Способ переработки луба берёзовой коры



Способ переработки луба берёзовой коры
Способ переработки луба берёзовой коры

 


Владельцы патента RU 2595332:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) (RU)

Изобретение относится к сельскохозяйственной промышленности. Согласно предложенному способу осуществляют измельчение луба березовой коры до фракции менее 1 мм и экстрагируют его водно-спиртовым раствором гидроксида калия в сверхвысокочастотном поле. Затем отделяют экстракт и сушат проэкстрагированный осадок. Способ обеспечивает утилизацию отходов деревообработки. 1 ил., 1 табл.

 

Изобретение относится к лесохимической, химической и сельскохозяйственной отраслям промышленности, в частности к способам получения стимулятора роста растений, антисептика при предпосевной обработке семян, высокоэффективной добавки к почве и в качестве кормовой добавки.

Экстрактивные вещества (ЭВ), составляющие большую часть луба березовой коры, включают полифенольные соединения - танниды конденсированного типа. Их основу составляют катехины и лейкоантоцианы, обладающие дубящими свойствами [Экстрактивные вещества березы / Г.Н. Черняева, С.Я. Долгодворова, С.М. Бондаренко. - Красноярск: ИЛиД, 1986. - С. 95-96]. Полифенольные продукты из луба березы являются нетоксичными и биоразлагаемыми веществами, которые могут применяться как антиоксидантные реагенты, консерванты древесины, в составе покрытий, сополимеров, в качестве адгезионных и связующих материалов, пенополимеров, ионообменных материалов, флокулянтов для промышленной очистки воды, красок для текстиля, пищевых добавок и медицинских препаратов [Forest Products Biotechnology Bruce and Palfreyman (editors). - Taylos and France, 1998. - 243 р.]. Выделенные из коры танниды также применяются для борьбы с термитами и разрушающими древесину грибками [Harum J. and Labosky P. // Wood and Fiber Science. - 1985. V. 17. - P. 327]. Кроме того, изучена возможность получения энтеросорбентов типа полифепана из луба березовой коры и твердых остатков его экстракционной переработки [Кузнецова С.А., Щипко М.Л., Кузнецов Б.Н., Левданский В.А. и др. Получение и свойства энтеросорбентов из луба березовой коры // Химия растительного сырья. - 2004. - №2. - С. 25-29].

Известен способ переработки березовой коры, который включает измельчение коры в дробилке, разделение ее на бересту и луб. В дальнейшем луб дополнительно измельчают, смешивают его с водой, выдерживают смесь в течение 1…10 суток, отделяют осадок от полученного продукта - кваса. Осадок сушат и используют как кормовую добавку для сельскохозяйственных животных и птиц [Пат. 2305550 РФ, C1 А61К 36/13. Способ переработки березовой коры / Сироткин Г.В., Мифтахов А.Р., Кульгашов Ю.А., Махова Н.Н., Толина М.В. Опубл. - 10.09.2007. - Бюл. №23]. Недостатком данного способа является длительность стадии получения конечного продукта.

Известен способ получения дубильного экстракта, включающий измельчение коры березы без предварительного разделения на бересту и луб, где на первой стадии получают бетулин. В дальнейшем кору экстрагируют при 75-80°C в течение 1-1,5 ч водно-спиртощелочным раствором с концентрацией гидроксида натрия 1,5% и этанола 15-20% и получают дубильный экстракт с выходом 30-32%. Остаток коры подвергают карбонизации в реакторе кипящего слоя с получением углеродного сорбента [Пат. 2352350 РФ, C1 А61К 36/185. Способ переработки коры березы / Левданский В.А., Левданский А.В., Кузнецов Б.Н. Опубл. - 20.04.2009. - Бюл. №13]. Однако процесс получения дубильного экстракта продолжителен во времени.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу следует назвать способ получения энтеросорбента из луба березовой коры, заключающийся в том, что луб березы с размерами частиц 0,1-1,0 мм последовательно экстрагируют рядом растворителей: гексаном, этилацетатом, изопропанолом и водой. Твердый остаток экстракции загружают в реактор и заливают 0,5-2,0%-ным раствором щелочи (гидромодуль 7). Смесь нагревают до 60-100°C и выдерживают в течение 30-60 мин, после чего обработанный луб отделяют от щелочного раствора, промывают водой, нейтрализуют остаточную щелочь кислотой и высушивают до воздушно-сухого состояния. Проэкстрагированный и обработанный водным раствором щелочи луб используют в дальнейшем как энтеросорбент [Пат. 2311954 РФ, С2 B01J 20/24. Энтеросорбент и способ его получения / Кузнецова С.А., Щипко М.Л., Кузнецов Б.Н., Ковальчук Н.М., Веприкова Е.В., Лезова А.А. Опубл. - 10.12.2007. - Бюл. №7]. Недостатком данного способа является необходимость использования нескольких дополнительных операций - предварительной экстракции рядом растворителей, промывки и нейтрализации кислотой. Кроме этого стадия выделения продукта занимает длительное время.

Задачей, на решение которой направлено изобретение, является упрощение технологии переработки луба березовой коры и сокращение продолжительности экстракции.

Это достигается тем, что в способе переработки луба березовой коры, включающем экстрагирование луба водно-спиртовым раствором гидроксида калия, отделение экстракта фильтрованием и сушку проэкстрагированного осадка, процесс экстрагирования проводят в сверхвысокочастотном поле (СВЧ-поле). Экстракт используют при предпосевной обработке семян, проэкстрагированный луб (рафинат) - в качестве удобрения и структурирующей добавки к почве.

В предлагаемом изобретении, во-первых, в отличие от прототипа экстракцию проводят в СВЧ-поле, что значительно сокращает продолжительность экстракции. Во-вторых, используют гидроксид калия вместо гидроксида натрия, поэтому использование дополнительных операций (промывку и нейтрализацию остаточной щелочи кислотой) не требуется, что приводит к сокращению времени проведения процесса. При экстракции луба происходит удаление смолистых веществ и добавление калия - одного из биогенных элементов, что является хорошим условием для питания растений.

Способ переработки луба березовой коры реализуется следующим образом: фракцию луба менее 1 мм помещают в реактор с обратным холодильником, добавляют водно-спиртовый раствор КОН, включают СВЧ-установку. Расход электрической энергии 0,05 кВт·ч. Экстрагирование проводят 15 мин. По истечении времени из реактора сливают экстракт через фильтр, полученный фильтрат в дальнейшем используют для обработки семян. Рафинат высушивают до воздушно-сухого состояния.

Компоненты экстрактов проявляют свойства биологически активных веществ. Исследована возможность использования экстрактов после СВЧ-экстракции в качестве стимулятора роста растений, а проэкстрагированного луба - в качестве удобрения и структурирующей добавки к почве.

Проращивание семян проводили на специальном термостате (водяной бане) при постоянной температуре 25…30°C в течение 20 дней в соответствии с ГОСТ 12038-84. Проращивали семена акации желтой (Caragána arboréscens), предоставленные Дендрологическим садом САФУ, сбор 12.08.13. Обработку семян проводили водой, гуматом калия и тремя растворами ЭВ с концентрацией, мг/мл: 1,0 (1); 10-2 (2); 10-4 (3) в течение 20 мин. Гумат калия является жидким органическим удобрением и стимулятором роста растений, использовался как образец сравнения. Затем семена разложили на подложках по 100 шт. Периодически контролировали количество ростков длиной больше размеров семени и проводили отборы пророщенных семян.

Ниже приведен график результатов наблюдений по выращиванию семян (фиг. 1).

По данному графику можно заметить положительный эффект обработки экстрактом с 10-го дня наблюдения. Раствор под номером 3 с концентрацией 10-4 мг/мл является более эффективным при проращивании: при его использовании к концу наблюдений проросло более 80% семян. Обработанные экстрактами семена имели очень длинные ростки. При обработке снижается период покоя и увеличивается энергия прорастания.

Растворы большей концентрации действуют как ингибиторы. Кроме того, семена, обработанные растворами ЭВ любой концентрации, не подверглись гниению (экстракты служат антисептиками). В случае с водой и раствором гумата калия загнило 10 и 7% семян соответственно. Обработка гуматом калия в начале наблюдения дает повышение всхожести по сравнению с контролем (вода), позднее всхожесть в этих пробах выравнивается.

Эффективность использования рафината в качестве калийного удобрения и структурирующей добавки к почве также проверена при выращивании сеянцев акации желтой (Caragana arborescens). Для посадки предварительно взошедщих семян использовали натуральный торфогрунт производства «АГРОТОРФ» (Ленинградская область) на основе природных компонентов с содержанием, мг/л: азота - 300, фосфора - 200, калия - 350. Торфогрунт смешивали с промытым песком в соотношении 2:1, в качестве добавки использовали проэкстрагированный луб в количестве от 0 до 1,5% от массы почвы. Результаты приведены в таблице 1.

При добавлении в почву луба доля взошедших семян возрастает. На 7-ой день по сравнению с контролем доля увеличилась в два раза, на 11-ый - в 1,6 раз. Чем больше содержание луба, тем выше доля взошедших семян (максимум 45%).

Сущность изобретения подтверждается следующими примерами.

Пример 1. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:10. Концентрация этилового спирта 10%. Расход гидроксида калия 20% от массы луба. Выход ЭВ составляет 20% от массы луба. Массовая доля гидроксида калия в полученном экстракте 54,6%, в рафинате - 9,2% от массы исходной щелочи.

Пример 2. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:10. Концентрация этилового спирта 30%. Расход гидроксида калия 20%. Выход ЭВ составляет 21% от массы луба. Массовая доля гидроксида калия в полученном экстракте 50%, в рафинате - 11,3% от массы исходной щелочи.

Пример 3. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:20. Концентрация этилового спирта 10%. Расход гидроксида калия 20%. Выход ЭВ составляет 30% от массы луба. Массовая доля гидроксида калия в полученном экстракте 50%, в рафинате - 9,1% от массы исходной щелочи.

Пример 4. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:20. Концентрация этилового спирта 30%. Расход гидроксида калия 22%. Выход ЭВ составляет 22% от массы луба. Массовая доля гидроксида калия в полученном экстракте 38,6%, в рафинате - 12,1% от массы исходной щелочи.

Пример 5. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:15. Концентрация этилового спирта 3%. Расход гидроксида калия 15%. Выход ЭВ составляет 33% от массы луба. Массовая доля гидроксида калия в полученном экстракте 56,1%, в рафинате - 13,3% от массы исходной щелочи.

Пример 6. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:15. Концентрация этилового спирта 37%. Расход гидроксида калия 15%. Выход ЭВ составляет 21,5% от массы луба. Массовая доля гидроксида калия в полученном экстракте 42,4%, в рафинате - 12,7% от массы исходной щелочи.

Пример 7. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:15. Концентрация этилового спирта 20%. Расход гидроксида калия 25%. Выход ЭВ составляет 26% от массы луба. Массовая доля гидроксида калия в полученном экстракте 58%, в рафинате - 13,3% от массы исходной щелочи.

Пример 8. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:23. Концентрация этилового спирта 20%. Расход гидроксида калия 15%. Выход ЭВ составляет 24% от массы луба. Массовая доля гидроксида калия в полученном экстракте 50%, в рафинате - 12,2% от массы исходной щелочи.

Пример 9. Экстракцию в СВЧ-поле ведут при жидкостном модуле 1:15. Концентрация этилового спирта 20%. Расход гидроксида калия 15%. Выход ЭВ составляет 27% от массы луба. Массовая доля гидроксида калия в полученном экстракте 56,1%, в рафинате - 12,2% от массы исходной щелочи.

Таким образом, предлагаемый способ переработки луба березовой коры является экономичным, эффективным и производительным. Обеспечивает утилизацию отходов деревообработки древесины и расширяет сырьевую базу для получения ценных продуктов из луба березовой коры.

Способ переработки луба березовой коры, характеризующийся тем, что осуществляют измельчение луба березовой коры до фракции менее 1 мм, экстрагирование растворителем в течение 15 мин, отделение экстракта и сушку проэкстрагированного осадка, при этом процесс экстрагирования проводят в сверхвысокочастотном поле при расходе энергии 0,05 кВт·ч/кг луба, а в качестве растворителя используют водно-спиртовой раствор гидроксида калия в количестве 15, или 20, или 22, или 25% от массы луба.



 

Похожие патенты:
Настоящее изобретение относится к биохимии, в частности к композиции, содержащей 10-20% по весу активного ингредиента растительного (гвоздичного масла и/или евгенола), 20-30% по весу лецитина, 15-30% по весу этанола, 10-20% по весу одного или нескольких сахаров: сахарозы, глюкозы, фруктозы или маннозы.
Изобретение относится к отрасли сельского хозяйства, а именно к агрохимическим композициям и способам их применения. Способ обработки растительных продуктов предусматривает нанесение фосфоновой кислоты в форме, по меньшей мере, частично превращенной в соль, представляющей собой полуторный фосфит калия, и эфирного масла или одного из содержащихся в нем терпеновых соединений, выбранных из гвоздичного, тимьянового, ориганового, коричного, мятного масла или их смеси, при температуре окружающей среды.

Изобретение относится к сельскому хозяйству. Композиция содержит тебуконазол, природные или синтетические водорастворимые полимеры и высушенные части растений с содержанием сапонина не менее 20% при следующем соотношении компонентов (в мас.

Предлагаемое изобретение относится к сельскому хозяйству, а именно к агрохимическим композициям и способам стимулирования роста растений. Предлагаемая композиция содержит производные антрахинона, фисцион или эмодин, полученные из Reynoutria sachalinensis, и предназначена для обработки корней растений.

Изобретение относится к области экологии и луговодства и может найти применение при восстановлении деградированных пастбищ. Способ включает использование в качестве стимуляторов растений и обогащение семян бобовых трав питательными веществами.

Изобретение относится к области сельского хозяйства. Изобретение представляет собой способ повышения устойчивости посевов сахарной свеклы к фитотоксичному воздействую гербицидов, включает в себя двукратную обработку посевов сахарной свеклы в фазе 2-3 настоящих листьев баковой смесью: гербицидов, одного из гуминовых препаратов и биоорганического наноудобрения, где в качестве смеси гербицидов используют Бетарен Экспресс AM (2 л/га), Пантера (1 л/га), Лорнет (0,3 л/га), Карибу (0,03 кг/га), Тренд 90 (0,2 л/га); в качестве гуминовых препаратов - Эдагум СМ в норме расхода 500 мл/га, Гумат K/Na - 500 мл/га или Гумат «Плодородие» - 500 мл/га; в качестве биоорганического наноудобрения - Nagro - 500 мл/га, причем расход рабочей баковой смеси составляет 250 л/га.

Изобретение относится к антивирусным средствам. Жидкая композиция, способная образовывать покрытие, содержит эффективное количество по меньшей мере одного вируцида природного происхождения, выбранного из лауриновой кислоты, монолаурина, лактоферрина и эфирных масел, обладающих антивирусной активностью, и/или его предшественника, причем указанная композиция имеет вязкость от 30 мПа·с до 40 Па·с при комнатной температуре и атмосферном давлении.

Настоящее изобретение относится к способу фунгицидной, бактерицидной и/или противоокислительной обработке фруктов или овощей, включающему нанесение композиции эфирного масла и/или одного из его компонентов или их смесей в форме раствора в диалкиленгликоле.

Изобретение относится к гранулированному лиофилизированному шипучему биопестицидному продукту и способу его получения. Препарат предложен в виде дозы для однократного применения в форме порошка или гранул.

Изобретение относится к сельскому хозяйству. Изобретение представляет собой препарат для защиты растений пшеницы, обладающий фунгицидными, бактерицидными и ростостимулирующими свойствами, где в качестве действующего вещества содержатся природные фенольные соединения, выделенные из древесной зелени ели.
Наверх