Огнезащитная фибровермикулитобетонная сырьевая смесь

Изобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты строительных конструкций. Технический результат - повышение огнестойкости строительных конструкций, уменьшение удельного расхода портландцемента, повышение прочности вермикулитобетона, повышение трещиностойкости и огнезащитных свойств покрытия во время пожара, расширение сырьевой базы. Огнезащитная сырьевая смесь для изготовления огнезащитного покрытия содержит, мас.%: портландцемент 8,4-13,2; вспученный вермикулит фракции 0,16-5 мм 16,47-21,32; вулканический пепел фракции 0-0,16 мм 9,2-15,2; базальтовое волокно 1,0-1,5; смолу древесную омыленную 0,08-0,13; негашеную известь 8,1-13,3; строительный гипс 0,4-0,6; воду остальное. 3 табл.

 

Изобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты бетонных, железобетонных и металлических конструкций.

Известны огнезащитные составы на портландцементе, гипсе, жидком стекле, глиноземистом цементе с различными добавками [1, 2, 3, 4, 5]. В качестве пористых заполнителей используются вспученный вермикулит и перлит.

Наиболее близким являются сырьевые смеси для изготовления огнезащитных покрытий с использованием портландцемента, вспученного вермикулита, отходов пиления вулканического туфа, смолы древесной омыленной, негашеной извести и строительного гипса [6].

Недостатками этих составов являются недостаточная сырьевая база отходов пиления вулканического туфа, относительно низкая прочность на растяжение и изгиб вермикулитобетона, относительно высокий коэффициент теплопроводности и низкая трещиностойкость покрытия при высоких температурах во время пожара.

Задачей изобретения является расширение сырьевой базы, уменьшение удельного расхода портландцемента, повышение прочности вермикулитобетона, повышение трещиностойкости и огнезащитных свойств покрытия во время пожара.

Задача решается за счет использования в огнезащитной сырьевой смеси портландцемента, вспученного вермикулита, вулканического пепла, негашеной извести, гипса, базальтового волокна и смолы древесной омыленной (СДО).

В исследованиях были использованы портландцемент ПЦ500-ДО производства ЗАО «Белгородский цемент», гипсовое вяжущее Усть-Джегутинского гипсового комбината марки Г-5 БII. В качестве активной минеральной добавки применялся вулканический пепел Заюковского месторождения фракции 0-0,16 мм.

Химический состав вулканического пепла представлен в таблице 1.

Заполнитель - вспученный вермикулит Санкт-Петербургской слюдяной фабрики фракции 0,16-5 мм.

Гранулометрический состав вспученного вермикулита приведен в таблице 2.

Для дисперсного армирования композита применялось базальтовое волокно производства ОАО «Ивотстекло» марки РНБ-9-1200-4c, соотношение длины волокон к диаметру на основе предварительных экспериментов принималось l d = 1444 .

Для улучшения реологических характеристик предлагаемой огнезащитной сырьевой смеси и физико-механических свойств раствора и бетона использовалась поверхностно-активная воздухововлекающая добавка СДО, разработанная ВНИИжелезобетон и ЦНИИЛХИ (ТУ-81-05-2-78).

Воздушную комовую известь предварительно дробят в щековой дробилке, затем тонко измельчают в шаровой мельнице. Вулканический пепел просеивают через сито №0,16 и высушивают в сушильном шкафу до постоянной массы.

Приготовление смеси осуществляют в смесителе принудительного действия, в котором после подачи воды с добавкой СДО последовательно загружают смесь портландцемента, гипса, извести, базальтового волокна, вулканического пепла, затем - вспученного вермикулита, или предварительно перемешанную всухую смесь портландцемента, гипса, негашеной извести, базальтового волокна, вулканического пепла и вспученного вермикулита. Перемешивание всех компонентов продолжают до получения однородной огнезащитной фибровермикулитобетонной сырьевой смеси. Продолжительность перемешивания смеси составляет 1,5-2 мин.

Для исследования огнезащитной эффективности предлагаемых фибровермикулитобетонных составов формовались армоцементные плиты с огнезащитным слоем. Армоцементный слой формовали на стандартной виброплощадке, фиксацию мелкоячеистой сетки и стержневой арматуры выполняют известными способами. Огнезащитный слой формуют на виброплощадке из смеси подвижностью 3-5 см по погружению конуса СтройЦНИЛа. Огнезащитное покрытие также наносят на металлические и железобетонные конструкции в условиях строительной площадки с применением мелкоячеистой сетки вручную или механизировано с использованием штукатурных агрегатов отечественного или зарубежного производства.

Испытания на огнестойкость проводили на образцах размерами 190×190 мм на электрической печи в горизонтальном положении по температурному режиму «стандартного» пожара, регламентированному ГОСТ 30247.0-94. Предел огнестойкости по несущей способности (R) армоцементных плит оценивали по прогреву тканой сетки в конструктивном слое (на границе слоев) до 300°C. Влажности мелкозернистого бетона армоцементного слоя и огнезащитного состава к моменту испытаний составляли соответственно 3-4% и 8-10%. Во время огневых испытаний двухслойных элементов нарушений их целостности не обнаружено.

Составы огнезащитной фибровермикулитобетонной сырьевой смеси согласно изобретению и их основные физико-механические свойства, пределы огнестойкости двухслойных армоцементных плит приведены в таблице 3. В таблице 3 приведены также результаты испытаний армоцементных плит с огнезащитным слоем на основе контрольных составов с применением отходов пиления вулканического туфа фракции 0-2,5 мм.

Из таблицы 3 видно, что при меньшем расходе портландцемента и при примерно одинаковой плотности, разработанные фибровермикулитобетонные составы имеют более высокие прочности на сжатие и изгиб.

Это объясняется тем, что вулканический пепел используется фракции от 0-0,16 мм, что увеличивает содержание химически активной составляющей в отличие от туфового песка фракции до 2,5 мм, используемого в прототипе. Наиболее высокими огнезащитными свойствами обладают составы со средней плотностью 480-570 кг/м3.

Введение базальтовых волокон повышает предел прочности при сжатии фибровермикулитобетонного композита в 1,28 раза, при изгибе - в 1,85 раза по отношению к прочности исходной матрицы. По сравнению с прототипом прочность на сжатие фибровермикулитобетонного композита повышается в 2,22 раза, на изгиб - 3,25 раза. Это позволит изготавливать большеразмерные фибровермикулитобетонные изделия. Кроме того, армирование исходной матрицы базальтовыми волокнами повышает трещиностойкость и огнезащитные свойства покрытия за счет восприятия растягивающих температурных напряжений во время пожара.

Источники информации

1. Авторское свидетельство СССР №893944. МПК C04B 15/02. Сырьевая смесь для изготовления огнезащитного покрытия / Комар А.Г., Топчий В.Д. и др. // Б.И. №48, 30.12.81.

2. Патент РФ №2173309. МПК C04B 41/65. Штукатурный состав для огнезащиты строительных стальных конструкций / Рубинов М.М., Шейнин Е.И., Китайкин В.Д. // Б.И. №25, 10.09.2001.

3. Страхов В.Л., Гаращенко А.Н. Огнезащита строительных конструкций: современные средства и методы оптимального проектирования // Строительные материалы. 2002. №6. С. 2-5.

4. Авторское свидетельство СССР №275342. МПК E04B 1/94. Состав для покрытия металлических элементов / Щипанов А.И., Лабозин П.Г. // БИ №22, 03.07.1970.

5. Руководство по выполнению огнезащитных и теплоизоляционных штукатурок механизированным способом. М.: Стройиздат, 1977. - 46 с.

6. Хежев Т.А., Хежев Х.А. Патент РФ №2372314. Огнезащитная сырьевая смесь // Бюл. №31. 2009.

Огнезащитная сырьевая смесь для изготовления огнезащитного покрытия, включающая портландцемент, пористые заполнители, воду и добавки, отличающаяся тем, что она содержит в качестве заполнителей вспученный вермикулит фракции 0,16-5 мм и вулканический пепел фракции 0-0,16 мм, являющийся одновременно и активной минеральной добавкой, а в качестве добавок - негашеную известь, строительный гипс, базальтовое волокно и смолу древесную омыленную при следующем соотношении компонентов, мас. %:

Портландцемент 8,4-13,2
Вспученный вермикулит 16,47-21,32
Вулканический пепел 9,2-15,2
Смола древесная омыленная 0,08-0,13
Негашеная известь 8,1-13,3
Строительный гипс 0,4-0,6
Базальтовое волокно 1,0-1,5
Вода остальное



 

Похожие патенты:

Изобретение направлено на создание покрытия конструкций (стены, пол, потолок), обеспечивающего экологическую безопасность при выделении вредных веществ, а именно аммиака, из зараженных конструкций.

Изобретение относится к области строительных материалов и может быть использовано для защиты различных поверхностей. Технический результат - повышение коррозионной устойчивости относительно магнезиальной коррозии.

Изобретение относится к области строительных материалов и может быть использовано для защиты поверхности карналлитовой породы. Технический результат - повышение трещиностойкости и адгезионной прочности к поверхности пород, представленных смесью хлоридов калия, натрия и магния.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к огнезащитным составам, используемым для защиты деревянных конструкций от возгорания. Технический результат - повышение защитных функций состава при огневом воздействии.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к области получения композиционных защитно-декоративных покрытий на изделиях из бетона и может быть использовано в промышленности строительных материалов. Технический результат - повышение прочности сцепления металлического слоя с основой и снижение энергозатрат. Способ получения композиционных защитно-декоративных покрытий на изделиях из бетона включает плазменное напыление защитно-декоративных материалов на лицевую поверхность изделия, в качестве защитно-декоративного покрытия напыляют гранулы стекла, предварительно увлажненные до 6-8% и покрытые слоем тонкодисперсного порошка алюминия в соотношении 9:1 (гранулы стекла:порошок алюминия) при мощности плазмотрона 6 кВт и скорости прохождения факела по лицевой поверхности 0,3 м/с. 2 табл., 1 пр.

Изобретение относится к промышленности строительных материалов и может быть использовано промышленными и строительными организациями для огнезащиты строительных конструкций. Технический результат - повышение огнестойкости строительных конструкций за счет расширения сырьевой базы, повышения прочности и водостойкости гипсовермикулитобетона, повышения трещиностойкости и огнезащитных свойств покрытия во время пожара. Фиброгипсовермикулитобетонная сырьевая смесь для изготовления огнезащитного покрытия включает, мас.%: гипс 40,0-47,7; вспученный вермикулит 35,40-45,33; вулканический пепел 3,0-3,5; портландцемент 10,0-12,1; базальтовое волокно 1,2-1,5; смолу древесную омыленную 0,07-0,1. 3 табл.

Изобретение относится к области получения автоклавных стеновых материалов с композиционными защитно-декоративными покрытиями и может быть использовано в промышленности строительных материалов. Технический результат - повышение прочности сцепления с основой, сокращение времени получения автоклавных стеновых материалов с композиционными защитно-декоративными покрытиями и снижение энергозатрат. Способ получения автоклавных стеновых материалов с композиционными защитно-декоративными покрытиями включает полусухое прессование, автоклавную обработку, напыление цветных металлов с помощью плазмотрона. Перед плазменным напылением лицевую поверхность автоклавных стеновых материалов покрывают 20-40%-ным водным раствором жидкого стекла, а последующее плазменное напыление гранул стекла, предварительно покрытых тонкодисперсным порошком цветных металлов, осуществляют при мощности работы плазмотрона 6 кВт и скорости прохождения плазменной горелки по лицевой поверхности автоклавных стеновых материалов 0,35 м/с. 3 табл., 1 пр.

Изобретение относится к области строительства и может быть использовано в качестве сухой штукатурной смеси, предназначенной для теплоизоляционных покрытий внешних и внутренних сторон стен строительных конструкций. Технический результат - ускорение сроков отверждения композиции и повышение прочности. Состав для отделки содержит, мас. ч.: известь-пушонку 69-78; цемент 6,9-7,8; наполнитель - перлитовый песок 6,5-11,7; пластифицирующую добавку Кратасол ПФМ 0,6-0,8; минеральную добавку - синтетические алюмосиликаты, полученные путем добавления микродисперсных порошков алюминия в натриевое жидкое стекло при температуре 60°C в течение 90 мин и высушивания осадка, 3,5-7,5; полимерную добавку - редиспергируемый порошок VINNAPAS 8031H 3,5-3,9. 4 табл.
Изобретение относится к области строительного производства, в частности к способу санации жилых помещений. Технический результат - интенсификация процесса санации аммиака, выделяющегося из строительных материалов, более глубокая очистка строительных конструкций от загрязняющих веществ. В способе очистки жилых и производственных помещений, зданий из бетона от аммиака, выделяемого из бетона, основанном на введении в бетон или в наносимые на него отделочные материалы раствора нелетучих неорганических и органических сильных кислот с прогревом изделия и самого раствора, а также введении абсорбера с целью нейтрализации аммиака при помощи химического способа, в качестве абсорбера используют вспученный перлит, который перед введением в бетон или отделочные материалы помещают в раствор нелетучих сильных кислот, тщательно перемешивают. После удаления излишков раствора кислоты и частичного высушивания гранулы перлита подвергают механической очистке внешней поверхности от остатков кислоты. Затем гранулы помещают в готовый отделочный раствор для нанесения на бетонную поверхность или в раствор самого бетона для изготовления из него конструкций и тщательно перемешивают с ними. 4 з.п. ф-лы.

Группа изобретений относится к высокоэмиссионным покровным композициям и способам их получения. Термоэмиссионная покровная композиция для подложки включает сухую смесь из веществ, повышающих эмиссионную способность покрытия, при этом вещества, повышающие эмиссионную способность покрытия, содержат диоксид титана, и веществ, повышающих механическую прочность. В другом варианте композиция дополнительно содержит растворный компонент, включающий фосфорную кислоту. Способ получения покрытия включает определение заданного уровня эмиссионной способности покрытия, определение концентрации диоксида титана, определение адгезионных свойств и изготовление термоэмиссионной покровной композиции. Техническим результатом является увеличение теплоотдачи излучением. 4 н. и 31 з.п. ф-лы, 5 ил., 4 табл., 7 пр.

Группа изобретений относится к строительству, а именно к получению пористого изделия. Технический результат - превосходные эффект предотвращения загрязнения поверхности и стойкость к щелочам и кислотам, технологическая обработки пористого изделия может быть выполнена при комнатной температуре или при относительно низкой температуре 100°C или ниже. Способ изготовления пористого изделия включает: первую стадию покрытия пор, по меньшей мере, основной поверхности пористого тела, которое сформировано из неорганического материала, первым смешанным раствором, содержащим частицы оксида металла, силикат щелочного металла и воду, для заполнения пор первым смешанным раствором; вторую стадию удаления остаточного первого смешанного раствора, который не использован для заполнения пор; и третью стадию дополнительного покрытия первого смешанного раствора, которым заполнены поры, из которых удален остаточный первый смешанный раствор, вторым смешанным раствором, содержащим водный щелочной раствор карбоната циркония и водный раствор силиката или коллоидный диоксид кремния, в котором частицы оксида металла являются частицами оксида алюминия α-типа, имеющего структуру корунда, силикат щелочного металла является силикатом лития, и массовое соотношение частицы оксида алюминия:силикат лития:вода в первом смешанном растворе составляет (40-60):(1-10):(30-59), значение D50 распределения частиц по размеру частиц оксида алюминия составляет 0,5-5 мкм и значение D90 распределения частиц по размеру частиц оксида алюминия составляет 3 мкм или более и второй смешанный раствор А содержит 0,5-15 мас.% циркония в пересчете на диоксид циркония и 0,005-7,5 мас.% силиката или коллоидного диоксида кремния в пересчете на диоксид кремния, и когда общая масса диоксида циркония и диоксида кремния составляет 100 мас.ч., масса диоксида кремния составляет 1-50 мас.ч., и второй смешанный раствор В содержит 0,005-4,5 мас.% циркония в пересчете на диоксид циркония и 0,5-15 мас.% силиката или коллоидного диоксида кремния в пересчете на диоксид кремния, и когда общая масса диоксида циркония и диоксида кремния составляет 100 мас.ч., масса диоксида циркония составляет 1-30 мас.ч. 2 н.п. ф-лы, 6 табл.

Изобретение относится к области строительных материалов и может быть использовано для защиты поверхностей выработанных шахт. Технический результат - повышение плотности защитного покрытия и прочности на сжатие. Сырьевая смесь для защитного покрытия содержит, мас.%: портландцемент 36,17-37,17; песок фракции 0,315 мм 35,67-36,17; тонкомолотый известняк с удельной поверхностью 260 м2/кг 7,84-8,04; сульфат алюминия 0,70-0,80; воду 18,62-18,82. 1 табл., 1 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - уменьшение истираемости изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в течение 72 часов при температуре 20-30°C в растворе, состоящем из жидкого натриевого стекла с плотностью ρ=1,45 г/см3, водородным показателем pH=12 и золя гидроксида алюминия Al(OH)3 с плотностью ρ=1,12 г/см3, водородным показателем pH=3,5-4,5, при следующем соотношении компонентов, мас.%: указанное жидкое натриевое стекло 73,00-75,00; указанный золь гидроксида алюминия Al(OH)3 25,00-27,00. 2 табл., 9 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат - уменьшение водопоглощения изготавливаемого бетонного изделия. Способ изготовления бетонных изделий включает формование изделия, пропитку изделия с последующим твердением, причем пропитку осуществляют в растворе, состоящем из, мас. %: жидкого натриевого стекла с плотностью ρ=1,45 г/см3 и водородным показателем pH=12 77,00 81,00; золя гидроксида железа (III) Fe(OH)3 с плотностью ρ=1,021 г/см3 и водородным показателем pH=4,5-5,5 19,00-23,00, в течение 72 часов при температуре 20-30°C. 2 табл.
Наверх