Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации



Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации

 


Владельцы патента RU 2595930:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в улучшении эффективности устройств генерации и частотной модуляции за счет увеличенния линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметров резистивного четырехполюсника. Способ генерации и частотной модуляции высокочастотных сигналов отличается тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу, который по последовательно-параллельной схеме с цепью обратной связи каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала. 2 н.п. ф-лы, 3 ил.

 

Изобретения относятся к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Известен способ генерации и частотной модуляции высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, организации внутренней обратной связи в первом нелинейном элементе путем использования в качестве него двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования первого нелинейного элемента с нагрузкой, изменении частоты генерируемого высокочастотного сигнала путем изменения баланса фаз за счет изменения параметра второго нелинейного элемента, включенного в избирательную нагрузку, по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа», 2006, с. 414-417, 434-437].

Известно устройство генерации и частотной модуляции высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине падающего участка вольтамперной характеристики двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, реактивного четырехполюсника, нагрузки в виде параллельного колебательного контура с включенным варикапом, подключенным к источнику управляющего сигнала, при этом параметры контура, двухполюсного нелинейного элемента и варикапа выбраны из условия обеспечения заданных амплитуды и диапазона изменения частоты генерируемого высокочастотного сигнала по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа», 2006, с. 414-417, 434-437].

Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внутренней обратной связи в двухполюсном нелинейном элементе на участке с падающей вольтамперной характеристикой возникает отрицательное дифференциальное сопротивление, которое в силу согласования с помощью реактивного четырехполюсника компенсирует потери в контуре. Благодаря этому, колебание с частотой, равной резонансной частоте колебательного контура, усиливается до момента увеличения амплитуды этого колебания до уровня, при котором амплитуда выходит за пределы падающего участка вольтамперной характеристики. Наступает стационарный режим. В этом режиме изменение емкости варикапа под действием управляющего сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала.

Недостатком способа и устройства является наличие двух нелинейных элементов, один из которых работает в качестве усилителя и ограничителя, а второй используется для изменения частоты генерируемого высокочастотного сигнала.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ генерации и частотной модуляции высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, построении цепи прямой передачи между выходным электродом трехполюсного нелинейного элемента и нагрузкой, организации внешней положительной обратной связи между нагрузкой и управляющим электродом трехполюсного нелинейного элемента, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования трехполюсного нелинейного элемента с нагрузкой, изменении частоты генерируемого высокочастотного сигнала путем изменения баланса фаз за счет изменения параметра двухполюсного нелинейного элемента, включенного в избирательную нагрузку, по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы - М: «Дрофа»., 2006, с. 434-437].

Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство генерации и частотной модуляции высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине квазилинейного участка проходной вольтамперной характеристики транзистора, цепи прямой передачи в виде первого четырехполюсника для согласования выходного электрода транзистора и нагрузки, нагрузки в виде параллельного колебательного контура, в который включен варикап, подключенный к источнику управляющего сигнала, RC-цепи внешней положительной обратной связи (в общем виде - второго четырехполюсника для согласования управляющего электрода транзистора и нагрузки) между нагрузкой и управляющим электродом транзистора, при этом параметры контура, цепи прямой передачи, цепи обратной связи, транзистора и варикапа выбраны из условия обеспечения заданных амплитуды и диапазона изменения частоты генерируемого высокочастотного сигнала по закону изменения амплитуды низкочастотного управляющего (первичного, информационного) сигнала [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа», 2006, с. 434-437].

Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию цепи внешней положительной обратной связи, колебание с частотой, равной резонансной частоте колебательного контура, поступает на управляющий электрод транзистора, который в силу согласования с помощью двух четырехполюсников начинает работать в режиме усиления до момента увеличения амплитуды этого колебания до уровня, при котором наступает режим насыщения (ограничения амплитуды). Наступает стационарный режим. В этом режиме изменение емкости варикапа под действием управляющего сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала.

Недостатки этих способа и устройства состоят в необходимости использования двух нелинейных элементов (одного для усиления и ограничения амплитуды, второго для изменения частоты) и малом линейном участке модуляционной характеристики в силу малости линейного участка вольт-фарадной характеристики варикапа. Кроме того, не указывается, каким образом необходимо выбирать значения параметров согласующих устройств, при которых наступает режим возбуждения и стационарный режим. Особенно остро возникает этот вопрос при проектировании устройств генерации и частотной модуляции в диапазонах ВЧ и УВЧ, на которых, кроме того, обязательно нужно учитывать реактивные составляющие параметров нелинейных элементов. В настоящее время классическая теория радиотехнических цепей это не учитывает. Кроме того, частотную модуляцию можно обеспечить при наличии резистивных четырехполюсников, параметры которых не зависят от частоты в достаточно большом диапазоне частот, что позволяет увеличить квазилинейный участок частотной модуляционной характеристики.

Техническим результатом изобретения является генерация и частотная модуляция высокочастотного сигнала с помощью устройства с увеличенным квазилинейным участком частотной модуляционной характеристики при использовании одного нелинейного элемента и цепи внешней обратной связи и благодаря наличию резистивного четырехполюсника и согласования с помощью мнимых составляющих сопротивлений нагрузки и источника сигнала генератора и модулятора в режиме усиления, что позволяет создавать эффективные устройства генерации и частотной модуляции. Возможность использования различных вариантов включения трехполюсного нелинейного элемента относительно резистивного четырехполюсника и различных видов обратной связи расширяет возможности физической реализуемости этого результата.

1. Указанный результат достигается тем, что в известном способе генерации и частотной модуляции высокочастотных сигналов, основанном на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, взаимодействии высокочастотного сигнала с цепью прямой передачи, выполненной из трехполюсного нелинейного элемента и четырехполюсника, нагрузкой и цепью внешней обратной связи, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемых высокочастотных сигналов, условий согласования цепи прямой передачи с нагрузкой и условий согласования нагрузки с управляющим электродом трехполюсного нелинейного элемента, изменении частоты генерируемых колебаний по закону изменения амплитуды низкочастотного управляющего сигнала путем соответствующего изменения баланса фаз, дополнительно четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу по последовательно-параллельной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала в соответствии со следующими математическими выражениями:

; ,

где Х=АВ0-ВА0; Y=AD0+CB0-(D-δ)A0-BC0; Z=CD0-(D-δ)C0;

A0=B1γ+x22; B0=-r22(r0+β)-(α+γr0)A1;C0=1-r22rн+(r11-rнA1)γ;

D0=(x11-rнB1)(α+γr0)-(r0+β)x22rн; A=r22+A1γ; B=x22(r0+β)+(α+γr0)B1;

C=rнx22+γ(rнB1-x11); D=(r11-rнA1)(α+γr0)+(r0+β)(1-r22rн); A1=r11r22-x11x22-r12r2l+x12x21;

B1=r11x22+x11r22-r12x21-x12r21; α = a d , β = b d ; γ = c d - заданные зависимости отношении соответствующих элементов классической матрицы передачи от частоты на заданных частотах; a, b, c, d - элементы классической матрицы передачи резистивного четырехполюсника; r0, rн - заданные зависимости действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданных частотах; x0, xн - оптимальные зависимости мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданных частотах; r11, x11, r12, x12, r21, x21, r22, x22 - заданные суммы зависимостей действительных и мнимых составляющих элементов смешанной матрицы H трехполюсного нелинейного элемента от частоты в заданной полосе частот при соответствующем изменении амплитуды низкочастотного управляющего сигнала и соответствующих зависимостей действительных и мнимых составляющих элементов смешанной матрицы H цепи внешней обратной связи от частоты в заданной полосе частот h11=r11+jx11, h12=r12+jx12, h21=r2l+jx21, h22=r22+jx22.

2. Указанный результат достигается тем, что в устройстве генерации и частотной модуляции высокочастотных сигналов, состоящем из источника постоянного напряжения и низкочастотного управляющего сигнала, цепи прямой передачи из трехполюсного нелинейного элемента и четырехполюсника, нагрузки и цепи внешней обратной связи, дополнительно четырехполюсник выполнен резистивным в виде произвольного соединения резистивных двухполюсников, в качестве цепи внешней обратной связи использован произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу по последовательно-параллельной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между выходом резистивного четырехполюсника и нагрузкой, нагрузка выполнена в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключен второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, мнимые составляющие сопротивления источника сигнала в режиме усиления х0 и сопротивления нагрузки хн реализованы в виде реактивных двухполюсников, выполненных в виде последовательно соединенных параллельного контура из элементов с параметрами L1k, C1k и последовательного контура из элементов с параметрами L2k, C2k, причем значения этих параметров определены из условия обеспечения стационарного режима генерации на четырех частотах генерируемого сигнала и соответствующих четырех значениях амплитуды низкочастотного управляющего сигнала с помощью следующих математических выражений:

;

; ; ,

где А32С44С2; B3=A2D42С4-A4D24С2; С3=B2D4-B4D2;

;

;

;

;

;

;

;

;

; ; Хmk=xmk;

Х=АВ0-ВА0; Y=AD0+CB0-(D-δ)A0-BC0; Z=CD0-(D-δ)C0;

A01γ+x22m; B0=-r22m(r0m+β)-(α+γr0m)A1; C0=1-r22mrнm+(r11m-rнmA1)γ;

D0=(x11m-rнmB1)(α+γr0m)-(r0m+β)x22mrнm; A=r22m+A1γ; В=x22m(r0m+β)+(α+γr0m)B1;

C=rнm+γ(rнmB1-x11m); D=(r11m-rнmA1)(α+γr0m)+(r0m+β)(1-r22mrнm);

A1=r11mr21m-x11mx22m-r12mr21m+x12mx21m; B1=r11mx22m+x11mr22m-r12mx21m-x12mr21m;

, ; - заданные значения отношении соответствующих элементов классической матрицы передачи на заданных частотах; a, b, c, d - элементы классической матрицы передачи выбранного типового резистивного четырехполюсника; r0m, rнm - заданные значения действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; хm0, х - оптимальные значения мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; r11m, x11m, r12m, x12m, r21m, x21m, r22m, x22m - заданные суммарные значения действительных и мнимых составляющих элементов смешанной матрицы H трехполюсного нелинейного элемента при четырех значениях амплитуды низкочастотного управляющего сигнала и значений соответствующих действительных и мнимых составляющих элементов смешанной матрицы H цепи внешней обратной связи на заданных частотах h11m=r11m+jx11m, h12m=r12m+jx12m, h21m=r21m+jx21m, h22m=r22m+jx22m; δ≤0 - условие возбуждения колебаний; m=1, 2, 3, 4 - номера частот; δ≤0 - условие возбуждения колебаний; ω1,2,3,4=2πƒ1,2,3,4; ƒ1,2,3,4 - заданные частоты; k=0, н - индекс, характеризующий принадлежность параметров к формированию двухполюсников с сопротивлениями Xmk=xmk.

На фиг. 1 показана схема устройства генерации высокочастотных сигналов (прототип), реализующего способ-прототип.

На фиг. 2 показана структурная схема предлагаемого устройства по п. 2, реализующая предлагаемый способ генерации по п. 1 в режиме усиления.

На фиг. 3. приведена схема реактивного двухполюсника, реализующего мнимые составляющие сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн предлагаемого устройства (фиг. 2).

Устройство-прототип (Фиг. 1), реализующее способ-прототип, содержит цепь прямой передачи в виде трехполюсного нелинейного элемента VT - 1, подключенного к источнику постоянного напряжения - 2, первого согласующе-фильтрующего устройства СФУ - 3 (первого реактивного четырехполюсника или первого согласующего четырехполюсника) и нагрузки в виде колебательного контура на элементах L - 4, R - 5, C(t)-6. Первое СФУ-3 включено между выходным электродом трехполюсного нелинейного элемента и нагрузкой. Управляемая емкость С(t), реализуемая варикапом - 6, подключена к источнику низкочастотного управляющего (информационного) сигнала - 7. Между нагрузкой и управляющим электродом трехполюсного нелинейного элемента включено второе СФУ - 9 (второй реактивный четырехполюсник или второй согласующий четырехполюсник) с подключенными к ее входу первым двухполюсником - 8 и к выходу вторым двухпоюсником - 10 с комплексными сопротивлениями в поперечные цепи. Все это вместе образует цепь внешней обратной связи. Первый двухполюсник - 8 подключен к нагрузке. Второй двухполюсник - 10 подключен к управляющему электроду трехполюсного нелинейного элемента.

Принцип действия устройства генерации и модуляции высокочастотных сигналов (прототипа), реализующего способ-прототип, состоит в следующем.

При включении источника постоянного напряжения - 2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внешней обратной связи, согласования с помощью первого реактивного четырехполюсника - 3 выходного электрода трехполюсного нелинейного элемента и нагрузки (цепи прямой передачи), согласования с помощью цепи обратной связи (первого двухполюсника - 8 с комплексным сопротивлением, второго реактивного четырехполюсника - 9 и второго двухполюсника - 10 с комплексным сопротивлением) нагрузки и управляющего электрода трехполюсного нелинейного элемента компенсируются потери в контуре L - 4, R - 5, C(t) - 6. Благодаря этому обратная связь становится положительной и реализуются условия баланса фаз и амплитуд - условия возбуждения электромагнитных колебаний. В результате колебание с частотой, равной резонансной частоте колебательного контура, подается на управляющий электрод трехполюсного нелинейного элемента, который на начальном этапе работает в режиме усиления. Амплитуда этого колебания усиливается до момента ее увеличения до уровня, при котором наступает режим ограничения трехполюсного нелинейного элемента. Наступает стационарный режим генерации. В этом режиме изменение емкости варикапа С(t) - 6 под действием управляющего сигнала источника - 7 приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды этого сигнала.

Недостатки способа-прототипа и устройства его реализации описаны выше.

Предлагаемое устройство по п. 2 (фиг. 2), реализующее предлагаемый способ по п. 1, содержит трехполюсный нелинейный элемент-1 с известными элементами смешанной матрицы H  h 11m VT = r 11 m V T + j x 11 m V T , h 12 m V T = r 12 m V T + j x 12 m V T , h 21 m V T = r 21 m V T + j x 21 m V T , h 22 m V T = r 22 m V T + j x 22 m V T на заданных частотах генерируемых сигналов, подключенный к источнику постоянного напряжения и низкочастотного управляющего сигнала - 2 и соединенный по высокой частоте последовательно-параллельно (входы соединены последовательно, а выходы - параллельно) с цепью внешней обратной связи, выполненной в виде произвольного четырехполюсника - 14, сформированного в общем случае на двухполюсниках с комплексными сопротивлениями. Четырехполюсник - 14 тоже характеризуется известными значениями элементов смешанной матрицы h 11 m O C = r 11 m O C + j x 11 m O C , h 12 m O C = r 12 m O C + j x 12 m O C , h 21 m O C = r 21 m O C + j x 21 m O C , h 22 m O C = r 22 m O C + j x 22 m O C на заданных частотах (m=1, 2 - номер частоты). Трехполюсный нелинейный элемент и цепь обратной связи как единое целое каскадно включены между выходом резистивного четырехполюсника - 12 и нагрузкой - 13 с заданными сопротивлениями zнm=rнm+jxнm на заданных частотах. К входу четырехполюсника - 12 подключен источник входного высокочастотного сигнала в режиме усиления с сопротивлением z0m=r0m+jx0m - 11 на заданных частотах, имитирующим сопротивление источника высокочастотных колебаний, возникающих при включении источника постоянного напряжения-2 в момент скачкообразного изменения амплитуды его напряжения в режиме генерации. Четырехполюсник - 12 также может быть выполнен в виде произвольного соединения произвольного количества резистивных двухполюсников. Этот четырехполюсник описывается известными элементами классической матрицы передачи a, b, c, d. Синтез генератора (выбор оптимальных частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн) осуществлен по критерию обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменений амплитуды низкочастотного управляющего сигнала. Реализация этих частотных характеристик осуществлена путем выбора схем формирования этих двухполюсников (фиг. 3) и значений параметров их элементов по критерию совпадения их частотных характеристик и оптимальных на четырех заданных частотах. В результате реализуется увеличенный квазилинейный участок частотной модуляционной характеристики. В режиме генерации и частотной модуляции источник входного высокочастотного сигнала отключается и вместо него устанавливается короткозамыкающая перемычка.

Предлагаемое устройство функционирует следующим образом.

При включении источника постоянного напряжения-2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внешней обратной связи и в силу указанного выбора значений мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн и схем их формирования обратная связь становится положительной, что эквивалентно возникновению в цепи отрицательного сопротивления (h11 или h22), которое компенсирует потери во всей цепи на заданной частоте. Поэтому амплитуда колебаний с заданной начальной частотой усиливается до определенного уровня и затем ограничивается. При этом амплитуда выходит за пределы квазилинейного участка проходной вольтамперной характеристики. Наступает стационарный режим. В этом режиме изменение рабочей точки нелинейного элемента под действием низкочастотного сигнала приводит к изменению частоты генерируемого сигнала по закону изменения амплитуды управляющего сигнала.

Докажем возможность реализации указанных свойств.

Введем обозначения искомых зависимостей сопротивления источника сигнала в режиме усиления z0=r0+jx0, нагрузки zn=rn+jxn и известных зависимостей элементов смешанной матрицы H трехполюсного нелинейного элемента (VT) h 11 V T = r 11 V T + j x 11 V T , h 12 V T = r 12 V T + j x 12 V T , h 21 V T = r 21 V T + j x 21 V T , h 22 V T = r 22 V T + j x 22 V T и цепи обратной связи (ОС) h 11 O C = r 11 O C + j x 11 O C , h 12 = r 12 O C + j x 12 O C , h 21 O C = r 21 O C + j x 21 O C , h 22 O C = r 22 O C + j x 22 O C от частоты, которые можно определить по известным (например, измеренным или рассчитанным) элементам матриц сопротивлений, проводимостей или передачи. При последовательно-параллельном соединении четырехполюсников элементы их матриц H складываются. Суммарные зависимости элементов матриц H цепи прямой передачи в виде нелинейного элемента и цепи обратной связи от частоты: h11=r11+jx11, h12=r12+jx12, h21=r21+jx21, h22=r22+jx22. Размерности элементов матрицы H:h11 (сопротивление), h12 безразмерный), h21 (безразмерный), h22 (проводимость). При синтезе частотного модулятора параметры нелинейного элемента зависит, кроме того, от амплитуды низкочастотного управляющего сигнала. Таким образом, каждому значению амплитуды низкочастотного управляющего сигнала соответствует определенная частота генерируемого сигнала. Для простоты аргументы (амплитуда и частота) опущены. На первом этапе синтеза требуется определить частотные зависимости сопротивлений х0, хn (аппроксимирующие функции), оптимальные по критерию обеспечения условий стационарного режима генерации в заданных диапазонах изменения частоты и амплитуды низкочастотного управляющего сигнала на нелинейном элементе. При изменении амплитуды управляющего сигнала и таких частотных зависимостях сопротивлений х0, хn будет теоретически реализована линейная частотная модуляционная характеристика. Реализация оптимальных частотных зависимостей сопротивлений х0, хn обеспечивает квазилинейную частотную модуляционную характеристику.

Общая смешанная матрица H нелинейного элемента (VT) и четырехполюсника цепи обратной связи (ОС) и соответствующая ей классическая матрица передачи:

где | h | = h 11 h 22 h 12 h 21 .

Резистивный четырехполюсник (РЧ) описывается матрицей передачи:

где α = a d ; β = b d ; γ = c d ; a, b, c, d - элементы классической матрицы передачи.

Общая нормированная классическая матрица передачи генератора/модулятора получается путем перемножения матриц передачи (2) и (1):

Используя известную связь элементов матрицы рассеяния с элементами классической матрицы передачи (Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971. с.34-36) и матрицу передачи (3), с учетом условий нормировки получим выражение для коэффициента передачи генератора в режиме усиления:

Знаменатель коэффициента передачи в режиме усиления представим в виде, соответствующем условию возникновения стационарного режима генерации (Куликовский А.А. Устойчивость активных линеаризованных цепей с усилительными приборами нового типа. М-Л.: ГЭИ, 1962. 192 с): z 0 + α h 11 | h | z n 1 z н h 22 + β 1 + γ h 11 | h | z n 1 z н h 22 = 0 1 ( α h 11 | h | z n 1 z н h 22 + β ) ( 1 + γ h 11 | h | z n 1 z н h 22 ) z 0 = 0 - условие баланса амплитуд и баланса фаз 1-КВ=0 (Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа», - 2006, с. 383-401) для эквивалентной цепи с внешней положительной ОС.. Коэффициент передачи цепи ОС и коэффициент усиления цепи прямой передачи: B = 1 ( 1 + γ h 11 | h | z n 1 z н h 22 ) d ; K = ( α h 11 | h | z n 1 z н h 22 + β ) z 0 d . В соответствии с иммитансным критерием устойчивости (Куликовский А.А. Устойчивость активных линеаризованных цепей с усилительными приборами нового типа. М-Л.: ГЭИ, 1962. 192 с.) запишем условие возбуждения и разделим между собой действительную и мнимую части. Получим систему уравнений:

где A01γ+x22; B0=-r22(r0+β)-(α+γr0)A1; C0=1-r22rн+(r11-rнA1)γ;

D0=(x11-rнB1)(α+γr0)-(r0+β)x22rн; A=r22+A1γ; B=x22(r0+β)+(α+γr01;

С=rнx22+γ(rнB1-x11); D=(r11-rнA1)(α+γr0)(r0+β)(1-r22rн); A1=r11r22-x11x22-r12r21+x12x21;

B1=r11x22+x11r22-r12x21-x12r21; δ≤0 - условие возбуждения колебаний;

Решение (5) представляет собой зависимости величин х0, хn от частоты, оптимальные по критерию обеспечения генерации сигнала во всем спектре частот:

где Х=АВ0-ВА0; Y=AD0+CB0-(D-δ)A0-BC0; Z=CD0-(D-δ)C0.

На втором этапе синтеза для реализации оптимальных аппроксимаций (7) методом интерполяции необходимо сформировать двухполюсники с сопротивлениями х0, хn из не менее чем N (числа частот интерполяции) реактивных элементов, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсников на заданных частотах, определенным по формулам (7) и решить сформированную таким образом систему N уравнений относительно N выбранных параметров реактивных элементов. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия физической реализуемости.

В соответствии с этим алгоритмом получены математические выражения для определения значений параметров реактивного двухполюсника в виде последовательно соединенных параллельного L1k, C1k и последовательного L2k, C2k контуров (фиг. 3), оптимальных по критерию обеспечения условий стационарного режима генерации на четырех частотах ωm =2πƒm.

Исходная система уравнений:

Решение для четырех частот:

;

где А32С44С2; В3=A2D42С4-A4D24С2; C3=B2D4-B4D2;

;

;

;

;

;

;

;

.

Обобщенный индекс k введен для определения мнимой составляющей сопротивления двухполюсника мнимой составляющей источника сигнала в режиме-усиления при k=0 (при этом Xmkm0 (6)) и мнимой составляющей сопротивления нагрузки при k=н, (при этом Xmk=x (6)), m=1, 2, 3, 4 - номера частот. Индекс m надо ввести и для остальных параметров, зависящих от частоты.

Реализация оптимальных аппроксимаций частотных характеристик параметры x0, xn (6) с помощью (7), (8) обеспечивает увеличение диапазона изменения частоты генерируемого сигнала, поскольку реализует условие баланса амплитуд и баланса фаз на четырех частотах заданной модуляционной характеристики или заданного диапазона изменения частоты, соответствующих четырем заданным значениям или заданному диапазону изменения амплитуды низкочастотного управляющего сигнала на нелинейном элементе. Это позволяет при разумном выборе положений заданных частот относительно друг друга ω12, ω13, ω14, ω23, ω24, ω34 расширить квазилинейный участок частотной модуляционной характеристики.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение цепи внешней обратной связи в виде произвольного четырехполюсника, соединенного с трехполюсным нелинейным элементом по последовательно-параллельной схеме, включение трехполюсного нелинейного элемента и цепи обратной связи как единого узла между выходом резистивного четырехполюсника и нагрузкой, выполнение нагрузки в виде первого двухполюсника с комплексным сопротивлением, подключение к входу резистивного четырехполюсника в поперечную цепь второго двухполюсника с комплексным сопротивлением, которое имитирует сопротивление источника входного высокочастотного сигнала генератора в режиме усиления (фиг. 2), выбор частотных характеристик мнимых составляющих сопротивлений источника сигнала в режиме усиления х0 и нагрузки хн, формирование их схем в указанном виде (фиг. 3), выбор значений их параметров из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала) обеспечивает модуляцию частоты генерируемого сигнала по закону изменения амплитуды низкочастотного управляющего сигнала с увеличенной девиацией частоты.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью трехполюсные нелинейные элементы (транзисторы или лампы), реактивные элементы, сформированные в заявленные схемы реактивных двухполюсников (фиг. 3). Значения параметров индуктивностей и емкостей этих схем могут быть однозначно определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении генерации и частотной модуляции высокочастотного сигнала за счет выбора схемы и значений параметров реактивных элементов колебательных контуров по критерию обеспечения изменения частоты генерируемого сигнала по закону изменения амплитуды низкочастотного сигнала, что упрощает устройство, увеличивает квазилинейный участок частотной модуляционной характеристики и девиацию частоты.

1. Способ генерации и частотной модуляции высокочастотных сигналов, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, взаимодействии высокочастотного сигнала с цепью прямой передачи, выполненной из трехполюсного нелинейного элемента и четырехполюсника, нагрузкой и цепью внешней обратной связи, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемых высокочастотных сигналов, условий согласования цепи прямой передачи с нагрузкой и условий согласования нагрузки с управляющим электродом трехполюсного нелинейного элемента, изменении частоты генерируемых колебаний по закону изменения амплитуды низкочастотного управляющего сигнала путем соответствующего изменения баланса фаз, отличающийся тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу по последовательно-параллельной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала в режиме усиления x0 и нагрузки xн из условия обеспечения режима возбуждения генерации в виде равенства нулю мнимой составляющей и равенства неположительному числу δ≤0 действительной составляющей знаменателя коэффициента передачи в режиме усиления в заданной полосе изменения частоты и заданном диапазоне изменении амплитуды низкочастотного управляющего сигнала в соответствии со следующими математическими выражениями:


заданные зависимости отношений соответствующих элементов классической матрицы передачи от частоты на заданных частотах; a, b, c, d - элементы классической матрицы передачи резистивного четырехполюсника; r0, rн - заданные зависимости действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданных частотах; x0, xн - оптимальные зависимости мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки от частоты на заданных частотах; r11, x11, r12, x12, r21, x21, r22, x22 - заданные суммы зависимостей действительных и мнимых составляющих элементов смешанной матрицы H трехполюсного нелинейного элемента от частоты в заданной полосе частот при соответствующем изменении амплитуды низкочастотного управляющего сигнала и соответствующих зависимостей действительных и мнимых составляющих элементов смешанной матрицы H цепи внешней обратной связи от частоты в заданной полосе частот h11=r11+jx11, h12=r12+jx12 h21=r21+jx21 h22=r22+jx22.

2. Устройство генерации частотной модуляции высокочастотных сигналов, состоящее из источника постоянного напряжения и низкочастотного управляющего сигнала, цепи прямой передачи из трехполюсного нелинейного элемента и четырехполюсника, нагрузки и цепи внешней обратной связи, отличающееся тем, что четырехполюсник выполнен резистивным в виде произвольного соединения резистивных двухполюсников, в качестве цепи внешней обратной связи использован произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу по последовательно-параллельной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между выходом резистивного четырехполюсника и нагрузкой, нагрузка выполнена в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключен второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, мнимые составляющие сопротивления источника сигнала в режиме усиления х0 и сопротивления нагрузки хн реализованы в виде реактивных двухполюсников, выполненных в виде последовательно соединенных параллельного контура из элементов с параметрами L1k, C1k и последовательного контура из элементов с параметрами L2k, C2k, причем значения этих параметров определены из условия обеспечения стационарного режима генерации на четырех частотах генерируемого сигнала и соответствующих четырех значениях амплитуды низкочастотного управляющего сигнала с помощью следующих математических выражений:
заданные значения отношений соответствующих элементов классической матрицы передачи на заданных частотах; a, b, c, d - элементы классической матрицы передачи выбранного типового резистивного четырехполюсника; r0m, rнm - заданные значения действительных составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; xm0, x - оптимальные значения мнимых составляющих сопротивлений источника входного высокочастотного сигнала генератора в режиме усиления и нагрузки на заданном количестве частот; r11m, x11m, r12m, x12m, r21m, x21m, r22m, x22m - заданные суммарные значения действительных и мнимых составляющих элементов смешанной матрицы H трехполюсного нелинейного элемента при четырех значениях амплитуды низкочастотного управляющего сигнала и значений соответствующих действительных и мнимых составляющих элементов смешанной матрицы H цепи внешней обратной связи на заданных частотах h11m=r11m+jx11m, h12m=r12m+jx12m, h21m=r21m+jx21m, h22m=r22m+jx22m; δ≤0 - условие возбуждения колебаний; m=1, 2, 3, 4 - номера частот; δ≤0 - условие возбуждения колебаний; ω1,2,3,4=2πf1,2,3,4; f1,2,3,4 - заданные частоты; k=0, н - индекс, характеризующий принадлежность параметров к формированию двухполюсников с сопротивлениями Xmk=xmk.



 

Похожие патенты:

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов. Технический результат изобретения заключается в увеличении квазилинейного участка частотной модуляционной характеристики, что позволяет создавать эффективные устройства генерации и частотной модуляции.

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника.

Изобретение относится к технике связи и может быть использовано в цифровых системах передачи. Технический результат - повышение качества передачи информационных аналоговых сигналов и уменьшение скорости цифрового сигнала.

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника.

Способ формирования сигналов квадратурной амплитудной манипуляции относится к радиотехнике и может использоваться на линиях многоканальной цифровой связи. Достигаемый технический результат - снижение величины пик-фактора формируемого сигнала за счет уменьшения различий амплитудных значений векторов сигнального созвездия, что приведет к повышению помехоустойчивости.

Изобретение относится к области связи и может использоваться в области передачи данных в сети беспроводной связи. Достигаемый технический результат - улучшение пропускной способности.

Предлагаемое устройство относится к области радиотехники и может быть использовано в радиопередающих устройствах в диапазоне частот от 1 до 4000 МГц в качестве задающего генератора.

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, а также фазомодулированных сигналов или их демодуляции. Технический результат заключается в повышении помехоустойчивости приемника.

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.

Изобретение относится к высоковольтной импульсной технике, в частности к сильноточным релятивистским импульсным плазменным источникам микроволн, и может быть использовано для создания выходных узлов плазменных релятивистских источников СВЧ-импульсов с преобразованием низшей волны коаксиального волновода ТЕМ-типа в низшую волну полого волновода круглого сечения типа Н11.

Изобретение относится к области радиотехники СВЧ и может быть использовано для выравнивания амплитудно-частотных характеристик (АЧХ) трактов СВЧ в рабочем диапазоне частот.

Изобретение относится к области радиотехники, в частности к микрополосковым корректорам АЧХ. Микрополосковый корректор содержит диэлектрическую подложку, на одной стороне которой размещено металлическое основание, а на другой стороне первый проводник, концы которого являются входом и выходом корректора, и второй проводник, один конец которого подключен к первому проводнику через первый резистор, второй конец - через второй резистор.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний, что позволяет формировать сложные сигналы и создавать эффективные устройства генерации для средств радиосвязи с заданным количеством радиоканалов.

Изобретение относится к технике СВЧ. Полосно-пропускающий фильтр содержит прямоугольный металлический корпус 1, образованный параллельными плоскими стенками 2, запредельный для центральной частоты фильтра, n металлических стержней 3, число которых равно порядку фильтра, расположенных параллельно друг другу и разделенных диэлектрическими промежутками 4, причем одни концы соседних металлических стержней 3 присоединены к противоположным плоским стенкам 2, а концы крайних металлических стержней 3 присоединены к центральным проводникам 5 коаксиальных присоединителей 6 внешних линий передачи, оболочки 7 присоединителей 6 соединены с корпусом 1.

Изобретение относится к радиоэлектронике и может быть использовано для частотной селекции высокочастотных сигналов в радиотехнических устройствах, телевидении, системах связи и радиоканалах передачи телекоммуникационных данных.

Изобретение относится к усилению и демодуляции частотно-модулированных сигналов. Технический результат - увеличение линейного участка частотной демодуляционной характеристики и увеличение динамического диапазона при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и нагрузки.

Изобретение предназначено для использования в селективных трактах радиоаппаратуры различного назначения. Фильтр содержит диэлектрическую подложку, на одну сторону которой нанесены полосковые проводники, закороченные с одного конца, и на вторую сторону также нанесены полосковые проводники, закороченные с одного конца.

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний, генерации высокочастотных сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки, что позволяет формировать сложные сигналы и создавать устройства генерации с заданным количеством радиоканалов при любых заданных частотных характеристиках нагрузки.

Настоящее изобретение относится к области связи, и в частности, к устройствам связи в СВЧ-диапазоне. Устройство СВЧ-связи включает в себя: первый модуль преобразования, второй модуль преобразования, сконфигурированные для выполнения взаимного преобразования между сигналом основной полосы частот или сигналом промежуточной частоты и СВЧ-сигналом, причем СВЧ-сигналы, принятые или выведенные первым модулем преобразования и вторым модулем преобразования, имеют, соответственно, одинаковое направление поляризации либо перпендикулярные направления поляризации; и ортомодовый преобразователь с тремя волноводными портами, сконфигурированный для выполнения разделения и синтеза ортогонально поляризованных СВЧ-сигналов. Устройства СВЧ-связи в вариантах осуществления настоящего изобретения путем предоставления двойных каналов и встраивания ортомодового преобразователя в устройство СВЧ-связи могут увеличить пропускную способность передачи наряду с повышением гибкости применения оборудования, уменьшением сложности установки и снижением затрат. 7 з.п. ф-лы. 7 ил.
Наверх