Способ получения 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов

Изобретение относится к способу получения 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов общей формулы (1):

Способ включает взаимодействие 3-арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бром)-1,5,3-дитиазепанов с EtAlCl2 в присутствии магниевого порошка с участием катализатора Cp2TiCl2 и Cp2ZrCl2 при мольном соотношении 3-арил-1,5,3-дитиазепан : EtAlCl2 : Mg : Cp2TiCl2 : Cp2ZrCl2 = 1:(4.5-5.5):(4.5-5.5):(0.03-0.07):(0.03-0.07) в смеси растворителей Et2O - ТГФ (1:1, объемн.), в атмосфере аргона при температуре 35-45°С в течение 6-10 ч. Изобретение позволяет получить 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы, которые могут найти применение в тонком органическом и металлоорганическом синтезе. 1 табл., 2 пр.

 

Предлагаемое изобретение относится к способам получения новых алюминийорганических соединений (АОС), конкретно, к способу получения 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов общей формулы (1):

Предлагаемые соединения могут найти применение в тонком органическом и металлоорганическом синтезе (Г.А. Толстиков, У.М. Джемилев, А.Г. Толстиков. Алюминийорганические соединения в органическом синтезе. Новосибирск. Академическое издательство «ГЕО». 2009. 644 с.).

Известен способ (Л.И. Захаркин, Л.А. Савина. Получение и свойства некоторых внутрикомплексных алюминийорганических соединений. Изв. АН СССР, ОХН, 1960, №6, 1039-1043) получения внутрикомплексных алюминийорганических соединений (2) взаимодействием с ω-функциональнозамещенными α-олефинами по схеме:

Известный способ не позволяет получать 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы (1).

Известен способ (Л.И. Захаркин, Л.А. Савина. Синтез некоторых циклических алкилалюминийоксидов и алкилалюминийамидов. Изв. АН СССР, ОХН, 1962, №5, 824-827) получения 1-изобутилциклопентаоксалана (3) взаимодействием аллилового спирта с триизобутилалюминием при -5÷-10°С с последующим добавлением диизобутилалюминийгидрида и нагреванем в течение 6 часов при 125-130°С по схеме:

Известным способом не могут быть получены 2,6,8,11-тетраэтил-4-(4-метилфенил)-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы (1).

Таким образом, в литературе отсутствуют сведения по селективному получению 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов (1).

Предлагается новый способ синтеза 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов (1).

Сущность способа заключается во взаимодействии 3-арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бромфенил)-1,5,3-дитиазепанов с EtAlCl2 в присутствии магниевого порошка с участием в качестве катализатора Cp2TiCl2 и Cp2ZrCl2, при мольном соотношении 3-арил-1,5,3-дитиазепан : EtAlCl2 : Mg : Cp2TiCl2 : Cp2ZrCl2=1:(4.5-5.5):(4.5-5.5):(0.03-0.07):(0.03-0.07), предпочтительно 1:5:5:0.05:0.05, в смеси растворителей Et2O - ТГФ (1:1, объемн.) при температуре 35-45°С, предпочтительно 40°С в атмосфере аргона в течение 6-10 ч, предпочтительно 8 ч. Реакция протекает с образованием 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов (1) с выходом 68-89% по схеме:

2,6,8,11-Тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы (1) образуются только лишь с участием EtAlCl2, 3-арил-1,5,3-дитиазепанов и циркониевых (Cp2ZrCl2) и титановых (Cp2TiCl2) катализаторов. В присутствии других соединений алюминия (например, ), других гетероциклических соединений (например 3-арил-1,5,3-дитиазоканов) или другого катализатора (например, Zr(acac)4, ZrCl4, TiCl4, Pd(acac)2, Ni(acac)2, NiCl2, CoCl2) целевые продукты (1) не образуются.

Проведение указанной реакции в присутствии катализатора Cp2TiCl2 и Cp2ZrCl2 больше 7 мол % по отношению к 3-арил-1,5,3-дитиазепану не приводит к существенному увеличению выхода целевых продуктов (1). Использование катализатора Cp2TiCl2 и Cp2ZrCl2 менее 3 мол % снижает выход 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов (1), что связано, возможно, со снижением каталитически активных центров в реакционной массе. Реакции проводили при температуре ~40°С. При более высокой температуре (например, 60°С) не наблюдается существенного увеличения выхода целевых продуктов (1), а при меньшей температуре (например, 0°С) снижается скорость реакции.

Изменение соотношения исходных реагентов в сторону увеличения содержания EtAlCl2 по отношению к исходному 3-арил-1,5,3-дитиазепану не приводит к существенному повышению выхода целевых продуктов (1).

Реакции проводили с использованием смеси растворителей Et2O - ТГФ. В других растворителях (например, алифатических или ароматических) снижается селективность реакции.

Существенные отличия предлагаемого способа:

В предлагаемом способе для получения гетероциклических Al-органических соединений используются в качестве исходных соединений 3-арил-1,5,3-дитиазепаны, этлалюминийдихлорид (EtAlCl2), магний, реакция протекает в присутствии катализаторов Cp2TiCl2 и Cp2ZrCl2.

В известном способе в качестве исходных реагентов применяются аллиловый спирт, триизобутилалюминий (AlBui3) и диизобутилалюминийгидрид (Bui2AlH). Реакция протекает при повышенной температуре (120-130°С).

Предлагаемый способ обладает следующими преимуществами:

Способ позволяет получать с высокой селективностью индивидуальные 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы (1), синтез которых в литературе не описан.

Способ поясняется следующими примерами:

Пример 1. Способ получения 3-арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бромфенил)-1,5,3-дитиазепанов. В сосуд Шленка, установленный на магнитной мешалке, в атмосфере аргона помещали 0.06 г (20 ммоль) формальдегида и 0.098 г (10 ммоль) 1,2-этандитиола при 20°С, перемешивали 30 мин, добавляли 5 мл хлороформа, 0.5 ммоль катализатора Sm(NO3)3·6H2O и 10 ммоль соответствующего арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бромфенил)амина, перемешивали 30 мин. Выход 3-арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бромфенил)-1,5,3-дитиазепанов 68-79% (Н.Н. Мурзакова, К.И. Прокофьев, Т.В. Тюмкина, А.Г. Ибрагимов. Синтез N-арил-1,5,3-дитиазепинанов и N-арил-1,5,3-дитиазоцинанов с участием Sm- и Со-содержащих катализаторов. ЖОрХ, 2012 вып. 48. №4, 588-593).

Пример 2. Способ получения 2,6,8,11-тетраэтил-4-(4-метилфенил)-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана. В стеклянный реактор (50 мл) на магнитной мешалке в атмосфере сухого Ar при 0°С загружают 0.0125 г (0.05 ммоль) Cp2TiCl2 и 0.0146 г (0.05 ммоль) Cp2ZrCl2, 0.12 г (5 ммоль) магниевого порошка, 0.22 г (1 ммоль) 3-n-метилфенил-1,5,3-дитиазепана, 5 мл ТГФ и 5 мл Et2O, 0.64 г (5 ммоль) EtAlCl2, температуру поднимают до 40°С и перемешивают 8 ч. Получают 2,6,8,11-тетраэтил-4-(4-метилфенил)-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекан (1) с выходом 78%. Выход целевого продукта определен по продукту гидролиза.

Другие примеры, подтверждающие способ, приведены в таблице 1.

Все опыты проводили в смеси растворителей Et2O - ТГФ (1:1, объемн.).

Спектральные характеристики 2,6,8,11-тетраэтил-4-(4-метилфенил)-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана:

Спектральные характеристики 2,6,8,11-тетраэтил-4-(4-метоксифенил)-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана:

Спектральные характеристики 4-(4-хлорфенил)-2,6,8,11-тетраэтил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана:

Спектральные характеристики 4-(4-бромфенил)-2,6,8,11-тетраэтил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана:

Способ получения 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов общей формулы (1):

отличающийся тем, что 3-арил(n-метилфенил, n-метоксифенил, n-хлорфенил, n-бром)-1,5,3-дитиазепаны подвергают взаимодействию с EtAlCl2 в присутствии магниевого порошка с участием катализатора Cp2TiCl2 и Cp2ZrCl2 в мольном соотношении 3-арил-1,5,3-дитиазепан : EtAlCl2 : Mg:Cp2TiCl2 : Cp2ZrCl2=1 : (4.5-5.5) : (4.5-5.5) : (0.03-0.07) : (0.03-0.07) в смеси растворителей Et2O - ТГФ (1:1, объемн.) в атмосфере аргона при температуре 35-45°С в течение 6-10 ч.



 

Похожие патенты:

Изобретение относится к области органической химии, в частности к способу совместного получения 2,6,8,11-тетраэтил-4-фенил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундекана (1) и 2,4,7,9,12-пентаэтил-5-фенил-1,8-дитиа-5-аза-2,4,7,9,12-пентаалюмина-циклододекана (2): Способ включает взаимодействие 3-фенил-1,5,3-дитиазепана с EtAlCl2 в присутствии магниевого порошка с участием катализатора Cp2TiCl2.

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl3×6H2O, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание полученной реакционной смеси под воздействием СВЧ-излучения и выделение целевого продукта.

Изобретение относится к пористому металлорганическому скелетному материалу. Материал содержит по меньшей мере одно по меньшей мере двухкоординационное органическое соединение, координационно соединенное по меньшей мере с одним ионом металла и являющееся производным 2,5-фурандикарбоновой или 2,5-тиофендикарбоновой кислоты.

Изобретение относится к области металлорганического синтеза, конкретно к способу получения рацемических 1-этил-3,4-бис[(оксифенил)метил]алюминациклопентанов общей формулы (1a-d): Способ включает взаимодействие непредельных соединений с этилалюминийдихлоридом EtAlCl2, металлическим магнием в присутствии катализатора Cp2ZrCl2.

Изобретение относится к получению предкерамических волокнообразующих органо-иттрийоксаналюмоксанов. Предложен способ получения предкерамических волокно-образующих органоиттрийоксаналюмоксанов взаимодействием полиалкоксиалюмоксанов с раствором гидрата ацетилацетоната иттрия {[СН3(O)ССН=С(СН3)O]3Y·2,5Н2O}, концентрация которого 4,5-5,0 мас.% в ацетоуксусном эфире, в среде органического растворителя (гексан, толуол, этиловый спирт и т.п.) при температуре 20-50°C, при этом мольное отношении алюминий : иттрий (Al :Y) менее 200, с последующей отгонкой растворителей сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 150°C.

Настоящее изобретение относится к способу получения высокочистых алкоголятов алюминия, которые применяются в качестве прекурсоров при синтезировании функциональной керамики.

Изобретение относится к области металлорганического синтеза, конкретно к способу получения 3-(оксифенил)метилзамещенных алюминациклопентанов общей формулы (1a-e): Способ включает взаимодействие аллилбензолов с триэтилалюминием (AlEt3) в присутствии катализатора Cp2ZrCl2.

Изобретение относится к химии и химической технологии, а именно к синтезу модифицированных силикагелей, содержащих ковалентно связанные с ними молекулы замещенных фталоцианинов, и их применению для фотообеззараживания воды.

Изобретение относится к области металлорганического синтеза, конкретно к способу получения энантиомерно обогащенного 1-этил-(3R)-фенилалюминациклопентана (1) Cпособ включает взаимодействие стирола с триэтилалюминием (AlEt3) в присутствии энантиомерно чистого катализатора бис(1-неоментилинденил)цирконий дихлорида .

Изобретение относится к области металлорганического синтеза, конкретно к способу получения энантиомерно обогащенного 1-этил-(3S)-циклогексилалюминациклопентана (1) Способ включает взаимодействие α-олефина с триэтилалюминием (AlEt3) в присутствии энантиомерно чистого катализатора бис(1-неоментилинденил)цирконий дихлорида ().

Изобретение относится к области неорганической химии и может быть использовано для получения альфа гидрида алюминия, который находит применение в качестве энергетического компонента топливных элементов и твердых ракетных топлив. Описан способ получения альфа гидрида алюминия, включающий реакцию между хлоридом алюминия и лития алюмогидридом с образованием раствора эфирного комплекса гидрида алюминия и выпадением осадка хлорида лития, дозирование раствора эфирного комплекса гидрида алюминия в нагретый толуол, содержащий модифицирующую добавку, и выделение целевого продукта из нагретого толуола, в котором в качестве модифицирующей добавки используют хлориды щелочных металлов, реакцию между хлоридом алюминия и лития алюмогидридом осуществляют в температурном интервале от -40°C ÷ 15°C, а продолжительность дозирования раствора эфирного комплекса гидрида алюминия в толуол, нагретый до температуры в диапазоне 70°C÷105°C, составляет 10-30 минут. Технический результат: повышение выхода целевого продукта до 80-96% и повышение безопасности процесса. 1 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к способу получения металлоорганических каркасных соединений с октакарбоксифталоцианинатом металла в качестве основной структурной единицы. Способ заключается в сополимеризации металлов или солей металлов с органическим лигандом, последующей фильтрации продукта, промывке его органическими растворителями. При этом к 4,5-октакарбоксифталоцианинату кобальта или меди добавляют двукратный избыток соли алюминия или марганца, перемешивают в течение 2-4 часов при нагревании до 150-170°C. Изобретение позволяет получить новые, более дешевые высокоупорядоченные наноматериалы с заданной структурой и свойствами. 5 ил., 2 пр.

Изобретение относится к способу получения органомагнийоксаналюмоксанов. Способ включает взаимодействие полиалкоксиалюмоксанов с ацетилацетонатом магния [CH3(O)CCH=C(CH3)O]2Mg в среде органического растворителя при температуре 20°С-70°С с последующей отгонкой растворителя сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 140°С. Также предложены связующие и пропиточные материалы на основе органомагнийоксаналюмоксана. Изобретение позволяет получить органомагнийоксаналюмоксаны, которые могут быть использованы в качестве прекурсоров высокочистой керамики на основе оксидов алюминия и магния, в частности алюмината магния состава MgAl2O4 (шпинель), и, кроме того, могут обладать волокнообразующими свойствами. 2 н.п. ф-лы, 3 ил., 2 табл., 2 пр.
Изобретение относится к способу получения изопропилата алюминия. Способ включает взаимодействие активированного алюминия с изопропанолом при нагревании в присутствии хлористого алюминия с последующей очисткой целевого продукта. При этом взаимодействие активированного алюминия с изопропанолом осуществляют в мольном соотношении 1:3, алюминий предварительно активируют электролизом смеси алюминия и раствора хлористого алюминия в изопропаноле (порядка 15% от общего объема изопропанола) с использованием алюминиевых электродов и очистку продукта проводят вакуумной ректификацией. Способ позволяет использовать изопропанол, содержащий до 6 мас.% воды, и получать целевой продукт с содержанием основного вещества 99,996%. 5 з.п. ф-лы, 6 пр.

Изобретение относится к твердой полиалюмоксановой композиции для использования в качестве сокатализатора и носителя катализатора. Композиция включает полиалкилалюмоксан и триалкилалюминий и имеет растворимость в n-гексане при 25°С менее 0,50% мол, определенную способом (i), имеет растворимость в толуоле при 25°С менее 1,0% мол, определенную способом (ii), где мольная доля алкильных групп от триалкилалюминия составляет 13% мол или более относительно общего количества молей алкильных групп от полиалкилалюмоксана и алкильных групп от триалкилалюминия, определенных по отношению к растворенным в тетрагидрофуране-d8 компонентам способом (iii). Способ (i): 2 г твердой полиалюмоксановой композиции добавляют к 50 мл n-гексана, выдерживают при 25°С; смесь перемешивают в течение 2 часов и отфильтровывают с получением фильтрата и остатка; концентрацию алюминия в фильтрате измеряют с помощью атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ICP-AES) и определяют растворимость как соотношение атомов алюминия в фильтрате по отношению к количеству атомов алюминия, соответствующих 2 г твердой полиалюмоксановой композиции. Способ (ii): растворимость измеряют так же, как в способе (i), за исключением того, что вместо n-гексана используют толуол. Способ (iii): 0,5 мл тетрагидрофурана (ТГФ)-d8 (тяжелый растворитель) добавляют к 10 мг твердой полиалюмоксановой композиции; смесь перемешивают при 25°С в течение 2 часов; мольную долю определяют исследуя растворенные в ТГФ - d8 компоненты с помощью 1Н-ЯМР при температуре измерения 24°С. Также предложены катализатор полимеризации олефинов и способ получения олефиновых полимеров. Изобретение позволяет получить твердую полиалюмоксановую композицию, пригодную для использования в качестве сокатализатора и носителя катализатора в комбинации с катализатором полимеризации олефинов без использования твердых неорганических носителей, таких как кремнезем. 3 н. и 6 з.п. ф-лы, 18 ил., 16 табл., 160 пр.

Изобретение относится к получению замещенных фталоцианинов, которые могут быть использованы в качестве люминесцентных материалов и красителей для полимерных материалов, в частности полистирола и вискозы. Предложены металлокомплексы окта-4,5-[4-(1-метил-1-фенилэтил)фенокси]фталоцианина, обладающие люминесцентными и красящими свойствами, формулы, указанной в описании. Способ получения указанных металлокомплексов включает взаимодействие 4,5-дихлорфталонитрила с 4-кумилфенолом в присутствии карбоната калия в диметилформамиде в течение 8,0-8,5 часов при 85-90°C. После прекращения нагревания реакционную массу выливают в воду, осадок фильтруют, промывают изопропанолом и сушат при 80-90°С. Образовавшийся при этом 4,5-ди[4-(1-метил-1-фенилэтил)фенокси]фталонитрил сплавляют с солью металла при 155-200°С. Изобретение обеспечивает получение указанных металлокомплексов из доступного сырья с повышенным выходом при расширении их ассортимента. 2 н.п. ф-лы, 18 ил., 10 пр.

Изобретение относится к неорганической химии и может быть использовано для получения альфа гидрида алюминия, который находит применение в качестве энергетического компонента топливных элементов и твердых ракетных топлив. Для получения альфа гидрида алюминия проводят реакцию между хлоридом алюминия и лития алюмогидридом в интервале температур -40°С - -15°С в смеси эфира и толуола с образованием раствора эфирного комплекса гидрида алюминия и выпадением осадка хлорида лития. Раствор эфирного комплекса гидрида алюминия дозируют в нагретый толуол при температуре в интервале 50°С - 70°С с последующей выдержкой в указанном интервале температур в течение 30-60 минут. После этого температуру толуола повышают до 70°С - 105°С со скоростью 1-5 градусов в минуту. Целевой продукт отделяют от толуола. Изобретение позволяет повысить насыпную плотность стабилизированного альфа гидрида алюминия, упростить процесс его получения, исключить опасную стадию рассева продукта на ситах при сохранении высокого выхода продукта. 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способу получения 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканов общей формулы :Способ включает взаимодействие 3-арил-1,5,3-дитиазепанов с EtAlCl2 в присутствии магниевого порошка с участием катализатора Cp2TiCl2 и Cp2ZrCl2 при мольном соотношении 3-арил-1,5,3-дитиазепан : EtAlCl2 : Mg : Cp2TiCl2 : Cp2ZrCl2 1:::: в смеси растворителей Et2O - ТГФ, в атмосфере аргона при температуре 35-45°С в течение 6-10 ч. Изобретение позволяет получить 2,6,8,11-тетраэтил-4-арил-1,7-дитиа-4-аза-2,6,8,11-тетраалюминациклоундеканы, которые могут найти применение в тонком органическом и металлоорганическом синтезе. 1 табл., 2 пр.

Наверх