Газовая обдирочная мишень

Газовая обдирочная мишень относится к ускорительной технике и может быть применена в тандемных ускорителях заряженных частиц для ионной имплантации, нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ. Газовая обдирочная мишень выполнена в виде трубки с напуском газа посередине, расположена внутри высоковольтного электрода и параллельно смещена относительно оси ускорения заряженных частиц. При этом перед входом в мишень и после выхода из нее установлены по паре магнитов с поперечными магнитными полями, одинаковыми по величине, но разными по знаку. В магнитном поле происходит отклонение вытекающих из обдирочной мишени низкоэнергетичных положительных ионов обдирочного газа на угол порядка 130-180° в поглотитель. В магнитном поле также происходит параллельный сдвиг пучка ионов высокой энергии. Техническим результатом является улучшение газовых условий в ускорительном канале за счет того, что поток вытекающего нейтрального газа из мишени будет направлен не в центр входной и выходной диафрагмы высоковольтного электрода, а во внутреннюю стенку высоковольтного электрода, чем обеспечивается исключение проникновения низкоэнергетичных положительных ионов обдирочного газа в ускорительный тракт. 1 ил.

 

Изобретение относится к ядерной физике и технике ускорителей и может быть применено в тандемных ускорителях заряженных частиц, а также в устройствах на их основе. Такие устройства могут применяться для исследования в области физики атомных и ядерных столкновений, в полупроводниковой промышленности для ионной имплантации, в медицине для нейтронозахватной терапии рака, в системах безопасности для обнаружения взрывчатых и наркотических веществ.

Концепция перезарядного ускорителя заряженных частиц (тандема) была предложена в середине XX века. Она позволила снизить требуемое напряжение высоковольтного генератора и тем самым уменьшить размер ускорителя, используя обдирку (перезарядку) - изменение знака заряда частиц в процессе ускорения. В процессе обдирки отрицательный ион при взаимодействии со специальной мишенью превращается в положительный, что позволяет использовать дважды одно и то же ускоряющее напряжение, т.е. увеличить в два раза конечную энергию однозарядных частиц и в несколько раз - многозарядных.

Мишень для обдирки представляет собой заполненную газом трубку, струю пара или пленку твердого вещества.

Наибольшее коммерческое распространение получили ускорители-тандемы в комплексах ускорительной масс-спектрометрии (AMS) и ионной имплантации с характерным током пучка менее 1 мА (миллиампер). Обычно в тандемных ускорителях применяют газовую обдирочную (перезарядную) мишень, выполненную в виде трубки с напуском газа посередине. Такая перезарядная газовая мишень описана в авторском свидетельстве СССР №387541 от 21.06.1973. В патентах US 5247263 от 21.09.1993, US 5293134 от 08.03.1994, JP 10223399 от 21.08.1998, KR 100166220 от 22.09.1998, US 6903336 от 07.06.2005, US 20060011866 от 19.01.2006, US 20130112869 от 09.05.2013 приводятся описания подобных газовых обдирочных мишеней как составных частей тандемных ускорителей заряженных частиц.

Для нейтронозахватной терапии рака требуется ток пучка ионов более 5 мА.

Ранее было предложено для этих целей использовать ускоритель-тандем с вакуумной изоляцией электродов [B. Bayanov et al. Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital. Nuclear Instr. and Methods in Physics Research A 413/2-3 (1998) 397-426]. Также принцип вакуумной изоляции реализован в конструкции, защищенной патентом US 5293134 от 08.03.1994.

В таком ускорителе отсутствуют ускорительные трубки. Распределение потенциалов задается вложенными электродами, образующими многослойную конструкцию, закрепленную на единственном секционированном проходном изоляторе. Изолятор находится вне прямой видимости из области прохождения пучка. Такая конструкция компактна и более надежна относительно высоковольтных пробоев.

При токе пучка более 5 мА пленка твердого вещества, применяемая в качестве обдирочной мишени, быстро разрушится. Оптимальным вариантом для обдирки сильноточного пучка заряженных частиц является газовая мишень. Поскольку с увеличением тока пучка необходимо увеличивать диаметр заполненной газом обдирочной трубки, через которую проходит пучок, то поток вытекающего из трубки газа существенно вырастает.

Газ, попадающий в ускоряющие зазоры, уменьшает высоковольтную прочность и надежность ускорителя. Кроме этого он может приводить к преждевременной обдирке отрицательных ионов, и часть ионов на выходе ускорителя будет иметь энергию ниже необходимой.

Для уменьшения потока газа в ускоряющие зазоры применяют откачку турбомолекулярным насосом, который располагают рядом с обдирочной трубкой. Подобные конструкции газовых обдирочных мишеней описаны в патентах US 6069459 от 30.05.2000 и РФ №2360315 от 28.05.2007.

В качестве прототипа выбрана конструкция газовой мишени, которая обеспечивает хорошую откачку газа и описана в патенте РФ №2360315 от 28.05.2007.

Однако указанная конструкция не позволяет решить проблему, связанную с ионизацией газа обдирочной мишени пучком ионов высокой энергии. Часть положительно заряженных ионов обдирочного газа проникает в ускорительный тракт с обеих сторон от обдирочной мишени и ускоряется электрическим полем, вплоть до полного потенциала высоковольтного электрода. Формирование пучка ускоренных ионов обдирочного газа приводит к следующим проблемам. Во-первых, часть мощности высоковольтного источника питания расходуется на ускорение этого пучка. Во-вторых, неравномерное попадание ускоренного пучка ионов обдирочного газа на промежуточные электроды ускорительного тракта ведет к перераспределению их потенциалов и к изменению условий ускорения и фокусировки инжектируемого пучка заряженных частиц. В-третьих, попадание ускоренного пучка обдирочного газа на электроды может приводить к их расплавлению и деформации.

Изобретение направлено на создание устройства, обеспечивающего обдирку пучка отрицательных ионов с током более 5 мА и исключающего формирование ускоренного пучка ионов обдирочного газа.

Для решения поставленной задачи в известном устройстве, содержащем обдирочную трубку, расположенную внутри высоковольтного электрода (терминала), с системой подвода газа и газовым источником, в пространстве между обдирочной трубкой и диафрагмами высоковольтного электрода размещаются магниты, а обдирочная трубка смещается параллельно вверх.

Распространение пучка ионов высокой энергии в обдирочной мишени приводит к частичной ионизации обдирочного газа. Часть образующихся положительно заряженных ионов обдирочного газа выходит из обдирочной трубки и распространяется в направлении диафрагмы высоковольтного электрода. В случае если положительно заряженные ионы обдирочного газа проходят сквозь диафрагму, они попадают в ускорительный тракт и ускоряются под действием электрического поля. Изобретение направлено на то, чтобы внутри высоковольтного электрода отклонить поток положительно заряженных ионов обдирочного газа с тем, чтобы исключить их прохождение через диафрагму высоковольтного электрода. Такое отклонение потока ионов можно осуществить с помощью электрических и магнитных полей, в частности поперечным магнитным полем.

При распространении пучка ионов высокой энергии в обдирочной мишени образуется слабоионизованная плазма. Поскольку электроны более подвижны, чем ионы, то для сохранения квазинейтральности плазма приобретает положительный потенциал величиной порядка 10 В. Под действием этого потенциала положительно заряженные ионы выходят из обдирочной трубки, имея характерную энергию 10 эВ. Если на выходе из обдирочной трубки создать поперечное магнитное поле, то ионы начнут двигаться по окружности и отклоняться. Ларморовский радиус иона r определяется следующим практическим выражением: где r берется в см, B - магнитное поле (Гаусс), E - энергия иона (эВ), Z - заряд иона, µ - отношение массы иона к массе протона. В магнитном поле 4000 Гс ларморовский радиус положительно заряженного иона аргона как одного из применяемых газов обдирочной мишени с энергией 10 эВ будет равен 0.5 см. Такая величина ларморовского радиуса приемлема для сильноточного ускорителя-тандема [V. Aleynik, et al. BINP accelerator based epithermal neutron source. Applied Radiation and Isotopes, 69 (2011) 1635-1638], в котором обдирочная трубка длиной 40 см имеет отверстие диаметром 16 мм. Таким образом, если на выходе из обдирочной трубки создать поперечное магнитное поле величиной 4000 Гс, то можно отклонить поток вытекающих положительных ионов обдирочного газа и исключить их ускорение в ускорительном канале, а также в силу параллельного смещения мишени предотвращается прямое попадание атомов нейтрального газа в ускорительный канал.

В создаваемом поперечном магнитном поле будут отклоняться не только вытекающие ионы обдирочного газа, но и ионы высокой энергии, как инжектируемые отрицательно заряженные на входе в обдирочную мишень, так и положительно заряженные на выходе из нее. Ларморовский радиус 1 МэВ иона водорода в магнитном поле 4000 Гс составляет величину 25 см, благодаря двум одинаковым магнитам с противоположно направленными полями, пучок испытывает параллельное смещение на высоту порядка 20 мм. Для оптимального прохождения пучка высокой энергии через обдирочную трубку последняя должна быть приподнята на соответствующую высоту.

Сущность изобретения иллюстрируется Фиг. 1.

На Фиг. 1 приведена схема смещенной обдирочной мишени с магнитным полем, размещенной внутри высоковольтного электрода тандемного ускорителя. На схеме показаны:

1 - входная диафрагма высоковольтного электрода;

2 - высоковольтный электрод;

3 - магниты;

4 - газовая обдирочная трубка;

5 - поглотитель ионов;

6 - выходная диафрагма высоковольтного электрода;

7 - секционированный проходной изолятор;

8 - система подвода газа.

На Фиг. 1 также схематически показаны направление распространения пучка ионов высокой энергии (отрицательных ионов водорода H- и протонов P), отклонение потока положительных ионов газа обдирочной мишени (Ar+) и направление магнитного поля (B). На Фиг. 1 не показан газовый источник - он располагается в высоковольтном терминале источника высокого напряжения.

Устройство работает следующим образом. Созданный источником отрицательных ионов (не показан) пучок заряженных частиц ускоряется первой ступенью ускорителя-тандема. Через входную диафрагму высоковольтного электрода 1 пучок отрицательных ионов высокой энергии попадает внутрь высоковольтного электрода 2, где благодаря паре магнитов 3 испытывает параллельное смещение, обдирается в газовой обдирочной трубке 4 и превращается в пучок положительных ионов высокой энергии. Выходящий из газовой обдирочной трубки пучок положительных ионов высокой энергии смещается выходной парой магнитов 3 и через выходную диафрагму высоковольтного электрода 6 выходит из высоковольтного электрода 2, после чего ускоряется второй ступенью ускорителя-тандема.

Распространение пучка заряженных частиц высокой энергии через газ обдирочной мишени приводит к частичной ионизации газа и образованию положительных ионов с низкой энергией. Выходящие из газовой обдирочной трубки 3 положительные ионы обдирочного газа отклоняются магнитами 3 на углы порядка 130-180° и попадают в поглотитель ионов 5, где нейтрализуются при взаимодействии со стенкой поглотителя.

Таким образом, неизбежно образующиеся положительные ионы обдирочного газа не проникают в ускорительный канал и не образуют паразитного пучка ускоренных ионов обдирочного газа, препятствующего получению пучка заряженных частиц высокой энергии с большим током. Негативное влияние паразитного пучка ускоренных ионов обдирочного газа могло проявляться в расходовании дополнительной мощности ускорителя, в изменении потенциала промежуточных электродов, влекущем изменение условий транспортировки и ускорения пучка заряженных частиц, а также к деформации и расплавлению электродов.

Вынужденное смещение газовой обдирочной мишени также приводит к дополнительному положительному эффекту. Вытекающий из обдирочной трубки газ распространяется преимущественно вдоль оси, и смещение обдирочной трубки позволит существенно уменьшить поток нейтрального газа в ускорительный тракт, поскольку максимум распределения вытекающего газа будет направлен не в центр диафрагм высоковольтного электрода, а выше - в стенку высоковольтного электрода. Оставшийся внутри высоковольтного электрода газ может быть откачан насосом высокой производительности.

Газовая обдирочная мишень для обдирки пучка отрицательных ионов, содержащая обдирочную трубку, систему подвода газа, газовый источник, магниты, расположенные перед входом в мишень и после выхода из нее и создающие поперечное магнитное поле, отличающаяся тем, что перед входом в мишень и после выхода из нее последовательно расположены пара магнитов со встречными поперечными магнитными полями, а мишень смещена относительно оси ускорительного тракта пучка заряженных частиц.



 

Похожие патенты:

Изобретение относится к ускорительной технике и может применяться в тандемных ускорителях заряженных частиц для ионной имплантации, нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ.

Изобретение относится к физике и технике ускорителей и может быть применена в ускорителях-тандемах для нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ.

Изобретение относится к методам получения нейтрализованных пучков заряженных частиц, их формирования, транспортировки и сепарации и может быть использовано в ионно-пучковых технологиях для ионной имплантации, обработки и модификации поверхностей, нанесения покрытий, для разделения изотопов, нагрева плазмы в ловушках для управляемого термоядерного синтеза и др.

Изобретение относится к способам получения пучков нейтральных частиц высокой энергии. .

Заявленное изобретение относится к газовой обдирочной мишени и может быть применено в тандемных ускорителях заряженных частиц для ионной имплантации, нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ. Изобретение обеспечивает обдирку пучка отрицательных ионов на газе в обдирочной трубке и исключает ускорение образующихся положительных ионов газа обдирочной мишени. Внутри высоковольтного электрода (терминала) расположена газовая обдирочная мишень в виде трубки с напуском газа посередине. Перед входом в мишень и после выхода из нее размещены магниты, создающие поперечное магнитное поле, исключающее проникновение положительных ионов обдирочного газа в ускорительные зазоры. В качестве магнитов, создающих поперечное магнитное поле, используют альфа-магниты, причем мишень размещена перпендикулярно относительно оси ускорительного тракта пучка заряженных частиц. Техническим результатом является возможность получения протонного пучка с разной энергией без изменения положения или ориентации газовой обдирочной мишени, улучшение газовых условий в ускорительном канале за счет направления потока вытекающего нейтрального газа из мишени перпендикулярно оси ускорительных каналов, а также уменьшение диаметров высоковольтного и промежуточных электродов, уменьшение габаритов ускорителя и повышение высоковольтной прочности ускорительных зазоров за счет уменьшения запасенной энергии. 1 ил.
Наверх