоне. Способ осаждения покрытия на электрод может одновременно определить элементы взаимодействия в некоторых примерах осуществления. В некоторых примерах осуществления диэлектрический слой может быть образован на соединительных элементах или электродах. Диэлектрический слой может содержать многочисленные изолирующие или диэлектрические слои, например, такие как диоксид кремния.

На этапе 704, первый слой подложки можно дополнительно обработать, чтобы добавить слой центрирования на предварительно осажденный слой покрытия электрода. Слой центрирования можно осадить на верхний слой подложки, а затем обработать стандартным способом, например, шлифованием, для создания желобков, характерных для стандартных слоев центрирования, или посредством обработки с использованием воздействия энергетических частиц или света. Тонкие слои фотоанизотропных материалов можно обрабатывать посредством светового воздействия в целях формирования слоев центрирования с различными характеристиками.

На этапе 705 второй слой подложки можно подвергнуть дополнительной обработке. Электродный слой можно осадить на втором слое подложки аналогичным образом, как это было сделано на стадии 703. Затем, в некоторых примерах осуществления, на этапе 706, диэлектрический слой можно нанести на второй слой подложки на электродном слое. Диэлектрический слой можно сформировать с переменной толщиной по всей его поверхности. Например, диэлектрический слой можно формовать на первом слое подложки. Альтернативно, предварительно сформированный диэлектрический слой можно прикрепить на электродную поверхность второго элемента подложки.

На этапе 707 слой центрирования можно сформировать на втором слое подложки аналогичным образом, как и на стадии обработки 704. После стадии 707 два отдельных слоя подложки, которые могут образовывать по меньшей мере часть вставки офтальмологической линзы, могут быть готовы к присоединению. В некоторых примерах осуществления на стадии 708 эти два элемента приведут в непосредственную близость друг к другу, а затем между элементами введут жидкокристаллический материал. Существуют многочисленные способы введения жидкого кристалла между элементами, включая, в качестве примеров, не имеющих ограничительного характера, вакуумное введение, при котором полость вакуумируют, после чего обеспечивают возможность стекания жидкокристаллического материала в вакуумированное пространство. Кроме того, заполнению пространства жидкокристаллическим материалом будут способствовать капиллярные силы, присутствующие в пространстве между элементами вставки линзы. На этапе 709 два элемента можно расположить смежно друг с другом, а затем герметизировать с образованием элемента с изменяемыми оптическими свойствами с жидким кристаллом. Могут существовать многочисленные способы совместной герметизации элементов, включая применение связывающих веществ, герметизирующих составов и механических уплотнительных компонентов, таких как уплотнительные кольца и фиксаторы с защелкой в качестве примеров, не имеющих ограничительного характера.

В ряде примеров осуществления два элемента такого типа, который был образован на стадии 709, можно создать путем повторения стадий способа от 701 до 709, в котором слои центрирования смещают друг от друга, чтобы обеспечить получение линзы, которая может регулировать фокальную оптическую силу неполяризованного света. В таких вариантах осуществления оба слоя с изменяемыми оптическими свойствами можно объединить с образованием единой вставки с изменяемыми оптическими свойствами. На стадии 710 элемент с изменяемыми оптическими свойствами можно соединить с источником энергии и на нем можно разместить промежуточные или прикрепляемые компоненты.

На стадии 711 вставку с изменяемыми оптическими свойствами, полученную на стадии 710, могут размещать внутри части формы для литья. Вставка с изменяемыми оптическими свойствами также может содержать или может не содержать один или более компонентов. В некоторых предпочтительных вариантах осуществления вставка с изменяемыми оптическими свойствами помещают в часть формы для литья посредством механическим способом. Установка механическим способом может включать в себя, например, применение робота или других средств автоматизации, известных в отрасли в качестве применяемых для установки компонентов методом поверхностного монтажа. В рамках настоящего изобретения предусмотрено также помещение вставки с изменяемыми оптическими свойствами в форму человеком. Соответственно, для эффективного помещения вставки с изменяемыми оптическими свойствами с источником энергии в часть формы для литья можно использовать какие-либо механические или автоматизированные способы помещения, так чтобы полимеризация реакционной смеси в частях формы для литья включала в себя изменяемые оптические свойства в итоговой офтальмологической линзе.В некоторых примерах осуществления в форму для литья помещают вставку с изменяемыми оптическими свойствами, закрепленную в подложке. Источник энергии и один или более компонент также закреплены в подложке и связаны электрической связью со вставкой с изменяемыми оптическими свойствами. Компоненты могут включать в себя, например, схему для управления оптической силой, прикладываемой к вставке с изменяемыми оптическими свойствами. Соответственно, в некоторых примерах осуществления компонент включает в себя механизм контроля, приводящий в действие вставку с изменяемыми оптическими свойствами, для того, чтобы изменить одну или более оптических характеристик, таких как, например, изменение состояния первой оптической силы на вторую оптическую силу.

В некоторых примерах осуществления процессор, микро- или наноэлектромеханические системы или другие компоненты также могут размещать во вставке с изменяемыми оптическими свойствами и подключать к источнику энергии. На стадии 712 реакционную смесь мономера могут осадить в части формы для литья. На стадии 713 вставку с изменяемыми оптическими свойствами могут приводить в контакт с реакционной смесью. В некоторых вариантах осуществления порядок размещения изменяемых оптических свойств и осаждения мономерной смеси может быть обратным. На стадии 714 первую часть формы для литья помещают в непосредственной близости от второй части формы для литья с образованием полости для изготовления линзы по меньшей мере с частью реакционной смеси мономера и вставкой с изменяемыми оптическими свойствами в полости. Как сказано выше, предпочтительные варианты осуществления включают в себя источник энергии и один или более компонентов, также находящихся в полости и соединенных посредством электрической связи со вставкой с изменяемыми оптическими свойствами.

На стадии 715 реакционную смесь мономера в полости полимеризуют. Полимеризацию можно провести, например, путем воздействия одного или обоих из актиничного излучения и тепла. На стадии 716 офтальмологическую линзу удаляют из части формы для литья вместе со вставкой с изменяемыми оптическими свойствами, удерживаемой на или инкапсулированной в герметизирующем вставку полимеризованном материале, из которого выполнена офтальмологическая линза.

Хотя настоящее изобретение можно использовать для образования жестких или мягких контактных линз из любого известного материала для образования линз или материала, подходящего для производства таких линз, линзы, составляющие предмет настоящего изобретения, предпочтительно представляют собой мягкие контактные линзы с содержанием воды от приблизительно 0 до приблизительно 90 процентов. Более предпочтительно, чтобы указанные линзы были изготовлены из мономеров, содержащих гидроксильные группы, карбоксильные группы или оба типа групп, или были изготовлены из силиконсодержащих полимеров, таких как силоксаны, гидрогели, силикон-гидрогели и их комбинации. Материал, подходящий для формирования линз, составляющих предмет настоящего изобретения, можно изготовить путем взаимодействия смесей макромеров, мономеров и их комбинаций вместе с добавками, такими как инициаторы полимеризации. Подходящие материалы включают в себя силикон-гидрогели, изготовленные из силиконовых макромеров и гидрофильных мономеров.

УСТРОЙСТВО

На Фиг. 8 изображено автоматизированное устройство 810 с одной или более перемещаемыми поверхностями 811. Множество частей формы для литья, каждая из которых связана со вставкой с изменяемыми оптическими свойствами 814, удерживают на поддоне 813 и передают к перемещаемым поверхностям 811. Примеры осуществления могут включать в себя, например, единую поверхность раздела индивидуально помещаемой вставки с изменяемыми оптическими свойствами 814 либо множество поверхностей (не показано) для одновременного размещения вставок с изменяемыми оптическими свойствами 814 во множество частей формы для литья, а в некоторых вариантах осуществления в каждую часть формы для литья. Размещение может происходить посредством вертикального движения 815 перемещаемых поверхностей 811.

Другой аспект некоторых примеров осуществления настоящего изобретения включает в себя устройство для удерживания вставки с изменяемыми оптическими свойствами 814 во время формования вокруг этих компонентов тела офтальмологической линзы. В некоторых примерах осуществления вставка с изменяемыми оптическими свойствами 814 и источник энергии могут прикреплять к точкам удерживания на форме для литья линзы (не показано). Крепление к удерживающим точкам могут осуществлять таким же полимеризованным материалом, из которого будет формоваться тело линзы. Другие примеры осуществления включают в себя слой форполимера на той части формы для литья, на которой могут закреплять вставку с изменяемыми оптическими свойствами 814 и источник энергии.

ПРОЦЕССОРЫ, ВКЛЮЧАЕМЫЕ В УСТРОЙСТВО-ВСТАВКУ

На Фиг. 9 представлен контроллер 900, который можно использовать в некоторых примерах осуществления настоящего изобретения. Контроллер 900 включает процессор 910, который может включать в себя один или более процессорных компонентов, соединенных с устройством обмена данными 920. В примерах осуществления контроллер 900 может использоваться для передачи энергии источнику энергии, помещенному в офтальмологическую линзу.

Контроллер может включать в себя один или более процессоров, соединенных с устройством обмена данными, выполненный с возможностью передачи энергии посредством канала связи. Устройство обмена данными можно использовать для электронного управления одним или более из размещений вставки с изменяемыми оптическими свойствами в офтальмологическую линзу или передачи команды для управления устройством с изменяемыми оптическими свойствами.

Устройство обмена данными 920 также можно использовать для сообщения, например, с одним или более компонентом контролирующего устройства или производственного оборудования.

Процессор 910 также может быть в связи с устройством хранения данных 930. Устройство хранения данных 930 может содержать любые соответствующие устройства хранения информации, включая комбинации магнитных устройств хранения данных (например, накопители на магнитных лентах и жестких магнитных дисках), оптических устройств хранения данных и/или полупроводниковых запоминающих устройств, таких как оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).

В устройстве хранения данных 930 могут хранить программу 940 для управления процессором 910. Процессор 910 выполняет команды программы 940 и, таким образом, работает в соответствии с настоящим изобретением. Например, процессор 910 может принимать информацию с описанием расположения вставки с изменяемыми оптическими свойствами, расположения устройства обработки данных и т.п. Устройство хранения данных 930 может также хранить офтальмологические данные в одной или более базах данных 950, 960. Базы данных 950 и 960 могут включать в себя специальную контролирующую логическую схему для управления энергией, идущей к линзе с изменяемыми оптическими свойствами и от нее.

В настоящем описании приводятся ссылки на элементы, изображенные на фигурах. Многие из элементов приведены для справки, чтобы проиллюстрировать варианты осуществления настоящего изобретения в целях лучшего понимания. Относительный масштаб фактических элементов может значительно отличаться от изображенных, причем следует понимать, что отличия относительных изображенных масштабов не образуют отступления от сущности настоящего изобретения. Например, масштаб молекул жидкого кристалла может быть слишком мал, чтобы их можно было изобразить в реальном масштабе элементов вставки. Изображение элементов, представляющих молекулы жидкого кристалла в том же масштабе, что и элементы вставки, чтобы сделать возможным представление таких факторов, как центрирование молекул, является поэтому таким примером масштаба изображения, который в реальных вариантах осуществления может быть совсем иным.

Хотя показанные и описанные варианты осуществления считаются наиболее практичными и предпочтительными, очевидно, что специалистам в данной области представляются возможности отступления от конкретных описанных и показанных конфигураций и способов, и их можно использовать, не выходя за пределы сущности и объема настоящего изобретения. Настоящее изобретение не ограничивается отдельными конструкциями, описанными и показанными в настоящем документе, но все его конструкции необходимо согласовывать со всеми модификациями, которые могут входить в объем приложенной формулы изобретения.

1. Устройство офтальмологической линзы со вставкой с изменяемой оптической силой, имеющее оптическую зону и неоптическую зону, содержащее:
вставку с изменяемой оптической силой, содержащую по меньшей мере часть внутри оптической зоны и содержащую передний криволинейный элемент вставки и задний криволинейный элемент вставки, причем задняя поверхность переднего криволинейного элемента и передняя поверхность заднего криволинейного элемента имеют различные радиусы кривизны поверхности по меньшей мере в части внутри оптической зоны;
источник энергии, встроенный во вставку по меньшей мере в области, содержащей неоптическую зону; и
при этом вставка с изменяемой оптической силой содержит слой жидкокристаллического материала.

2. Устройство офтальмологической линзы по п. 1, в котором линза представляет собой контактную линзу.

3. Устройство офтальмологической линзы по п. 2, дополнительно содержащее:
первый слой электродного материала в непосредственной близости к задней поверхности переднего криволинейного элемента; и
второй слой электродного материала в непосредственной близости к передней поверхности заднего криволинейного элемента.

4. Устройство офтальмологической линзы по п. 3, в котором слой жидкокристаллического материала имеет разный эффективный показатель преломления, что влияет на луч света, проходящий через слой жидкокристаллического материала, когда электрический потенциал приложен к первому слою электродного материала и второму слою электродного материала.

5. Устройство офтальмологической линзы по п. 4, в котором вставка с изменяемой оптической силой изменяет фокальную характеристику линзы.

6. Устройство офтальмологической линзы по п. 3, дополнительно содержащее процессор.

7. Устройство офтальмологической линзы по п. 4, дополнительно содержащее электрическую схему, причем электрическая схема управляет потоком электрической энергии от источника энергии к первому слою электродного материала и второму слою электродного материала.

8. Устройство офтальмологической линзы по п. 7, дополнительно содержащее поляризационный элемент.

9. Устройство офтальмологической линзы по п. 7, в котором падающий свет, содержащий две ортогональных компоненты поляризации, фокусируется с различными фокальными характеристиками для двух компонент.

10. Устройство офтальмологической линзы со вставкой с изменяемой оптической силой, имеющее оптическую зону и неоптическую зону, содержащее:
вставку с изменяемой оптической силой, содержащую по меньшей мере часть внутри оптической зоны и содержащую передний криволинейный элемент вставки, промежуточный криволинейный элемент и задний криволинейный элемент вставки, причем задняя поверхность переднего криволинейного элемента и передняя поверхность промежуточного криволинейного элемента имеют различные радиусы кривизны по меньшей мере в части внутри оптической зоны;
источник энергии, встроенный во вставку по меньшей мере в области, содержащей неоптическую зону; и
при этом вставка с изменяемой оптической силой содержит по меньшей мере первый и второй слой жидкокристаллического материала.

11. Устройство офтальмологической линзы по п. 10, в котором линза представляет собой контактную линзу.

12. Устройство офтальмологической линзы по п. 11, дополнительно содержащее:
первый слой электродного материала в непосредственной близости к задней поверхности переднего криволинейного элемента;
второй слой электродного материала в непосредственной близости к передней поверхности промежуточного криволинейного элемента; и
причем первый слой жидкокристаллического материала расположен между первым слоем электродного материала и вторым слоем электродного материала.

13. Устройство офтальмологической линзы по п. 12, в котором слой первого жидкокристаллического
материала имеет разный показатель преломления, что влияет на луч света, проходящий через первый слой жидкокристаллического материала, когда электрический потенциал приложен к первому слою электродного материала и второму слою электродного материала.

14. Устройство офтальмологической линзы по п. 13, в котором вставка с изменяемой оптической силой изменяет фокальную характеристику линзы.

15. Устройство офтальмологической линзы по п. 10, в котором промежуточный криволинейный элемент представляет собой комбинацию двух криволинейных элементов, соединенных вместе.

16. Устройство офтальмологической линзы по п. 12, дополнительно содержащее:
электрическую схему, причем электрическая схема управляет потоком электрической энергии от источника энергии к первому слою электродного материала и второму слою электродного материала.

17. Устройство офтальмологической линзы по п. 16, в котором электрическая схема содержит процессор.

18. Устройство офтальмологической линзы со вставкой с изменяемой оптической силой, имеющее оптическую зону и неоптическую зону, содержащее:
вставку с изменяемой оптической силой, содержащую по меньшей мере часть внутри оптической зоны и содержащую передний криволинейный элемент вставки, промежуточный криволинейный элемент и задний криволинейный элемент вставки, причем задняя поверхность переднего криволинейного элемента и передняя поверхность промежуточного криволинейного элемента имеют различные радиусы кривизны по меньшей мере в части внутри оптической зоны;
источник энергии, встроенный во вставку по меньшей мере в области, содержащей неоптическую зону; и
при этом вставка с изменяемой оптической силой содержит по меньшей мере первый слой жидкокристаллического материала и поляризационный элемент.

19. Устройство офтальмологической линзы по п. 18, в котором линза представляет собой контактную линзу.

20. Устройство офтальмологической линзы по п. 19, дополнительно содержащее:
первый слой электродного материала в непосредственной близости к задней поверхности переднего криволинейного элемента; и
второй слой электродного материала в непосредственной близости к передней поверхности промежуточного криволинейного элемента.



 

Похожие патенты:
Группа изобретений относится к медицине, а именно к офтальмологии, и предназначена для лечения кератоконуса. На поверхность глазного яблока устанавливают воронку с внутренним диаметром, превышающим диаметр роговицы.

Группа изобретений относится к области медицины. Офтальмологическая контактная линза для по меньшей мере одного из замедления, сдерживания или предупреждения прогрессирования миопии, содержащая: оптическую зону, выполненную с возможностью положительной асимметричной аберрации, для создания физиологического эффекта на глаз, причем положительная асимметричная аберрация включает в себя асимметричные радиальные профили оптической силы с увеличением оптической силы от центра к краю оптической зоны, причем асимметричные радиальные профили оптической силы могут изменяться вдоль различных радиальных меридианов, и при этом дифференциал оптической силы между центром и краем оптической зоны составляет от 0,5 дптр до 25 дптр, и периферийную зону, окружающую оптическую зону.
Изобретение относится к детской офтальмологии и предназначено для лечения врожденных катаракт с врожденным помутнением задней капсулы хрусталика. После удаления хрусталиковых масс наименее спаянный с задней капсулой хрусталика участок фиброзных наложений на задней капсуле захватывают, приподнимают пинцетом.

Изобретение относится к медицине и может быть применимо для исследования состояний глаза. Способ проведения согласования состояний глаза пациента включает следующие этапы: получают первое изображение глаза посредством первого диагностического устройства и определяют референтную систему координат, получают второе изображение глаза посредством хирургического устройства, осуществляют первое согласование, соотносящее первое изображение глаза и второе изображение глаза, чтобы получить первый результат согласования, получают, после начала хирургической операции, третье изображение глаза посредством хирургического устройства, осуществляют второе согласование, соотносящее второе изображение глаза и третье изображение глаза, чтобы получить второй результат согласования, и комбинируют первый и второй результаты согласования, чтобы получить комбинированный результат согласования с обеспечением тем самым согласования, соотносящего первое изображение глаза, полученное посредством диагностического устройства, с третьим изображением глаза, при этом первое изображение глаза, получаемое посредством диагностического устройства, и третье изображение глаза соответствуют существенно различающимся состояниям глаза, различия которых, включающие получение первого изображения в отсутствие установленного на глаз присасывающегося кольца, а третьего изображения с установленным на глаз присасывающимся кольцом, способны негативно повлиять на прямое согласование, соотносящее первое изображение глаза и третье изображение глаза.
Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для хирургического лечения массивных гифем, возникающих в передней камере глаза после хирургических вмешательств.

Изобретение относится к медицине, а именно к контактной лучевой терапии в офтальмологии. Предлагается устройство для имплантации и фиксации офтальмоаппликатора к заднему полюсу глаза, выполненное в виде разомкнутой, симметричной относительно продольной оси фигуры, на свободных концах которой выполнены замкнутые петельки.

Изобретение относится к медицине, а именно к хирургической офтальмологии, и может быть использовано для удаления ксантелазм. Осуществляют разрез кожи по контуру ксантелазмы радионожом с частотой 3,8-4,0 МГц в режиме разреза при мощности 8,0-10,0 Вт.

Изобретение относится к медицине, а именно к хирургической офтальмологии, и может быть использовано для удаления ксантелазм. Осуществляют разрез кожи по контуру ксантелазмы радионожом с частотой 3,8-4,0 МГц в режиме разреза при мощности 8,0-10,0 Вт.
Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано при хирургическом лечении набухающей катаракты. Выполняют два парацентеза 1,2 мм в передней камере, вводят в нее высокомолекулярный вискоэластик.

Изобретение относится к медицине. Зонд для витрэктомии содержит осциллятор, корпус, регулируемый порт и режущий инструмент.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для определения тактики вмешательства при проведении факоэмульсификации катаракты. После определения перед операцией плотности хрусталика путем исчисления акустической плотности хрусталика в ходе выполнения ультрабиомикроскопии с помощью функции цветного картирования и усиления сигнала E-GAIN на аппарате Sonomed проводят сравнительную оценку полученных данных плотности хрусталика с пороговым значением в 35 дБ. При величине плотности хрусталика свыше 35 дБ констатируют возможные трудности, связанные с дроблением и удалением хрусталика, и используют тактику вмешательства, применяемую при высокой степени плотности хрусталика. Способ позволяет улучшить результаты лечения, предотвратить возможные осложнения. 1 пр.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для лечения эндотелиально-эпителиальной дистрофии (ЭЭД) роговицы. Формируют интрастромальный роговичный карман в глубоких слоях собственного вещества роговой оболочки, для чего на первом этапе выполняют два тоннельных надреза до глубоких слоев стромы, на расстоянии 1,5 мм от лимба, шириной 1,2 мм, на 3 и 9 часах, далее, с помощью шпателя, используя оба тоннельных надреза, формируют интрастромальный «карман» в глубоких слоях собственного вещества роговицы. В один из туннельных надрезов вводят цанговый пинцет, проводя его сквозь расслоенную строму, и выводят через противоположный тоннельный надрез, где браншами пинцета захватывают свернутую валиком полимерную трековую мембрану, выполненную в виде диска из полиэтиленфталата диаметром 8,0 мм, толщиной 7 мкм, с размером пор 0,4 мкм, плотностью 5*106 пор/см2, которую имплантируют в интрастромальный роговичный «карман» во время обратного движения пинцета. Трековую мембрану расправляют с помощью шпателя, края тоннельных надрезов гидратируют. Способ позволяет снизить травматичность вмешательства. 8 ил.

Изобретение относится к офтальмохирургии и может быть использовано для одновременной разметки центра роговицы и зоны имплантации роговичных сегментов и колец. Разметчик содержит рукоятку в виде трубки с поршнем и винтовой пружиной и рабочую часть. Рабочая часть содержит периферическое кольцо с двумя диаметрально расположенными во фронтальной плоскости горизонтально ориентированными выступами длиной 2 мм; центральную часть, подвижную в сагиттальной плоскости в виде пересекающихся под углом 90 градусов отрезков длиной 8 мм с тремя метками длиной 2 мм на каждой, отдаленных от центра на расстояние 2.5, 3.0 и 3.5 мм соответственно. Технический результат при использовании изобретения выражается в повышении точности разметки, одновременной разметке анатомического центра роговицы и зоны имплантации сегментов и колец различного диаметра, обеспечении стабильности глазного яблока во время отметки зоны имплантации, минимальном окрашивании зоны имплантации, что создает благоприятные условия для формирования роговичного кармана с использованием фемтосекундного лазера. 2 ил., 1 пр.
Изобретение относится к офтальмохирургии и может быть использовано при герметизации глазного яблока с помощью «портов» при витреоретинальных вмешательствах. Прокалывают склеру троакаром с портом под углом 15° по отношению к склере, продвигают троакар в склере на глубину режущей части троакара, поворачивают троакар в этой же плоскости на 60° без изменения угла наклона. Поднимают троакар на 40-45° и вкалывают к центру витреальной полости. Способ позволяет сформировать самогерметизирующийся канал в месте прокола склеры с минимальным травмированием волокон склеры и надежно фиксировать «порт» в глазном яблоке. 2 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при хирургическом лечении глаукомы. После формирования поверхностного склерального лоскута выполняют парацентез роговицы для снижения избыточного внутриглазного давления и ослабления напряжения в слоях роговицы. Далее на этапе выкраивания глубокого склерального лоскута в открывшуюся полость шлеммова канала и слои роговицы вводят высокомолекулярный вискоэластик с целью отделения трабекуло-десцеметовой мембраны от роговично-склеральной ткани на 1-1,5 мм выше шлеммова канала. В проекции буферной полости из высокомолекулярного вискоэластика проводят иссечение роговично-склеральной стромы и освобождают трабекуло-десцеметовую мембрану. Способ обеспечивает защиту трабекуло-десцеметовой мембраны, как от перфораций, так и микроперфораций острым хирургическим инструментом за счет прослойки высокомолекулярного вискоэластика, который хорошо держит форму, и не вытекает из сформированной буферной зоны между слоями роговицы. 2 пр.
Наверх