Способ получения (метилтио)тиофенов



Способ получения (метилтио)тиофенов
Способ получения (метилтио)тиофенов

 


Владельцы патента RU 2594481:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (RU)

Изобретение относится к способу получения серосодержащих соединений, конкретно к 2-(метилтио)- и 2.5-ди-(метилтио)тиофенам, являющимися добавками к смазочным маслам и полимерам и применяемым в синтезах гербицидов и электропроводящих материалов. Описан способ получения 2- и 2.5-ди-(метилтио)тиофенов взаимодействием диметилдисульфида с тиофеном в присутствии катализатора высококремнистого цеолита HZSM-5, в газовой фазе, при атмосферном давлении, температуре 150-250°C, времени контакта 2.2-8.0 с. Указанные условия обеспечивают проведение процесса с высокими выходами и селективностью. 1 табл., 12 пр.

 

Изобретение относится к способам получения серосодержащих соединений, конкретно к моно- и ди-(метилтио)тиофенам, являющимися исходными для синтеза гербицидов и электропроводящих материалов и добавок к смазочным масла и полимерам.

Доступным и дешевым сырьем для синтеза (метилтио)тиофенов может быть диметилдисульфид, в больших количествах получаемый при очистке газов от меркаптанов, и тиофен, синтезируемый по реакции сероводорода с углеводородами.

Описана реакция диметилдисульфида с тиофеном, протекающая в жидкой фазе в присутствии катализатора - хлорид цинка, нанесенный на монтмориллонит, в растворе хлорбензола, при температуре 80-150°C, навесках катализатора 20 г, времени реакции 8-48 ч, мольном отношении диметилдисульфида к тиофену 8:1. В среде аргона в результате реакции образуются 2.3.4- и 2.3.5-три-(метилтио)тиофены и 1.2.3.4-тетра(метилтио)тиофен. При добавке воздуха к аргону и проведении реакции под давлением 70 атм, при температуре 150°C, времени 5 ч, мольном отношении диметилдисульфида к тиофену (0.5-8):1 конверсия тиофена составляет 10-21% и кроме три- и тетра-(метилтио)тиофенов образуется 2.5-ди-(метилтио)тиофен, его содержание в смеси тиофенов равно 9-33 вес. %, выход 2.5-ди-(метилтио)тиофена в зависимости от мольного соотношения реагентов составляет (2.3-4.2) 10-2 ммоль в час в расчете на 1 г катализатора, селективность образования 32-39% [P.D. Clark, S.T.E. MEsher, A. Primak. Phosphor, Sulfur, Silicon, 1996. Vol. 114, p.p 99-108].

Недостатком способа является низкий выход 2.5-ди-(метилтио)тиофена и отсутствие в продуктах реакции 2-(метилтио)тиофена.

Задачей изобретения является создание способа получения 2.5-ди-(метилтио)тиофена из диметилдисульфида и тиофена с высоким выходом и большой селективностью, при одновременном образовании 2-(метилтио)тиофена.

Задача решается тем, что получение моно- и ди-(метилтио)тиофенов из диметилдисульфида и тиофена проводят в газовой фазе в присутствии катализатора - цеолита HZSM-5, в среде гелия, при атмосферном давлении, температуре 150-250°C, мольном отношении диметилдисульфида к тиофену (4-8):1, времени контакта 2.2-8.0 сек.

Получение (метилтио)тиофенов взаимодействием диметилдисульфида с тиофеном проводят в присутствии промышленного высококремнистого цеолита в водородной форме с SiO2:Al2O3=34, с удельной поверхностью 500 м2/г. По данным ИКС-исследований на поверхности данного цеолита содержится значительное количество (0.33 мкмоль/м2) сильных протонных центров со сродством прогона к пиридину 1170-1180 кДж/моль; имеются сильные льюисовские кислотные центры от А13+ с теплотой адсорбции CO, равной 35-54 кДж/моль, и концентрацией 0.19 мкмоль/м2, а также основные центры умеренной силы со сродством дейтерия СДСl3 к основному центру, равному 800-900 кДж/моль, и концентрацией 2 мкмоль/м2. В катализаторе прототипа - хлориде цинка, нанесенном на монтмориллонит, имеются такие же центры, однако они менее сильные и их содержание ниже, чем в цеолите. При контакте тиофена с сильными протонными центрами поверхности катализатора возникает тиофениевый ион. Он взаимодействует с диметилдисульфидом с образованием поверхностного комплекса, в котором неподеленные электроны одного атома серы дисульфида связаны с тиофениевым ионом; второй атом серы дисульфида координируется с льюисовским кислотным центром, а атом углерода метальной группы - с основным центром. В определенных условиях происходит разрыв связи S-S в дисульфиде и образуются (метилтио)тиофены. Поскольку на поверхности цеолита содержатся более сильные центры, чем в катализаторе прототипа, реагенты легче активируются и реакцию тиоалкилирования тиофена на цеолите можно проводить при малом времени контакта. Это позволяет остановить процесс на ранних стадиях по сравнению с прототипом и получить продукты тиоалкилирования с более высоким выходом и селективностью.

Синтез (метилтио)тиофенов проводится в газовой фазе при атмосферном давлении в проточной установке. Гелий из баллона с определенной скоростью пропускают через сатураторы - первый с диметилдисульфидом, второй с тиофеном. Смесь диметилдисульфида, тиофена и гелия при определенной температуре поступает в заполненный катализатором реактор, обогреваемый безинерционной печью. Реакционная смесь через шестиходовой кран поступает в хроматограф ЛХМ 8МД.

Периодически (с интервалом 45 мин) с помощью двухходового крана отбирают газовую пробу для проведения анализа. Высококипящие продукты реакции конденсируют в охлаждаемом приемнике и анализируют хроматографически и методом хромато- масс-спектрометрии

По результатам анализа определяют конверсию тиофена в %, выходы продуктов реакции в мкмоль в час в расчете на 1 грамм катализатора и селективность образования (метилтио)тиофенов в %.

Время контакта в секунду равно отношению объема катализатора (в см3) к скорости газового потока в см3/с при комнатной температуре и атмосферном давлении.

Сущность изобретения иллюстрируется примерами, представленными в таблице.

Пример 1.

В реактор загружают катализатор высококремнистый цеолит HZSM-5 и пропускают через него смесь диметилдисульфида с тиофеном в гелии при атмосферном давлении, температуре 160°C, времени контакта 2.4 с, мольном отношении диметилдисульфида к тиофену 4.7:1.

Выход 2.5-ди-(метилтио)тиофена составляет 5.1×102 ммоль/ч·г и 2-(метилтио)тиофена 7.0×102 ммоль/ч·г.

Примеры 2-3.

Пример 1 повторен с тем отличием, что время контакта равно 4.9 и 8.1 с.

Пример 4.

Пример 2 повторен с тем отличием, что температура равна 180°C и мольное отношение диметилдисульфида к тиофену равно 1.2.

Примеры 5-7.

Пример 4 повторен с тем отличием, что мольное отношение диметилдисульфида к тиофену равно 2.1-8.0

Примеры 8-12.

Пример 1 повторен с тем отличием, что температура равна 180-300°C.

Примеры 4, 5 иллюстрируют, что при мольном отношении диметилдисульфида к тиофену менее 4 не решается поставленная задача увеличения выхода 2.5-(метилтио)тиофена, хотя образуется при этом с большим выходом также 2-(метилтио)тиофен и суммарная селективность по (метилтио)тиофенам выше, чем в прототипе.

Примеры 11, 12 показывают, что проведение процесса при температуре выше 200°C нецелесообразно, т.к. не происходит увеличения выхода (метилтио)тиофенов и селективности их образования.

Таким образом, по сравнению с результатами прототипа предлагаемый способ позволяет увеличить выход 2.5-ди-(метилтио)тиофена от 2.3-4.2 до 5-6.7×102 ммоль/ч·г, получить 2-(метилтио)тиофен со значительным выходом и увеличить суммарную селективность по (метилтио)тиофенам в 1.2-3 раза (от 32-39% до 50-78%) за счет проведения процесса взаимодействия диметилдисульфида с тиофеном в присутствии катализатора HZSM-5, в газовой фазе, в среде гелия, при атмосферном давлении, температуре 150-250°C, времени контакта 2.2-8 с.

Способ получения (метилтио)тиофенов, более конкретно 2.5-ди-(метилтио)тиофена и 2-(метилтио)тиофена реакцией диметилдисульфида с тиофеном в присутствии катализатора, отличающийся тем, что процесс проводят при атмосферном давлении, в газовой фазе, при температуре 150-250°С в присутствии катализатора - высокосернистого цеолита HZSM-5.



 

Похожие патенты:

Изобретение относится к способу получения замещенных 3-формилиндол-5,6-дикарбонитрилов, где R=ALK, или Аr, или Неt, которые могут быть использованы в качестве прекурсоров для синтеза биологически активных веществ, лекарственных субстанций.

Изобретение относится к способу получения тиофена и 2-тиофентиола, включающему взаимодействие избыточного количества сероводорода с фураном при температуре 25°C и атмосферном давлении, отличающийся тем, что в реакционную смесь фурана и сероводорода вводят катализатор - пространственно-затрудненный о-бензохинон, который периодически регенерируют в токе кислорода воздуха. Технический результат - усовершенствование процесса получения тиофена и 2-тиофентиола, снижение энергозатрат на проведение реакции за счет замены электрохимической активации сероводорода до катион-радикала на химическое окисление в присутствии специфического и дешевого катализатора, а также исключение органических растворителей.

Изобретение относится к новым производным 4-аминоциклогексана, которые обладают сродством к µ-опиоидному рецептору и ORL1-рецептору. В формуле (1) Y1, Y1', Y2, Y2', Y3, Y3', Y4 и Y4' означают -Н; Q означает -R0, -C(=O)-R0 или -C(=NH)-R0; R0 и R3 в каждом случае независимо означает -C1-8-алифат, -арил, -гетероарил, -C1-8-алифат-С5-циклоалифат, -C1-8-алифат-арил; R1 и R2, независимо означают незамещенный -C1-8-алифат; -C1-8-алифат-C5-циклоалифат, -C1-8-алифат-арил; n означает 0; Х означает -NRA-; RA означает незамещенный -C1-8-алифат; RB означает незамещенный -C1-8-алифат; «алифат» представляет собой неразветвленный, насыщенный, незамещенный или моно- или многократно замещенный атомами -F углеводородный остаток; «циклоалифат» представляет собой насыщенный, незамещенный моноциклический углеводородный остаток, с 5 атомами углерода в цикле; «арил» означает фенил, который может быть замещенным -F, -R0 и -OR0; «гетероарил» означает 5-членный циклический ароматический остаток, который содержит 1 гетероатом, причем гетероатом представляет собой N или S, и гетероцикл может быть замещенным -F, -R0 и -OR0; гетероцикл может быть частью бициклической системы, включающей фенил.

Изобретение относится к соединениям общей формулы (I), где представляет собой замещенное 5-членное гетероарильное кольцо, выбранное из тиенила, тиазолила, оксазолила, пирролила, имидизолила или пиразолила, W выбирают из группы, включающей N и -С=; M выбирают из группы, включающей -C(O)N(R1)OR2, -C(O)NR1R2 и -C(O)OR1, или M представляет собой -C1-C3алкил-C(O)N(R1)OR2, при этом представляет собой , ; R1 и R2 независимо выбирают из группы, включающей -H, C1-C3-алкил, C6-арил и C1-C3-алкил-C6-арил; R выбирают из группы, включающей H, C1-C3алкил, галоген, NR1R2, -OR1 и C6арил; n представляет собой целое число от 0 до 1; L и Y являются такими, как указано в формуле изобретения; и к соединениям формулы (II), где L2 выбирают из группы, включающей H, -C0-C3алкил-C6арил, -C0-C3алкил-гетероарил, где гетероарил представляет собой пиридил; -C1-C6алкил, Y и M являются такими, как для соединений формулы (I).

Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R1 - Si(OAlk)3 или R1=-CH=N-CH2CH2CH2Si(OAlk)3, R2=R3=-OCH2CH2O-, в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала, а также применение триэтокси-2-тиенилсилана по тому же назначению.

Изобретение относится к способу получения 1,4-дизамещенных [1.1.1b.1.1] пентиптиценов R = С С-Аr; тиенил-2. .

Изобретение относится к соединениям формулы (I): где: A, J, R1, R4, X, Z представлены в п.1 формулы изобретения, а также к фармацевтической композиции, содержащей такие соединения, модулирующие активность депо-управляемых кальциевых (SOC) каналов.

Изобретение относится к способу очистки жидких при комнатной температуре тиофенов формулы (I) и может быть применен в органическом синтезе, для получения электропроводного полимера или органического полупроводника.

Изобретение относится к органической химии, в частности, к способу получения 2,3,4,5-тетраалкилтиофенов, которые могут найти применение в качестве промежуточного продукта в синтезе красителей, биологически активных соединений, а также в качестве компонента усилителей аромата пищи, присадок к маслам и гидравлическим жидкостям.
Изобретение относится к химии гетероциклических соединений серы, а именно к способам получения тиофена из продуктов нефтепереработки, и может найти применение в химической промышленности.
Наверх