Сварочная проволока для сварки разнородных сталей

Изобретение относится к сварке, а именно к составу сварочной проволоки для сварки разнородных сталей, эксплуатируемых при повышенных температурах и знакопеременных нагрузках, в том числе в агрессивных средах, в частности в условиях эксплуатации оборудования атомного и энергетического машиностроения. Техническим результатом изобретения является повышение сопротивляемости металла сварного шва образованию горячих трещин и повышение прочности и пластичности сварного соединения. Сварочная проволока для сварки разнородных сталей содержит углерод, кремний, марганец, хром, никель, азот, серу, фосфор, молибден, цирконий, церий и железо при следующем соотношении компонентов, мас. %: углерод 0,021-0,033, кремний 0,40-0,60, марганец 2,10-2,50, хром 23,50-24,50, никель 12,50-13,50, азот 0,07-0,09, сера не более 0,01, фосфор не более 0,015, молибден 0,30-0,80, цирконий 0,05-0,08, церий 0,05-0,08, железо - остальное, при этом суммарное количество углерода, серы и фосфора не более 0,05 мас. %. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к сварке и касается состава сварочной проволоки для сварки разнородных сталей, эксплуатируемых при повышенных температурах и знакопеременных нагрузках, в том числе в агрессивных средах, в частности в условиях эксплуатации оборудования атомного и энергетического машиностроения.

Известна сварочная проволока для механизированной сварки немагнитной высокопрочной аустенитной азотистой стали, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, цирконий, азот, серу, фосфор и железо в следующем соотношении, мас.%: углерод 0,04-0,08, кремний 0,6-0,9, марганец 3,5-4,0, хром 19,0-21,0, никель 15,0-17,0, молибден 2,4-2,8, ванадий 0,01-0,03, цирконий 0,05-0,10, азот 0,15-0,25, сера 0,005-0,010, фосфор 0,010-0,015, железо - остальное.

(RU 2437746, B23K 35/30, С22С 38/58, опубликовано 27.12.2011)

Недостатком известной сварочной проволоки является склонность сварного шва к образованию горячих трещин при сварке разнородных сталей, особенно разных структурных классов.

Известна сварочная проволока для сварки деталей из комбинаций разнородных сталей перлитного и аустенитного классов в тепловой и атомной энергетике, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, серу, фосфор, алюминий, титан, иттрий и железо при следующем соотношении компонентов, мас.%: углерод 0,08-0,12; кремний 0,15-0,35; марганец 1,0-2,0; хром 15,0-17,0; никель 24,0-27,0; молибден 5,5-7,0; азот 0,10-0,20; сера ≤ 0,010; фосфор ≤ 0,015; алюминий 0,05-0,10; титан 0,05-0,12; иттрий 0,05-0,10; железо - остальное.

(RU 2393075, B23K 35/30, С22С 38/58, опубликовано 27.06.2010)

Недостатком известной сварочной проволоки является склонность сварного шва к локальным разрушениям после сварки комбинированных сварных соединений сталей перлитного и аустенитного классов, эксплуатируемых при повышенных температурах, а особенно в контакте сварного шва с пароводяной рабочей средой. Это связано с низким содержанием хрома в околошовной зоне первого шва, поскольку при доле участия основного металла в металле шва до 30 мас.% содержание хрома в околошовной зоне может быть ниже 11 мас.%. Такой сварное соединение склонно к межкристаллитной и ножевой коррозии, приводящей к локальному разрушению в результате длительного температурно-деформационного нагружения сварных соединений разнородных сталей.

Наиболее близкой по составу и технической сущности является сварочная проволока для сварки и наплавки разнородных сталей, содержащая углерод, кремний, марганец, хром, никель, серу, фосфор, медь, олово, сурьму, кобальт, азот и железо при следующем соотношении компонентов, мас.%: углерод 0,012-0,02; кремний 0,40-0,65; марганец 0,90-2,0; хром 23,0-25,0; никель 12,0-14,0; сера не более 0,01; фосфор не более 0,015; медь не более 0,1; олово не более 0,005; сурьма не более 0,005; кобальт не более 0,05; азот не более 0,05; железо - остальное.

(RU 2443529, B23K 35/30, С22С 38/60, С22С 38/58, опубликовано 27.02.2012)

Известная сварочная проволока обеспечивает получение двухфазной аустенито-ферритной структуры наплавленного металла с содержанием ферритной фазы 5-10%, что дает высокий уровень физико-механических свойств металла сварного шва при сварке разнородных сталей, однако имеет склонность к разновидности горячих кристаллизационных трещин - высокотемпературным полигонизационным трещинам.

Техническим результатом изобретения является повышение сопротивляемости металла сварного шва образованию горячих трещин и повышение прочности и пластичности сварного соединения.

Технический результат достигается тем, что сварочная проволока для сварки разнородных сталей содержит углерод, кремний, марганец, хром, никель, азот, серу, фосфор, молибден, цирконий, церий и железо при следующем соотношении компонентов, мас.%:

углерод 0,021-0,033
кремний 0,40-0,60
марганец 2,10-2,50
хром 23,50-24,50
никель 12,50-13,50
азот 0,07-0,09
сера не более 0,01
фосфор не более 0,015
молибден 0,30-0,80
цирконий 0,05-0,08
церий 0,05-0,08
железо остальное,

при этом суммарное количество углерода, серы и фосфора не более 0,05 мас.%.

Технический результат также достигается тем, что отношение суммарного содержания церия и циркония к содержанию серы составляет 11-13.

Дополнительное легирование сварочной проволоки церием (0,05-0,08 мас.%) и цирконием (0,05-0,08 мас.%) усиливает эффект сохранения прочностных характеристик границ зерен сварного шва, поскольку церий и цирконий образуют высокотемпературные карбиды, которые в большей степени, чем карбиды хрома, предотвращают локальное разрушение сварных швов при коррозии. Комплексное легирование церием и цирконием также активно обессеривает сварочную ванну за счет образования высокотемпературных труднорастворимых соединений с серой.

При отношении суммарного содержания церия и циркония к содержанию серы 11-13 обеспечивается максимальный эффект обессеривания церием и цирконием границ зерен, что повышает технологическую прочность сварных швов из разнородных сталей и сопротивляемость металла сварного шва образованию горячих трещин.

Легирование сварочной проволоки молибденом подавляет высокотемпературную полигонизацию в сварном шве и, как следствие, склонность к образованию высокотемпературных полигонизационных трещин.

Оптимальное соотношение аустенито- (углерод, никель, марганец) и ферритообразующих (кремний, хром, марганец) элементов обеспечивает содержание δ-феррита в пределах 5-8%, что также повышает сопротивляемость сварного шва образованию горячих трещин.

При этом суммарное количество углерода, серы и фосфора не должно превышать 0,05 мас.%.

Заявленное ограничение суммарного содержания углерода, серы и фосфора не более 0,05 мас.% также направлено на предотвращение возможности образования горячих трещин и локальных разрушений, так как эти элементы совместно снижают стойкость к коррозии как началу трещинообразования.

Сравнительные испытания сварочной проволоки по изобретению представлены в таблицах 1-3.

Изготовление сварочной проволоки по изобретению включало:

- выплавку стали с заданным химическим составом: варианты с содержанием легирующих элементов на нижнем и верхнем пределах легирования, определяемым по ковшевой пробе;

- отливку слитков массой 0,3-0,5 т;

- ковку слитков на заготовки;

- прокатку кованых заготовок на катанку на сортовых станах;

- волочение катанки на передельные размеры;

- отжиг проволоки в печи;

- электрохимическую полировку;

- намотку проволоки на катушки или кассеты.

Для получения разнородного соединения использовали сталь перлито-ферритного класса 10ГН2МФА, широко применяемую в атомном энергомашиностроении, и сталь аустенитного класса - 12Х18Н9.

Листы из указанных сталей толщиной 12 мм сваривали двумя вариантами проволоки по изобретению в сравнении с известной сварочной проволокой (таблица 1). Оценка механических свойств сварных швов представлена в таблице 2, где показаны преимущества заявляемой проволоки.

Стойкость против образования горячих трещин в процессе сварки плавлением оценили с применением методик, основанных на принудительном растяжении металла шва в процессе кристаллизации сварочной ванны с определением критической скорости деформирования А (мм/мин), не приводящей к образованию кристаллизационных трещин в шве.

Пластину с прорезью (ГОСТ 26389-84 «Соединения сварные. Методы испытаний на сопротивляемость образованию горячих трещин при сварке плавлением») изготовили из стали 10ГН2МФА, пластину с отверстием - из стали 12Х18Н9. Определили величину А (мм/мин) для двух опытных вариантов заявляемого состава и прототипа при однопроходной сварке в среде аргона (таблица 3).

Из представленных данных следует, что сварочная проволока по изобретению обеспечивает повышение стойкости металла сварного шва к образованию горячих и коррозионных трещин при увеличении характеристик прочности и пластичности сварного соединения.

Сварочная проволока по изобретению может быть применена при сварке в защитных газах, в качестве электродного стержня для сварочных электродов и для автоматической сварки под слоем флюса. Она перспективна для сварки разнородных сталей в атомной энергетике.

1. Сварочная проволока для сварки разнородных сталей, содержащая углерод, кремний, марганец, хром, никель, азот, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит молибден, цирконий и церий при следующем соотношении компонентов, мас.%:
углерод 0,021-0,033
кремний 0,40-0,60
марганец 2,10-2,50
хром 23,50-24,50
никель 12,50-13,50
азот 0,07-0,09
сера не более 0,01
фосфор не более 0,015
молибден 0,30-0,80
цирконий 0,05-0,08
церий 0,05-0,08
железо остальное,
при этом суммарное количество углерода, серы и фосфора не более 0,05 мас.%.

2. Сварочная проволока по п. 1, отличающаяся тем, что отношение суммарного содержания церия и циркония к содержанию серы составляет 11-13.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к присадочным материалам для электродуговой и лазерной сварки, и может быть использовано для соединения деталей из аустенитной и ферритной сталей.

Изобретение относится к области металлургии, а именно получению горячекатаной конструкционной стали в виде листа толщиной 2-12 мм, Сталь имеет состав, в мас.%: С: 0,07-0,12, Si: 0,1-0,7, Mn: 0,5-2,0, Ni: 1,5-4,5, Cu: 0,25-3,0, Cr: 0,5-1,6, Mo:0,1-0,8, Ti: 0,005-0,04, V: менее 0,1, при необходимости, один или более компонентов из: В: менее 0,0003 или 0,0005-0,003 при условии, что содержание титана составляет 0,02-0,04 или удовлетворяет условию 3*N(%)<Ti≤0,04%, Nb: 0,008-0,08 или менее 0,008, Са: 0,0005-0,005, Al: 0,01-0,15, остальное - железо (Fe) и неизбежные примеси, в частности N: ≤0,01, Р: <0,02, S<0,04.

Изобретение относится к области металлургии, а именно к аустенитным коррозионно-стойким сталям, применяемым в серийном и массовом производстве деталей, работающих до 600°C.

Изобретение относится к области металлургии, а именно к получению конструкционных аустенитных сталей для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов.

Изобретение относится к горячекатаным оцинкованным листам. Высокопрочный горячеоцинкованный стальной лист, содержит лист из стали, содержащей, в маc.%: С от 0,075 до 0,400, Si от 0,01 до 2,00, Mn от 0,80 до 3,50, Р от 0,0001 до 0,100, S от 0,0001 до 0,0100, Al от 0,001 до 2,00, О от 0,0001 до 0,0100, N от 0,0001 до 0,0100, железо и неизбежные примеси - остальное, и горячеоцинкованный слой, сформированный на поверхности стального листа.

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов.

Изобретение относится к горячегальванизированным стальным листам и способам их получения. Горячегальванизированный погружением стальной лист включает стальной лист, имеющий образованный горячей гальванизацией погружением слой А на поверхности стального листа и следующий слой В непосредственно под поверхностью стального листа и в стальном листе.

Изобретение относится к области металлургии, конкретнее к прокатному производству и может быть использовано при изготовлении толстых листов из низколегированных трубных сталей.

Изобретение относится к высокопрочным стальным листам, изготовленным методом гальванизацией погружением. Стальной лист включает образованный гальванизацией погружением слой, сформированный на поверхности базового стального листа.

Изобретение относится к области металлургии, а именно к составам жаропрочных сплавов, используемых для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение может быть использовано для индукционной наплавки при упрочнении деталей машин и механизмов, подвергаемых интенсивному изнашиванию, в частности средств сельскохозяйственного и дорожно-строительного назначения.

Изобретение относится к области металлургии, а именно к присадочным материалам для электродуговой и лазерной сварки, и может быть использовано для соединения деталей из аустенитной и ферритной сталей.

Изобретение может быть использовано для сварки нержавеющих сталей, в частности сталей серии 400, сварочной проволокой с флюсовой сердцевиной. Нержавеющая хромистая сталь трубчатой оболочки содержит, вес.%: 10-18 Cr, менее 5 Ni.

Изобретение может быть использовано для соединения металлических деталей, имеющих температуру солидуса выше 1100°C. На поверхность (15) первой металлической детали (11) наносят подавляющий плавление состав (14), содержащий подавляющий плавление компонент, включающий по меньшей мере 25 мас.% бора и кремния для снижения температуры плавления первой металлической детали (11).

Изобретение относится к области металлургии, а именно к способам сварки ферритных сталей, и может быть использовано в конструкциях трубопроводов, имеющих деформированное состояние.

Изобретение относится к способу электродуговой наплавки цилиндрических поверхностей ободьев и ступиц катаных центров локомотивных колес из среднеуглеродистой стали для устранения технологического износа и продления срока их службы.

Изобретение может быть использовано при изготовлении высокотемпературной пайкой неразъемно соединенного пластинчатого теплообменника. Металлические теплообменные пластины, имеющие температуру солидуса выше 1100°С, установлены друг за другом и образуют пакет с чередующимися межпластинными пространствами.

Настоящее изобретение относится к области металлургии, а именно к металлу сварного шва. Металл сварного шва, сформированный дуговой сваркой в среде защитного газа с использованием присадочной проволоки с флюсовым сердечником, содержит, в мас.%: C от 0,02 до 0,12; Si от 0,10 до 2,00; Mn от 0,90 до 2,5; Ni от 0,20 до 3,5; Ti от 0,040 до 0,15; N 0,015 или меньше; O от 0,030 до 0,10; и железо и неизбежные примеси - остальное, в котором частицы остаточного аустенита присутствуют с плотностью 2500 частиц или больше на квадратный миллиметр и с объемной долей 4,0% или больше.

Изобретение относится к области металлургии, а именно к многослойному сварному шву. Многослойный сварной шов, сформированный на участке поверхности турбинного ротора из высокохромистой стали, контактирующем с подшипником, содержащий нижний и верхний наплавленные слои, при этом нижний наплавленный слой содержит, в вес.%: С от 0,05 до 0,2, Si от 0,1 до 1,0, Mn от 0,3 до 1,5, Cr от 4,0 до менее 6,5, Мо от 0,5 до 1,5, Fe и неизбежные примеси - остальное.

Изобретение относится к композиционному порошку для соединения путем диффузионной пайки деталей из суперсплавов. Композитный порошок для соединения путем диффузионной пайки деталей из суперсплавов, изготовленный смешиванием 65-70% по массе порошка сплава на основе никеля Astroloy, содержащего, мас.%: 16,9 кобальта, 14,8 хрома, 3,87 алюминия, 3,45 титана, 5,1 молибдена, 0,015 углерода, никель - остальное, и 30-35% по массе порошка сплава на основе никеля NiCrB1055, содержащего, мас.%: 15 хрома, 4 бора, никель - остальное.

Изобретение относится к области металлургии, а именно к высокотемпературным припоям на основе титана, которое может найти применение при изготовлении паяных деталей горячего тракта газотурбинных двигателей. Припой на основе титана для пайки сплава на основе интерметаллида ниобия с температурой плавления не ниже 1350°С содержит, мас.%: алюминий 18,0-25,0, молибден 1,0-10,0, кремний 3,0-6,0, хром 10,0-15,0, гафний 1,0-5,0, титан - остальное. Припой обеспечивает привес при температуре 1350°С не выше, чем у сплава на основе интерметаллида ниобия, и величину эрозионной активности по отношению сплаву на основе интерметаллида ниобия не более 50 мкм при температуре 1500°С. 4 з.п. ф-лы, 1 табл., 4 пр.
Наверх