Система обогрева трубопроводов



Система обогрева трубопроводов
Система обогрева трубопроводов
Система обогрева трубопроводов

 


Владельцы патента RU 2595257:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) (RU)

Изобретение относится к технике нагрева с помощью электромагнитных микро- и радиоволн, а именно может быть использовано для нагрева трубопроводов в различных отраслях народного хозяйства и техники, а также для защиты от замерзания продуктов, протекающих внутри трубопроводов. Система обогрева трубопроводов содержит источник электромагнитных микро- или радиоволн (3) и волновод (2). Волновод выполнен круглой или прямоугольной формы, который при помощи передающего тракта соединен с источником электромагнитных микро- или радиоволн, а другой конец его замкнут. Включение или отключение источника микроволнового излучения осуществляется системой управления, которая содержит, по меньшей мере, один датчик температуры (5, 6) и блок системы управления (7). Изобретение обеспечивает дополнительный нагрев волновода и, следовательно, трубопровода, предотвращая кристаллизацию продукта. 3 ил.

 

Изобретение относится к технике нагрева с помощью электромагнитных микро- и радиоволн, а именно может быть использовано для нагрева трубопроводов в различных отраслях народного хозяйства и техники, а также для защиты от замерзания продуктов, протекающих внутри трубопроводов.

Известны способ микроволновой обработки жидкой водонефтяной смеси и устройство для его осуществления [RU 2327865 С1, МПК Е21В 43/34, Н05В 6/64, опубл. 27.06.2008]. Устройство содержит узел ввода СВЧ-энергии, расположенный с торца трубопровода, связанный с источником электромагнитных колебаний посредством СВЧ-тракта, узел ввода обрабатываемой смеси, расположенный на боковой стенке возле узла ввода СВЧ-энергии, отличающееся тем, что в узел ввода обрабатываемой смеси герметично установлены первый датчик температуры и блок измерения скорости потока, в выходном участке трубопровода вне зоны воздействия электромагнитного поля СВЧ также установлены второй датчик температуры, первый узел отбора обрабатываемой среды, соединяющий одновременно трубопровод с блоком измерения плотности, с блоком измерения теплоемкости, с блоком измерения теплопроводности, с блоком измерения диэлектрической проницаемости обрабатываемой среды, и установлен второй узел отбора, соединяющий одновременно блок измерения плотности, блок измерения теплоемкости, блок измерения теплопроводности, блок измерения диэлектрической проницаемости с трубопроводом, причем блок измерения плотности, блок измерения теплоемкости, блок измерения теплопроводности, блок измерения диэлектрической проницаемости, блок измерения температуры, блок измерения скорости потока соединены интерфейсами через ЭВМ с источником электромагнитных колебаний, при этом первый и второй датчики температуры соединены соответственно информационными проводами с блоком измерения температуры.

Недостатком данного устройства является невозможность транспортировки продукта по трубопроводу при использовании устройства, так как СВЧ-энергия подается через торец трубопровода. СВЧ-волна, введенная через торец волновода, заполненного средой с заданным тангенсом угла потерь на СВЧ, будет быстро затухать по мере удаления от места введения ее в трубопровод, что приведет к местному перегреву нефтепродуктов.

Известно устройство разогрева вязких диэлектрических продуктов при их транспортировке трубопроводами [RU 2439863 С1, МПК Н05В 6/64, опубл. 10.01.2012], содержащее источник микроволнового излучения, излучатели, волновод, коаксиально установленную внутри трубопровода трубу из радиопрозрачного материала, отличающееся тем, что на внутренней поверхности трубы из радиопрозрачного материала расположен волновод, выполненный в форме спиралевидной металлической полосы, на которой расположены на одинаковом друг от друга расстоянии, обеспечивающем беспрепятственное прохождение токов излучения, выполненные в виде щелей излучатели, источник микроволнового излучения соединен со спиралевидной полосой с излучателями через коаксиальный кабель. Данное устройство наиболее близко по технической сущности и принято за прототип.

Недостатком прототипа является наличие установленного внутри трубопровода излучателя, который ухудшает транспортировку продукта по трубопроводу. Излучатель соединен с источником микроволнового излучения при помощи коаксиального кабеля, проходящего через небольшое отверстие в трубопроводе. Такое исполнение устройства может привести к разгерметизации трубопровода. Также может произойти пробой напряжения от излучателя на стенку трубопровода. Все описанные выше недостатки могут привести к серьезным авариям и выходу из строя дорого технологического оборудования.

Задачей изобретения является создание системы обогрева трубопроводов при помощи электромагнитных микро- и радио волн, при осуществлении которой достигается технический результат, заключающийся уменьшении негативного влияния системы СВЧ-обогрева на эксплуатационные характеристики трубопровода, такие как герметичность, взрыво- и пожаробезопасность и т.д.

Указанный технический результат достигается тем, что система обогрева трубопроводов содержит источник электромагнитных микро- или радиоволн, волновод выполнен круглой или прямоугольной формы, который при помощи передающего тракта соединен одним концом с источником электромагнитных микро- или радиоволн, а другой конец замкнут, включение или отключение источника микроволнового излучения осуществляется системой управления, содержащей, по меньшей мере, один датчик температуры и блок системы управления.

На фиг. 1 - изображен контур системы обогрева трубопроводов, содержащий источник электромагнитного излучения, волновод и обогреваемый трубопровод.

На фиг. 2 - изображена простая структурная схема системы управления обогревом.

На фиг. 3 - изображен разрез круглого и прямоугольного волноводов.

Система обогрева трубопроводов содержит волновод 2 круглой или прямоугольной формы, замкнутый на одном из концов, устанавливаемый на внешнюю поверхность трубопровода 1 (фиг. 1, 3). Волновод 2 снаружи может быть покрыт изоляционным материалом, например термопластиком или фторополимером, для защиты от коррозии или механических повреждений. Длина волновода 2 зависит от параметров обогреваемого трубопровода 1, например длины. Толщина d стенки волновода 2 больше глубины δ проводящего скин-слоя (фиг. 3). Глубина δ скин-слоя зависит от частоты и удельной проводимости металла, из которого изготовлен волновод. Глубина δ скин-слоя [1] определяется по формуле (1):

где δ - глубина скин-слоя, мм; µ - магнитная проницаемость вещества, Гн/м; µ0 - магнитная постоянная, Гн/м; σ - удельная электрическая проводимость, См/м; f - частота микроволнового излучения, Гц.

К примеру, на частоте 2,45 ГГц глубина проникновения поля составляет от 1,3 мкм для меди и до 10 мкм для нержавеющей стали.

Источник 3 электромагнитных микро- или радиоволн на другом конце волновода 2 соединен с ним при помощи передающего тракта 4 (фиг. 1). Управление источником 3 электромагнитных микро- и радиоволн осуществляется системой управления, включающей в себя, по крайней мере, один датчик температуры 5, устанавливаемый на внешнюю поверхность трубопровода 1, блок управления 7, датчик температуры 6, устанавливаемый на внешнюю поверхность волновода 2 (фиг. 1, 2). Датчики температуры 5, 6 соединены с блоком управления 7, например кабелями или по радиосигналу. Таким образом, система управления включает в себя устройства, которые измеряют показания (датчики температуры 5, 6), устройство (блок управления 7), которое анализирует, включает или отключает источник 3 микроволнового излучения.

Система обогрева трубопроводов работает следующим образом.

При транспортировке продукта по трубопроводу 1 происходит потеря тепла через теплоизоляцию. Температура продукта уменьшается и при отрицательных температурах может понизиться до температуры кристаллизации, что приведет к закупорке трубопровода 1. В среднем для часто используемых материалов теплоизоляции, например минеральной ваты, и стандартных диаметров трубопровода тепловые потери составляют порядка 20-60 Вт/м. Датчик 5, установленный на поверхность трубопровода 1, передает сигнал в блок управления 7, который его анализирует и включает или отключает источник 3 электромагнитных микро- или радиоволн (фиг. 1, 2). При включении источника 3 электромагнитных микро- или радиоволн в волноводе 2 создается стоячая электромагнитная волна, так как электромагнитная микро- или радиоволна, отразившись от замкнутой стенки волновода 2, передается обратно к источнику 3 электромагнитных микро- и радиоволн. Из-за потерь энергии электромагнитной микро или радиоволны в стенках волновода 2 она постепенно затухает. Потери энергии нагревают волновод 2, от которого тепло передается трубопроводу, предотвращая кристаллизацию продукта. Так как глубина δ скин-слоя меньше толщины d стенки волновода 2, то снаружи он электрички нейтрален и его можно заземлить (фиг. 1, 3). Во избежание перегрева волновода 2 на его поверхность установлен датчик температуры 6, который передает сигнал в блок управления 7 и при увеличении температуры выше максимально допустимой отключает источник 3 электромагнитных микро- или радиоволн. Таким образом, предлагаемое изобретение позволяет обогреть трубопровод, не нарушая его целостности.

Список использованных источников

1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: учеб. пособие в 10 т. - 2-е перераб. и доп. изд. - М.: Наука, 1982. - Т. VIII. Электродинамика сплошных сред. - 484 с.

Система обогрева трубопроводов, содержащая источник электромагнитных микро- или радиоволн, волновод, отличающаяся тем, что волновод выполнен круглой или прямоугольной формы, который при помощи передающего тракта соединен одним концом с источником электромагнитных микро- или радиоволн, а другой конец замкнут, включение или отключение источника микроволнового излучения осуществляется системой управления, содержащей, по меньшей мере, один датчик температуры и блок системы управления.



 

Похожие патенты:
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование малиновой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку корня одуванчика, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев корня одуванчика до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием корня одуванчика, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив.

Изобретение относится к устройству (4) тепловой обработки для содержащих белок продуктов, которые транспортируются через устройство транспортировочным средством (5) и мимо по меньшей мере одной сверхвысокочастотной радиометрической антенны (1), причем сверхвысокочастотная радиометрическая антенна (1) расположена в защитном средстве (6), которое, по меньшей мере частично, простирается вокруг поперечного сечения транспортировочного средства (5), и, по меньшей мере частично, изолирует сверхвысокочастотную радиометрическую антенну (1) от внешних источников электромагнитного излучения.

Изобретение относится к технологическому оборудованию пищевого предприятия и предназначено для термообработки сырья в оболочке, например колбасных изделий в оболочках, яиц, консервов в диэлектрической банке и т.п.

Изобретение относится к области микроволновых технологий и может найти применение при проектировании микроволновых установок предпосевной обработки семян в диапазоне сверхвысокой частоты (СВЧ) и диапазоне крайне высокой частоты (КВЧ).

Изобретение относится к СВЧ технике и предназначено для повышения однородности СВЧ поля при нагреве, сушке и других применениях теплового воздействия электромагнитного излучения СВЧ диапазона.

Изобретение относится к системам СВЧ-обработки материалов и может быть использовано для обеззараживания осадков промышленных, бытовых и сельскохозяйственных сточных вод.

Свч-печь // 2581689
Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода.
Изобретение относится к сорбционным процессам и может быть использовано, например, для регенерации цеолита, использованного при осушке природного газа. Предложен способ регенерации сорбента, в котором сорбент помещают в емкость, нагревают СВЧ-излучением для отделения сорбата от сорбента, пропускают через емкость продувочный газ для удаления паров сорбата.

Изобретение относится к устройству для приготовления пищи и способу управления. Содержит камеру для приготовления пищи, чтобы вмещать продукты, которые должны быть приготовлены в ней, модуль микроволнового нагрева, чтобы излучать микроволны в камеру для приготовления пищи, модуль конвекционного нагрева, чтобы подавать горячий воздух в камеру для приготовления пищи, модуль гриль-нагрева, чтобы подавать излучаемое тепло в камеру для приготовления пищи, имеющую специальное покрытие тарелку, сконфигурированную, чтобы нагреваться посредством микроволн, модуль ввода, чтобы принимать пользовательскую команду обжаривания, и модуль управления.

Изобретение относится к микроволновой технике, к электронагревательным аппаратам для тепловой обработки продуктов и т.п. Микроволновая печь имеет двухблочную конструкцию, функционально объединяющую эллипсоидальную камеру нагрева (1, 3) и электронный блок, в корпусе (6) которого установлены два автономных генератора магнетронного типа (5, 9) и устройство для управления режимом работы печи.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование ежевичной выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку цикория, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев цикория до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием цикория, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование черносмородиновой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку корня одуванчика, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев корня одуванчика до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием корня одуванчика, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование облепиховой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку овсяного корня, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев овсяного корня до температуры внутри кусочков 80-90°C, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием овсяного корня, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование морошковой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку овсяного корня, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев овсяного корня до температуры внутри кусочков 80-90°C, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием овсяного корня, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование семян укропа жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку топинамбура, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев топинамбура до температуры внутри кусочков 80-90°C, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием топинамбура, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование мушмуловой выжимки жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку цикория, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев цикория до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием цикория, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование цветков розы жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку тописолнечника, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев тописолнечника до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием тописолнечника, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, экстрагирование цветков герани жидкой двуокисью углерода с отделением соответствующей мисцеллы, резку топинамбура, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев топинамбура до температуры внутри кусочков 80-90°С, в течение не менее 1 часа, обжаривание, пропитку отделенной мисцеллой с одновременным повышением давления, сброс давления до атмосферного с одновременным замораживанием топинамбура, дробление и затирание совместно с сухим хлебным квасом и горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Изобретение относится к технологии производства хлебного кваса. Способ предусматривает подготовку рецептурных компонентов, дробление ржаного солода и ячменного солода, резку скорцонера, его сушку в поле СВЧ до остаточной влажности около 20% при мощности поля СВЧ, обеспечивающей разогрев скорцонера до температуры внутри кусочков 80-90°C, в течение не менее 1 часа, обжаривание и дробление, запарку ржаной муки, скорцонера, ржаного солода и ячменного солода с горячей водой в течение 1,5-2 часов, затирание запаренной массы с горячей водой и трехкратное настаивание с отделением жидкой фазы от гущи с получением квасного сусла, добавление к нему 25% рецептурного количества сахара в виде белого сиропа, сбраживание хлебопекарными дрожжами, купажирование с оставшейся частью сахара в виде белого сиропа и розлив. Способ позволяет сократить длительность технологического процесса и повысить стойкость пены целевого продукта.
Наверх