Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и оксидом магния, который используют в качестве стабилизирующего компонента, препятствующего переходу диоксида циркония из тетрагональной структуры в моноклинную при нагревании. Затем добавляют смесь аммония фосфорнокислого 2-х замещенного (NH4)2HPO4 и кальция углекислого CaCO3. При этом исходная смесь содержит компоненты в следующем соотношении, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 CaCO3 и 8-8,5 стекло марки ХС-2 №29. Смесь истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм, далее прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивным слоем - частицами фосфатов кальция с прочностью на сжатие не ниже 100 МПа. Способ обеспечивает одновременное получение биоинертной матрицы с биоактивным покрытием в одну стадию. 7 пр.

 

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.

Материалы на основе фосфатов кальция имеют отличную биосовместимость, но не обладают достаточной прочностью в качестве заменителей костной ткани. Один из способов решения этой проблемы - нанесение биоактивных слоев из фосфатов кальция на более прочные пористые биоинертные материалы. Одним из перспективных материалов для изготовления пористых конструкций для эндопротезирования костной ткани является диоксид циркония, характеризующийся высокой прочностью, коррозионной стойкостью, стойкостью к химически активным средам, отсутствием обменных реакций со структурами организма.

Известен способ получения пористого стеклокристаллического материала, который может быть использован для изготовления имплантов [RU 2462272, опубл. 27.09.2012 г., Бюл. №27]. Указанный способ включает изготовление полусухой массы, содержащей порошок кальцийфосфатного стекла и 1-10% раствор полимера, выбранного из поливинилового спирта, желатина, метилцеллюлозы или карбоксиметилцеллюлозы, которую затем формуют в бумажных формах при давлении прессования 1,0-1,2 МПа, сушат, обжигают с выдержкой 0,5-1,5 часа при 900-1000°С. В полусухую массу также вводят стержни-порообразователи в количестве 3-30 мас. %, представляющие собой капрон, нейлон, лавсан или графит, и крахмал в количестве 1-10 мас. %. Кальцийфосфатное стекло имеет следующий состав в мол. %: СаО 40-55, Al2O3 4-10, B2O3 1-5, TiO2 1-10, ZrO2 1-10 и P2O5 остальное. Способ обеспечивает получение биоактивных стеклокристаллических материалов для имплантации с канальной и межканальной поровой структурой, открытой пористостью 20-70%, долей канальных пор 5-40%, диаметром канальных пор 100-700 мкм, размером пор в межканальных перегородках 20-100 мкм.

Недостатком известного способа является низкая прочность образцов на сжатие: 3-50 МПа.

Известен способ изготовления биоактивного микропористого материала, имитирующего натуральные костные структуры [пат. РФ №2349289, опубл. 20.03.2009 г., Бюл. №8], который заключается в следующем. Предварительно получают композицию, содержащую размельченное в порошок медицинское стекло, порошок гидроксиапатита с отношением Ca к Р, равном 1,66-1,67, порообразователь - карбонат кальция, цеолит для формирования микропоровой структуры и повышения прочности стеклокерамических материалов и изделий. Композиция содержит цеолит с размером зерен до 1 мм и размером пор от 0,5 нм до 20 мкм, гранулированный совместно с гидроксиапатитом до размера гранул от менее 50 мкм до 1 мм, при следующем соотношении компонентов, мас. %:

Стекло 20-80
Гидроксиапатит 10-50
Цеолит 10-40
Порообразователь 0,1-10

В качестве матричного стекла предпочтительно использовать нейтральное медицинское алюмоборосиликатное стекло марки НС с содержанием (мас. %): 73,0 SiO2, 3,5 Al2O3, 2,5 B2O3, 1,0 MgO, 7,0 CaO, 11,0 Na2O, 2,0 K2O.

Для изготовления биоактивного микропористого материала указанную композицию укладывают в формы из корунда, титана или нержавеющей стали и подвергают термической обработке в течение 3-10 ч в два этапа для разделения стадий спекания и вспенивания: сначала ее постепенно нагревают до температуры 600-750°С, затем ускоренно до температуры 800-1000°С, после чего выдерживают смесь при указанной температуре в течение 5-60 мин. Материал обладает общей пористостью от 40 до 80% при открытой пористости от 30 до 70%. Распределение пор по размерам бимодальное, размер пор от 100 до 600 мкм. Прочность на сжатие материала от 20 до 50 МПа.

Недостатком данного материала является то, что он характеризуется низкой растворимостью в водных и физиологических средах в расчете на 1 г в пределах 0,001-0,002 г/сут, что связано с использованием в материале малорастворимых компонентов - гидроксиапатита с отношением Ca к Р, равном 1,66-1,67 и нейтрального стекла. Другой недостаток материала - низкая реакционная способность in vitro по тестам в SBF (simulated body fluid) - формирование активных поверхностных OH-групп в течение 3 суток, формирование слоев карбонатапатита в SBF на 14 сутки.

Известен композиционный костно-керамический имплантат, содержащий пористый керамический носитель на основе оксид циркония - оксид алюминия. На носитель нанесен слой гидроксиапатита и обогащенный тромбоцитами плазмы, при этом носитель получен путем приготовления смеси из керамического порошка на основе ZrO2 (Mg, Y) или Al2O3 и добавки пластификатора и порообразователя Al(ОН)3 или Zr(OH)4, с последующим добавлением дистиллированной воды для придания смеси формовочных свойств и спеканием готового изделия. Далее проводят формование изделия прессованием под давлением от 12 до 25 кН, а спекание изделия осуществляют при температуре 1450-1600°С. На композиционные костно-керамические имплантаты производится холодное газодинамическое напыление биологического гидроксиапатита с помощью установки холодного газового напыления (ХГН) при следующих параметрах: рабочий газ - воздух; давление в форкамере 0,3-5 МПа; температура в форкамере 0-1000°C; расход газа ≤1,5 м3/мин; потребляемая мощность ≤20 кВт [RU 2542496, опубл. 20.02.2015 г., Бюл. №5].

Композиционный костно-керамический имплантат на основе керамического материала системы оксид циркония - оксид алюминия эффективен и пригоден в медицине для восстановления анатомической целостности и функций костной ткани.

Недостатком способа является высокая температура формирования керамического материала и необходимость использования сложного оборудования для газодинамического напыления биологического апатита.

В качестве прототипа выбран способ получения пористой биоактивной керамики [Bull. Mat. Sci. 2007. v.30. №4. p.309-314], который предусматривает пропитку пористого каркаса из оксида циркония суспензией из гидроксиапатит-боросиликатого стекла. Способ осуществляют следующим образом. Сначала изготавливают пористый каркас пропиткой пеностирола суспензией из оксида циркония и оксида алюминия с последующим обжигом при температуре 1500°C. Затем эту полученную пористую матрицу пропитывают суспензией из гидроксиапатит-боросиликатого стекла и повторно обжигают при 1200°C. В результате получают пористую биоактивную керамику с прочностью на сжатие около 36,8 МПа.

Недостатком способа является высокая температура процесса (1500°C), необходимость осуществления процесса в две стадии и низкая прочность биоактивной керамики.

Задачей данного изобретения является повышение прочности пористой биоактивной керамики на основе оксида циркония и упрощение способа за счет сокращения стадий и снижения температуры процесса.

Поставленная задача решается за счет того, что в способе получения пористой биоактивной керамики на основе оксида циркония и стекла, в отличие от известного способа, биоинертную матрицу и биоактивное покрытие получают одновременно в одну стадию. Процесс осуществляют следующим образом.

Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и оксидом магния, который используют в качестве стабилизирующего компонента, препятствующего переходу диоксида циркония из тетрагональной структуры в моноклинную при нагревании. Затем добавляют смесь аммония фосфорнокислого 2-х замещенного и кальция углекислого. Смесь истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм, далее прессуют в пресс-форме под давлением 100 МПа/см и прокаливают в муфельной печи при температуре 1300°C. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивным слоем - частицами фосфатов кальция с прочностью на сжатие не ниже 100 МПа.

При этом исходная смесь содержит компоненты в следующем соотношении, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 CaCO3 и 8-8,5 стекло марки ХС-2 №29.

При содержании аммония фосфорнокислого 2-х замещенного и кальция углекислого соответственно менее 6 и 7% прочность керамики снижается. Прочность керамики также снижается при содержании аммония фосфорнокислого 2-хзамещенного и кальция углекислого соответственно более 8 и 9%. Экспериментально установлено, что прочность керамики снижается при использовании оксида магния и стекла в количествах ниже или выше заявленных интервалов, что подтверждается «отрицательными» примерами (№4-7, прочность на сжатие менее 100 МПа).

Техническим результатом предлагаемого изобретения в сравнении со способом-прототипом является повышение прочности пористой биоактивной керамики на основе оксида циркония, а также упрощение способа за счет сокращения стадий и снижения температуры процесса.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1. 100 г смеси, содержащей 72,5 г ZrO2, 4 г MgO, 8 г (NH4)2HPO4, 7 г СаСО3 и 8,5 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°C. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью пирофосфата Ca2P2O7 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 105 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 2. 100 г смеси, содержащей 73 г ZrO2, 4 г MgO, 7 г (NH4)2HPO4, 8 г СаСО3 и 8 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Ca10(PO4)6(OH)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 110 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 3. 100 г смеси, содержащей 72 г ZrO2, 4,5 г MgO, 6 г (NH4)2HPO4, 9 г CaCO3 и 8,5 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Са10(РО4)6(ОН)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 109 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 4. 100 г смеси, содержащей 70,5 г ZrO2, 6 г MgO, 5 г (NH4)2HPO4, 10 г CaCO3 и 8,5 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Са (PO4)6(ОН)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие недостаточно высокая и составляет 50 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 5. 100 г смеси, содержащей 72,5 г ZrO2, 4 г MgO, 9 г (NH4)2HPO4, 6 г СаСО3 и 8,5 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Са10(PO4)6(ОН)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 62 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 6. 100 г смеси, содержащей 75 г ZrO2, 4 г MgO, 8 г (NH4)2HPO4, 7 г СаСО3 и 6 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Са10(PO4)6(ОН)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 53 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Пример 7. 100 г смеси, содержащей 71 г ZrO2, 4 г MgO, 8 г (NH4)2HPO4, 7 г CaCO3 и 10 г химически стойкого стекла марки ХС-2 №29 (состав стекла, мас. %: SiO2 - 68,8; Al2O3 - 3,7; СаО - 7,5; ВаО - 3,5; Na2O - 10,0; K2O - 3,0; MgO - 3,5) истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм. Далее измельченную смесь прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры высланы изнутри биоактивными частицами фосфатов кальция. По данным рентгенофазового анализа фосфаты кальция представлены смесью гидроксиапатита Са10(РО4)6(ОН)2 и трикальцийфосфата Са3(PO4)2. Прочность образца на сжатие 64 МПа. Морфология поверхности излома образца характеризуется наличием пор со средними размерами 20-50 мкм.

Как видно из приведенных примеров, разработанные биоактивные пористые стеклокристаллические материалы удовлетворяют требованиям по поровой структуре, предъявляемым к ним и могут быть рекомендованы как материалы для имплантатов, предназначенных для лечения костных дефектов.

Способ получения пористой биоактивной керамики на основе оксида циркония путем обжига смеси, содержащей оксид циркония и стекло, отличающийся тем, что смесь дополнительно содержит оксид магния MgO и порообразователи: аммоний фосфорнокислый двухзамещенный (NH4)2HPO4 и кальций углекислый СаСО3, в качестве стекла используют химически стойкое стекло марки ХС-2 №29 при следующем соотношении компонентов, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 СаСО3, 8-8,5 стекло марки ХС-2 №29, при этом смесь перед обжигом измельчают и прессуют, а обжиг ведут при температуре 1300°С.



 

Похожие патенты:

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса.
Изобретение относится к керамическим композиционным материалам, состоящим из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, и может быть использовано в медицинской промышленности для изготовления искусственных протезов, например ортезов и эндопротезов, или для изготовления имплантатов тазобедренных или коленных суставов.

Изобретение относится к композиционному материалу, состоящему из матрицы оксида алюминия и диспергированного в ней оксида циркония, и может быть использовано для изготовления искусственных протезов.
Изобретение относится к огнеупорной промышленности и может использоваться для изготовления высокотемпературных материалов с пониженной теплопроводностью. .
Изобретение относится к композиционным керамическим материалам, в частности к материалам, армированным дискретными частицами, для изготовления изделий, обладающих высокими прочностными свойствами.

Изобретение относится к области электронно-лучевой обработки материалов и может найти применение при изготовлении изделий на основе керамических материалов в инструментальной промышленности.

Изобретение относится к керамическому материаловедению, в частности к получению композиционного керамического материала на основе тугоплавких бескислородных и оксидных соединений для применения в условиях, которые требуют высокой прочности, твердости и окислительной стойкости: для изготовления режущего инструмента, чехлов термопар для контроля температуры расплавов металлов, сопловых насадок для пескоструйных аппаратов, в нефте- и газодобывающей промышленности.
Изобретение относится к области композиционных керамических материалов, в частности к материалам, армированным дискретными керамическими волокнами, которые могут быть использованы в космической, авиационной, автомобильной и других отраслях промышленности.

Изобретение относится к производству керамики, а именно к составам шихты для изготовления керамики конструкционного и инструментального назначения. .

Изобретение относится к получению по ристой теплоизоляционной керамики на основе двуокиси циркония. .

Изобретение относится к способу изготовления плотной керамики для твердого электролита на основе полностью стабилизированного диоксида циркония и может быть использовано в твердооксидных топливных элементах, высокотемпературных электрохимических устройствах в качестве электролитических элементов.

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса.

Изобретение относится к производству композиционных материалов, преимущественно конструкционного назначения, и может быть использовано для изготовления теплозащитных слоистых композиционных изделий, предназначенных, например, для эффективной тепловой защиты аэрокосмических летательных аппаратов и их энергетических систем.
Изобретение относится к керамическим композиционным материалам, состоящим из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, и может быть использовано в медицинской промышленности для изготовления искусственных протезов, например ортезов и эндопротезов, или для изготовления имплантатов тазобедренных или коленных суставов.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов.

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита.

Изобретение относится к производству огнеупорных изделий. Технический результат изобретения заключается в повышении термоциклической устойчивости, прочности на изгиб, стойкости к коррозии и снижении коэффициента теплопроводности.

Изобретение относится к композиционному материалу, состоящему из матрицы оксида алюминия и диспергированного в ней оксида циркония, и может быть использовано для изготовления искусственных протезов.
Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака.

Изобретение относится к производству огнеупорных изделий, которые могут быть использованы для футеровки тепловых агрегатов. Огнеупорная масса включает следующие компоненты, мас.%: огнеупорная глина 30,0-35,0; пятиокись ванадия 1,9-2,5; каолин 8,8-9,8; кварцит 53,7-58,3.
Наверх