Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки


 

F23B90/00 - Устройства для сжигания твердого топлива (для одновременного или попеременного сжигания кускового с другим видом топлива F23C 1/00; устройства для сжигания в псевдоожиженном слое F23C 10/00; сжигание низкосортного топлива и мусора F23G; колосниковые решетки F23H; подача твердого топлива в устройства для сжигания F23K; конструктивные элементы камер сгорания, не отнесенные к другим подклассам F23M; бытовые отопительные устройства F24; котлы центрального отопления F24D; автономные компактные котлы F24H)

Владельцы патента RU 2595304:

Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) (RU)

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм, получаемого в трехкамерном дезинтеграторе, в стационарном режиме - угля обычного помола, получаемого в двухступенчатой мельнице с помольными шарами и активатором. При этом в форсированном-переходном режиме работы установки предлагается помимо угля микропомола и угля обычного помола использовать дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, а контроль и регулировку осуществлять за счет непрерывного мониторинга процесса с помощью компьютера с газоанализатором и специальным программным обеспечением. Изобретение позволяет существенно улучшить экономические и экологические параметры процесса сжигания угольного топлива с максимально возможным оптимальным использованием его теплотворной способности на всех режимах работы энергетической установки и вне зависимости от условий окружающей среды. 4 з.п. ф-лы.

 

Изобретение относится к области теплоэнергетики, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, и может быть использовано в других областях промышленности, в частности, в установках по глубокой переработке угля в другие виды топлива.

Эффективность и экономичность процесса сжигания угольного топлива зависят от многих факторов и параметров, включая поддержание оптимального соотношения топливо-воздух в каждой отдельной горелке, минимизацию и уменьшение выбросов вредных для человека и окружающей среды веществ. Другим аспектом вышеуказанной проблемы является процесс подготовки угольного топлива к сжиганию и сам процесс его ввода в топочное пространство энергетической установки.

Известны способ и устройство для сжигания угля в вихревом потоке [патент RU2339874, F23B 7/100; F23K 1/00; F23C 5/24, 2007], включающий повторный возврат несгоревших частиц угольного топлива в зону взаимодействия двух вихревых потоков для оптимального их поджога.

Данный способ частично решает проблему экономичности и экологии процесса сжигания угольного топлива, но он весьма трудоемок в реализации и малоэффективен при эксплуатации ввиду необратимых потерь, которые неизбежны при высокотемпературном рециклинге инертного материала и несгоревших частиц цельного топлива.

Наиболее близким по совокупности признаков к заявляемому способу является способ сжигания угольной пыли в вихревой топке [патент RU 2418237 C2, F23K 1/09; F23C 5/24, 2009], в котором дожиг несгоревших частиц угольного топлива осуществляют при помощи ввода в процесс дополнительных горелок, использующих механоактивированный уголь микропомола, и установленных в зоне взаимодействия двух вихревых потоков, направленных в противоположные стороны относительно друг друга.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что он, также как и ранее описанный способ, только частично решает данную проблему, а именно оптимизацию всего процесса сжигания угольного топлива в вихревой топке энергетической установки. В данном способе отсутствуют все необходимые и достаточные средства и устройства для форсированного режима работы энергетической установки, что является крайне необходимым условием при эксплуатации данного класса установок в регионах с резким изменением внешних параметров, а именно резкого падения барометрического давления, изменения направления ветра, влажности и температуры воздуха и т.п. Учесть эти многочисленные и непредсказуемые явления природы, при отсутствии соответствующих приборов, устройств и методов их регулирования режимом сжигания угольного топлива, не всегда практически реально даже при наличии режимных карт, разрабатываемых для данного региона и апробированных во время пуско-наладочных работ.

Задачей настоящего изобретения является устранение вышеперечисленных недостатков ранее известного способа оптимизации процессов сжигания угольного топлива в вихревой топке энергетической установки.

Указанная задача решается за счет достижения технического результата, заключающегося в получении более эффективного и простого способа повышения устойчивости и эффективности процесса сжигания угольного топлива в вихревой топке энергетической установки на всех режимах ее работы и с учетом всех внешних и внутренних факторов, влияющих на ее экономические и экологические параметры.

Указанный технический результат по объекту-способу достигается известным способом оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, включающей режим запуска, стационарный режим и форсированный режим.

Отличием предложенного способа является то, что в режиме запуска первоначально используют угольное топливо микропомола с размерами частиц не более 10 мкм, получаемое известным способом, например, с помощью трехкамерного дезинтегратора, расположенного в непосредственной близости от вихревой топки, в стационарном режиме работы используют угольное топливо обычного помола, приготавливаемого, например, в двухступенчатой центробежной мельнице с помольными шарами и активатором, в форсированном режиме работы используют помимо угля микропомола и угля обычного помола дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, при этом при сжигании угля микропомола в режиме запуска используют пылеугольные горелки из огнеупорного материала с двумя турболизаторами, установленными по обе стороны от камеры термостабилизации, а при сжигании угольного топлива обычного помола в стационарном режиме работы используют многоканальные прямоточные горелки, выполненные с четырьмя коаксиальными каналами с торцевыми тангенциальными вводами для подачи угольного топлива и воздуха.

Указанный технический результат по объекту-способу достигается также тем, что процесс сжигания угольного топлива осуществляют при постоянном контроле химического состава и концентрации образующегося горючего газа путем изменения тангенциальной и аксиальной составляющих скоростей вихревого потока, путем частичного отключения или включения вспомогательных и основных горелок, а также путем снижения потока низкотемпературной плазмы, генерируемой с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды.

Указанный технический результат по объекту-способу достигается также тем, что низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, вводят в топку энергетической установки для повышения устойчивости и эффективности процесса сжигания, а именно повышения или снижения давления и температуры в зависимости от расхода воздуха и угольного топлива и его теплотворной способности.

Указанный технический результат по объекту-способу достигается также тем, что при стационарном режиме работы вихревой топки энергетической установки для более полного использования энтальпии отходящих газов осуществляют одновременно рекуперацию выходящего потока газа и его очистку с помощью известного устройства для утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки, в корпусе которого вдоль по току отходящего газа установлены сухой циклон и мокрая ступень центробежно-барботажного аппарата, а горячую воду и пар, полученные в результате рекуперации, используют в процессе подготовки угольного топлива к сжиганию.

Указанный технический результат по объекту-способу достигается также тем, что перед окончательным выбросом отходящих газов в атмосферу их еще раз дополнительно очищают способом мокрой очистки, очистные устройства которого располагают непосредственно на входе отходящего потока газов в дымовую трубу.

Сведения, подтверждающие возможность осуществления заявляемого изобретения с получением указанного технического результата, состоят в следующем. Заявленный способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки в большей степени предназначен для нужд большой и малой энергетики, но это не исключает его использования в других отраслях промышленности, например, при глубокой переработке угля в другие полезные продукты. В большей своей части он базируется на уже известных изобретениях авторов, но существенно отличается от них как по новизне, так и по глубине. К тому же он объединяет ранее запатентованные решения в один комплекс и показывает новый способ их оптимального использования с получением максимального экологического эффекта. Так, например, предлагаемый способ предусматривает четкое разделение режимов работы энергетической установки и, соответственно, использование того или иного оборудования и средств контроля и регулирования. Так, в режиме запуска, который длится весьма короткое время, целесообразно использовать уголь микропомола с наименьшей тониной, которую можно получить на сегодняшний день [патент RU 2511314 C2, В02С 13/22, 2012]. Однако вряд ли это будет экономически оправдано, если его применять в стационарном режиме работы энергетической установки в качестве основного вида топлива, так как затраты на его получение сведут на нет все его преимущества перед другими видами используемого топлива. Поэтому в данном режиме работы энергетической установки, т.е. в стационарном, целесообразно в качестве основного вида топлива использовать уголь обычного помола, который можно подготавливать к сжиганию по более дешевой и простой технологии, например, как это предложено авторами ранее [патент RU 2273521 C2, В02С 19/18, 2004]. При этом, как показывают эксперименты, с применением угля микропомола процесс перехода на стационарный режим осуществляется существенно быстрее и менее затратно. Следует особо отметить, что переходные режимы как раз и являются весьма затратными и более трудоемкими как при контроле их, так и при регулировании. Поэтому при форсированном-переходном режиме работы энергетической установки целесообразно использовать все имеющиеся средства и оборудование, установленное на данной энергетической установке, включая и низкотемпературную плазму, генерируемую с помощью небольших плазматронов, использующих в качестве плазмообразующего газа пары воды. Такой подход не только улучшает процесс сжигания угольного топлива, но и делает более рентабельным и экономически оправданным сжигание угольного топлива с малой теплотворной способностью, большой гигроскопичностью и высокой зольностью. При этом для сжигания угля микропомола более целесообразно использовать специальные горелки [патент RU 2294486 C1, F23D 1/00, 2005] ввиду того, что уголь микропомола по своим энергетическим и эксплуатационным свойствам более схож с газом, чем с твердым угольным топливом. В то время, как при сжигании угольного топлива обычного помола целесообразно использовать горелки с коаксиальными каналами и тангенциальными вводами угольного топлива и воздуха [патент RU 2460941 C1, F23D 1/02, F23Q 9/00, F23C 99/09, 2011]. Такая комбинация средств и оборудования будет экономически оправдана, если на каждом этапе их использования будет отслеживаться в непрерывном режиме вся текущая ситуация, включая контроль химического состава образующегося горючего газа, температуры и давления как в самой вихревой топке энергетической установки, так и в устройствах, его поддерживающих. Такой комплексный контроль практически неосуществим без использования компьютера и специального программного обеспечения [патент RU 2287741 C2, F23N 5/00, 2004]. Никакая режимная карта не в состоянии предсказать все нюансы происходящих процессов, на каких бы теоретических и экспериментальных данных она не базировалась. Только объективный и непрерывный мониторинг всего процесса в целом позволяет своевременно и оперативно реагировать на все его изменения, происходящие под действием внешней среды и других непредвиденных обстоятельств, включая и «человеческий» фактор. К тому же информация, записанная в память компьютера во время испытания данной установки или ее головного образца, позволяет выбрать наиболее оптимальный режим ее работы на всех этапах эксплуатации, включая и «форс-мажорные» обстоятельства. Следует особо подчеркнуть, что только с применением компьютера и специальных газоанализаторов стало возможно в качестве регулирующих процесс сжигания угольного топлива использовать такие устройства, как плазматроны и дезинтеграторы. Эти устройства, как правило, не являются основными и носят вспомогательный характер использования, но без их применения сам процесс сжигания угольного топлива менее управляем и более трудоемок. Низкотемпературная плазма и созданные на ее основе реакторы сегодня изучены довольно обстоятельно [Б.И. Михайлов. «Электродуговые плазмохимические реакторы раздельного, совмещенного и раздельно-совмещенного типов», Теплофизика, 2010 г., т. 17, №3, стр. 425-440], но нигде и ни в каких ранее известных разработках она не выступала в роли регулятора в столь сложном и наукоемком процессе. Такую новую роль она смогла приобрести лишь после ряда исследовательских работ самих авторов [патент RU 2536718, В04С 5/09, F23C 5/24, 2013], в которых исследовались ее основные преимущества, а именно практически безинерционный способ нагрева любой газообразной смеси, включая водяной пар. Только водяной пар, разлагаясь мгновенно под действием низкотемпературной плазмы на водород и кислород, способен существенно изменять энергетические параметры процесса сжигания угольного топлива в вихревой топке, и тем самым улучшать одновременно его экономические и экологические характеристики. Вопросы экологии не только целесообразны с экономической точки зрения, но и совершенно необходимы с точки зрения «выживания», так как экологическая ситуация на нашей планете с каждым годом катастрофически приближается к своему пределу, после которого дальнейшее загрязнение планеты просто недопустимо и весьма опасно. В предлагаемом способе оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки вопросам экологии уделяется первостепенное внимание, поэтому отходящие газы предлагается не только очищать, но и одновременно рекуперировать, например, с помощью устройства для утилизации тепла конденсации водяного пара [патент RU 2484402 C1, F28C 3/06, 2011]. Используя по максимуму энтальпию отходящего газа, можно существенно повысить рентабельность процесса сжигания угольного топлива, а очистив отходящий газ от твердых вредных примесей при помощи сухого циклона, можно исключить его вредное влияние на окружающую среду, тем самым еще больше повысив рентабельность процесса. К тому же, «отобранное бросовое» тепло также можно вернуть снова в процесс, например использовать для нагрева угольного топлива или устройств подготовки угольного топлива к сжиганию. И конечно, перед выбросом отходящего потока газа в атмосферу его необходимо также очистить от вредных газов и всевозможных аэрозолей, включая кислоты, щелочи и основания. С этой целью перед дымовой трубой целесообразно расположить еще одну дополнительную ступень очистки, например, блок центробежно-барботажных устройств с различными абсорбентами [патент RU 2236890 C1, B01D 47/00, 2003], после прохождения которого отходящий поток газа уже не будет «травить» дымовую трубу и портить окружающую атмосферу. К тому же, получаемые в процессе окончательной очистки шламы и отработанные сорбенты могут быть в дальнейшем использованы в промышленности.

В заключение следует отметить, что только такой целенаправленный и комплексный подход с использованием компьютера со специальным программным обеспечением и газоанализаторами позволяет гарантировать полное сжигание угольного топлива в вихревой топке энергетической установки и, тем самым, полнее и экономичнее использовать его теплотворную способность без нанесения вреда окружающей среде. Предлагаемый способ позволяет вести процесс сжигания угольного топлива в вихревой топке энергетической установки как вручную с помощью технологических карт и оператора, так и в автоматическом режиме с использованием компьютера с газоанализатором и специальным программным обеспечением, обеспечивая при этом соответствующую безопасность. После включения компьютера процесс запуска того или иного оборудования осуществляется либо автоматически, либо с учетом его информации с помощью оператора. При этом переход с одного режима работы на другой, как и форсированный режим, осуществляется автоматически от сопоставления измеряемых параметров с теми оптимальными их значениями, которые были получены во время пуско-наладочных работ или при исследовании головного образца данной серии энергетических установок.

Технический эффект от использования предложенного изобретения состоит в следующем. Предложенный способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки существенно упрощает ее эксплуатацию, а также улучшает как экономические показатели, так и экологические параметры. Автоматизация данного процесса сжигания может быть частичной или полной в зависимости от наличия имеющихся материальных ресурсов и экологической ситуации в регионе, где предполагается эксплуатация данной установки. Конечно, в мегаполисах она должна быть укомплектована по максимуму, в то время как при использовании ее на разрезах для переработки угля в другие виды продуктов, какая-то часть оборудования может быть исключена или замещена.

1. Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, включающий режим запуска, стационарный режим и форсированный режим, отличающийся тем, что в режиме запуска первоначально используют угольное топливо микропомола с размерами частиц не более 10 мкм, получаемое с помощью трехкамерного дезинтегратора, расположенного в непосредственной близости от вихревой топки, в стационарном режиме работы используют угольное топливо обычного помола, получаемое в двухступенчатой центробежной мельнице с помольными шарами и активатором, в форсированном режиме работы используют помимо угля микропомола и угля обычного помола дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, при этом при сжигании угольного топлива микропомола в режиме запуска используют пылеугольные горелки из огнеупорного материала с двумя турболизаторами, установленными по обе стороны от камеры термостабилизации, а при сжигании угольного топлива обычного помола в стационарном режиме работы используют многоканальные прямоточные горелки, выполненные с четырьмя коаксиальными каналами с торцевыми тангенциальными вводами для подачи угольного топлива и воздуха.

2. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что процесс сжигания угольного топлива осуществляют при постоянном контроле химического состава и концентрации образующегося горючего газа с помощью газоанализатора и регулировании на основе данных контроля путем изменения тангенциальной и аксиальной составляющих скоростей вихревого потока, частичного отключения или включения основных и вспомогательных горелок, а также снижения потока низкотемпературной плазмы, генерируемой с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды.

3. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, вводят в топку энергетической установки в зависимости от расхода воздуха и угольного топлива и его теплотворной способности.

4. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что при стационарном режиме работы вихревой топки энергетической установки осуществляют одновременно рекуперацию выходящего потока газа и его очистку с помощью устройства для утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки, в корпусе которого вдоль по потоку отходящего газа установлены сухой циклон и мокрая ступень центробежно-барботажного аппарата, а горячую воду и пар, полученные в результате рекуперации, используют в процессе подготовки угольного топлива к сжиганию.

5. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что перед выбросом отходящих газов в атмосферу их дополнительно очищают способом мокрой очистки в очистных устройствах, расположенных непосредственно на входе отходящего потока газов в дымовую трубу.



 

Похожие патенты:

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство сжатия воздуха, устройство подготовки воздуха с камерой подготовки воздуха, устройство плазмохимической обработки пылевидного топлива, включающее плазмотрон, и камеру горения, а также трубопроводы, связывающие их.

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство 1 сжатия воздуха, устройство 2 подготовки воздуха с камерой 3 подготовки воздуха, устройство 4 плазмохимической обработки пылевидного топлива, включающее плазмотрон 5 и камеру 6 горения, а также трубопроводы, связывающие их.

Изобретение относится к области энергетики. Способ сжигания пылевидного топлива, заключающийся в том, что разделяют воздух методом адсорбирования азота на цеолите, формируют первый поток воздуха, обогащенный кислородом, и второй поток воздуха, обогащенный азотом, выделенным с поверхности цеолита методом его нагрева, затем второй поток воздуха разделяют на основной и дополнительный потоки, дополнительный поток смешивают с пылевидным топливом и смесь подают в начало камеры зажигания, причем часть смеси дополнительного потока воздуха и пылевидного топлива подают через плазмотрон в камеру зажигания, где формируют факел газификации части пылевидного топлива в условиях недостатка кислорода, от первого потока воздуха отделяют часть и посредством трубы отбора воздуха подают в камеру зажигания за выходной срез плазмотрона, после плазмотрона формируют факел зажигания части газифицированного в плазмотроне пылевидного топлива, которым воспламеняют смесь дополнительного потока воздуха и пылевидного топлива, продукты горения из камеры зажигания смешивают с основным потоком воздуха и при недостатке кислорода подают в камеру горения, оставшуюся часть первого потока, обогащенную кислородом, подают в камеру подготовки воздуха, где обрабатывают лазерным излучением твердотельного лазера с длиной волны 762±0,5 и/или 1268±0,5 нм, которая вызывает переход молекул кислорода из основного электронного состояния в возбужденное синглетное состояние O 2 ( b 1 ∑ g + ) , путем подачи лазерного излучения в цилиндрическую камеру подготовки воздуха с зеркальной поверхностью, по меньшей мере, в одном месте под углом к ее поверхности, меньшим угла полного отражения от зеркальной поверхности цилиндрической камеры подготовки воздуха по винтообразной ломаной кривой с шагом между соседними витками винтообразной ломаной линии, большим линейного габаритного размера, измеренного вдоль оси цилиндрической камеры подготовки воздуха, обработанную часть первого потока воздуха с синглетным кислородом подают через коаксиальную перфорированную перегородку в пристеночную область камеры горения, при этом увеличивают концентрацию синглетного кислорода по направлению к выходу из камеры горения.

Группа изобретений относится к теплоэнергетике и касается технологии получения, транспортировки, раздельного и совместного сжигания механоактивированного угля микропомола и угля штатной системы пылеприготовления в вихревой растопочной горелке при растопке пылеугольного котла и стабилизации горения с целью замещения дорогостоящего мазута или природного газа.

Изобретение относится к области энергетики. .

Изобретение относится к способам непрерывного питания форсунок газогенератора. .

Изобретение относится к подготовке твердого топлива к сжиганию, в частности к пылеприготовлению, и может быть использовано в схемах прямого вдувания на тепловых электростанциях.

Изобретение относится к области энергетики, в частности к подготовке топлива к сжиганию, может быть использовано на тепловых электростанциях, и при своем использовании позволяет повысить экономичность путем снижения гидравлического сопротивления, уменьшить потери с механическим недожогом топлива и снизить шлакование поверхностей нагрева топочной камеры.

Настоящее изобретение относится к способу и устройству для введения угля и рециркуляции газов при производстве синтез-газа. Способ заключается во введении в реактор газификации (2) порошкообразного материала (С) и подаче технологического газа.

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство сжатия воздуха, устройство подготовки воздуха с камерой подготовки воздуха, устройство плазмохимической обработки пылевидного топлива, включающее плазмотрон, и камеру горения, а также трубопроводы, связывающие их.

Изобретение относится к энергетике. Система управления электростанцией с мельницей для измельчения материала для ввода в систему сгорания содержит первый датчик, второй датчик, систему регулирования, компонент модуля оценки состояния, выполненный с возможностью принимать сигналы, причем компонент модуля оценки состояния выполнен с возможностью использовать первый сигнал, второй сигнал и третий сигнал, чтобы вырабатывать сигнал индикатора параметра материала и сигнал индикатора состояния системы, и компонент вывода, для выработки выходного управляющего сигнала.

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство 1 сжатия воздуха, устройство 2 подготовки воздуха с камерой 3 подготовки воздуха, устройство 4 плазмохимической обработки пылевидного топлива, включающее плазмотрон 5 и камеру 6 горения, а также трубопроводы, связывающие их.

Изобретение относится к области энергетики. Способ сжигания пылевидного топлива, заключающийся в том, что разделяют воздух методом адсорбирования азота на цеолите, формируют первый поток воздуха, обогащенный кислородом, и второй поток воздуха, обогащенный азотом, выделенным с поверхности цеолита методом его нагрева, затем второй поток воздуха разделяют на основной и дополнительный потоки, дополнительный поток смешивают с пылевидным топливом и смесь подают в начало камеры зажигания, причем часть смеси дополнительного потока воздуха и пылевидного топлива подают через плазмотрон в камеру зажигания, где формируют факел газификации части пылевидного топлива в условиях недостатка кислорода, от первого потока воздуха отделяют часть и посредством трубы отбора воздуха подают в камеру зажигания за выходной срез плазмотрона, после плазмотрона формируют факел зажигания части газифицированного в плазмотроне пылевидного топлива, которым воспламеняют смесь дополнительного потока воздуха и пылевидного топлива, продукты горения из камеры зажигания смешивают с основным потоком воздуха и при недостатке кислорода подают в камеру горения, оставшуюся часть первого потока, обогащенную кислородом, подают в камеру подготовки воздуха, где обрабатывают лазерным излучением твердотельного лазера с длиной волны 762±0,5 и/или 1268±0,5 нм, которая вызывает переход молекул кислорода из основного электронного состояния в возбужденное синглетное состояние O 2 ( b 1 ∑ g + ) , путем подачи лазерного излучения в цилиндрическую камеру подготовки воздуха с зеркальной поверхностью, по меньшей мере, в одном месте под углом к ее поверхности, меньшим угла полного отражения от зеркальной поверхности цилиндрической камеры подготовки воздуха по винтообразной ломаной кривой с шагом между соседними витками винтообразной ломаной линии, большим линейного габаритного размера, измеренного вдоль оси цилиндрической камеры подготовки воздуха, обработанную часть первого потока воздуха с синглетным кислородом подают через коаксиальную перфорированную перегородку в пристеночную область камеры горения, при этом увеличивают концентрацию синглетного кислорода по направлению к выходу из камеры горения.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электрических станциях. Способ интенсификации процесса сжигания низкореакционного угля в котлах ТЭС включает воспламенение и горение пылеугольного низкореакционного топлива, при вводе в процесс горения водной эмульсии с нанодобавкой в виде растворимого таунита.

Изобретение относится к теплоэнергетике, в частности к комбинированным пылеугольным горелкам, и может быть использовано в энергетическом машиностроении на пылеугольных котлах с подачей в горелки угольной пыли высокой концентрации (УПВК) по трубам под давлением.

Изобретение относится к области энергетики. Наконечник (100) сопла для сопла (200) трубы для пылевидного твердого топлива печи, работающей на пылевидном твердом топливе, который уменьшает выбросы NOx, причем наконечник (100) сопла содержит кожух (120) для первичного воздуха, содержащий впускной конец (102) и выпускной конец (104), причем впускной конец (102) принимает поток топлива; первую разделительную пластину (160), расположенную в кожухе (120) для первичного воздуха, причем первая разделительная пластина (160) и кожух (120) для первичного воздуха образуют верхнюю камеру (260) для PA-PSF (первичного воздуха - пылевидного твердого топлива) для приема первой части потока топлива; и разделитель (180) потока, расположенный в кожухе (120) для первичного воздуха, причем разделитель (180) потока содержит пару расходящихся поверхностей, который разделяет вторую часть входной струи (230) на верхнюю часть (350) струи PA-PSF и нижнюю часть (360) струи PA-PSF, причем верхняя часть (350) струи PA-PSF и первая часть входной струи (230) объединяются в выпускном конце (104) кожуха (120) для первичного воздуха, образуя верхнюю выходную струю (320) PA-PSF, которая выходит из выпускного конца (104) кожуха (120) для первичного воздуха, отделенная от нижней части (360) струи PA-PSF.

Изобретение относится к энергетике, в частности к пылеугольным горелочным устройствам энергетических котлов. В корпусе 1 горелки расположены входной патрубок 2 вторичного воздуха, который разделяет перегородка 4 на два отдельных входных патрубка: 3 для внешнего канала 9 вторичного воздуха; 5 - для внутреннего канала 12 вторичного воздуха.

Изобретение относится к области энергетики. .

Изобретение относится к теплоэнергетике, а именно к системам отопления на твердом топливе, и может быть использовано для создания отопительных приборов с повышенной эффективностью.
Наверх