Полимерная нанокомпозиция для эффективной защиты от уф-излучения

Изобретение относится к полимерным нанокомпозициям, предназначенным для получения пленочных материалов, защищающих от УФ-излучения и фотохимического старения. Композиция содержит полиолефин или сополимер олефина и УФ-абсорбер. УФ-абсорбер представляет собой наноразмерный карбид кремния, который является однофазным поликристаллическим и состоящим из синтетического карборунда (SiC) со структурой муассанита политип 6Н со средним размером частиц 34±3 нм в количестве 0,1-1,5 мас. %. Полимерная нанокомпозиция позволяет получать пленочные материалы с широким спектральным диапазоном поглощения средневолнового УФ-излучения (200-420 нм). При этом опасный диапазон УФ-излучения (200-290 нм) поглощается на 100-90%. 1 табл.

 

Изобретение относится к полимерным пленочным материалам, защищающим от УФ-излучения и фотохимического старения.

Известен полимерный пленочный материал для ограждения теплиц, получаемый из композиции, включающей полиэтилен высокого давления или сополимер этилена с винилацетатом в количестве 99,0-99,2 мас. % и бензона OA в количестве 0,8-1,0 мас. %. [патент 94027744, Россия, МПК C08J 5/18, C08L 23/06, опубл. 20.06.1996].

Недостатком данного изобретения является относительно узкий спектральный диапазон поглощения УФ-излучения (290-330 нм), высокое спектральное пропускание по УФ (до 15%) и технологически неудачная стадия предварительного холодного смешения порошка УФ-абсорбера с полимерными гранулами, дающая плохое распределение частиц в полимерной пленке по сравнению с настоящим изобретением.

Известна полимерная композиция, защищающая от проникновения УФ-излучения, включающая органический термопластичный полимерный материал, предпочтительно полиолефин в количестве 981 или 985 г, сложный олигоэфир или полиэфир заявленной формулы в количестве 13 г и микронизированный оксид цинка в количестве 6 г или микронизированный диоксид титана в количестве 2 г. В качестве полиолефина используют линейный полиэтилен низкой плотности с плотностью 0,919 г/см3 и индексом текучести расплава (190°C, 2,16 кг), равным 1,1. Смесь экструдируют при 230°C на двухшнековом экструдере. Полученные гранулы раздувают (с помощью лабораторного экструдера с раздувкой) при 230°C и получают пленку толщиной примерно 50 мкм [патент 2370502, Россия, МПК C08G 63/685, C08K 5/10, C08K 5/3492, опубл. 10.07.2007].

Недостатком данного изобретения является относительно узкий диапазон пропускания УФ (280-390 нм) и более высокое спектральное пропускание (от 9,9 до 91,0%).

Наиболее близкой по совокупности существенных признаков к заявляемому материалу является полимерная композиция для защиты от УФ-излучения, которая содержит в качестве полимерной матрицы полиолефин или сополимер на основе олефина (полиэтилен высокого давления (ПЭВД), температура плавления (max) 104°C, индекс расплава 2,0 г/10 мин, плотность 0,91 г/см3, молекулярная масса 20000-24000; сополимер этилена с винилацетатом (СЭВА), содержание винилацетата 20-30 мас. %, температура плавления 70-85°C, индекс расплава 20-80 г/10 мин, плотность 0,93-0,95 г/см3; полиэтилен низкого давления (ПЭНД), температура плавления (max) 114-120°C, индекс расплава 1,5-3,0 г/10 мин, плотность 0,93 г/см3, молекулярная масса 25000-30000; полипропилен (ПП), температура плавления (max) 140-145°C, индекс расплава 3,0 г/10 мин, плотность 0,85 г/см3) и действующего вещества - полидисперсный нанокристаллический кремний с удельной поверхностью 36-97 м2/г, инкапсулированный в оболочку оксида, диоксида кремния или их фазы переменного состава нитрида, оксинитрида кремния или их фазы переменного состава, характеризующийся направленно изменяемой функцией распределения по размерам частиц ядра нанокомпозитного материала [патент 2429189 С1, Россия, МПК В82В 1/00, C08L 23/02, C08K 3/02, C08J 5/18, опубл. 20.09.2011. Туторский И.А., Белогорохов А.И., Ищенко А.А., Стороженко П.А. Структура и адсорбционные свойства нанокристаллического кремния // Коллоидн. журнал, 2005, т. 67, №4, с. 541-547. Баграташвили В.Н., Белогорохов А.И., Ищенко А.А., Стороженко П.А., Туторский И.А. Управление спектральными характеристиками многофазных ультрадисперсных систем на основе нанокристаллического кремния в УФ-диапазоне длин волн // ДАН. 2005, т. 405, №3, с. 360-363. Ольхов А.А., Льяо Д.Дж., Фетисов Г.В., Гольдштрах М.А., Кононов Н.Н., Крутикова А.А., Стороженко П.А., Ищенко А.А. Нанокомпозитные пленки с УФ-защитными свойствами на основе полиэтилена с ультрадисперсным кремнием // Пластические массы. 2010, №9, с. 40-46].

Недостатком данного изобретения являются недостаточно высокий уровень поглощения опасного диапазона УФ-излучения (200-290 нм) (от 80 до 90%) и относительно невысокие значения прочности пленок при разрыве по сравнению с настоящим изобретением.

Техническим результатом изобретения является создание пленочного материала на основе полиолефина или сополимера олефина и наноразмерного карбида кремния с расширенным спектральным диапазоном поглощения средневолнового УФ-излучения (200-420 нм) и поглощением опасного для биологических объектов диапазона УФ-излучения (200-290 нм) на 100-90%, с повышенной прочностью (от 19 до 23 МПа для пленок на основе ПЭВД).

Указанный технический результат достигается за счет того, что в полимерную матрицу полиолефина или сополимера на основе олефина (полиэтилен высокого давления (ПЭВД), температура плавления (max) 104°C, индекс расплава 2,0 г/10 мин, плотность 0,91 г/см3, молекулярная масса 20000-24000; сополимер этилена с винилаценатом (СЭВА), содержание винилацетата 20-30 мас. %, температура плавления 70-85°C, индекс расплава 20-80 г/10 мин, плотность 0,93-0,95 г/см3; полиэтилен низкого давления (ПЭНД), температура плавления (max) 114-120°C, индекс расплава 1,5-3,0 г/10 мин, плотность 0,93 г/см3, молекулярная масса 25000-30000; полипропилен (ПП), температура плавления (max) 140-145°C, индекс расплава 3,0 г/10 мин, плотность 0,85 г/см3) вводят действующее вещество - наноразмерный карбид кремния, который является однофазным поликристаллическим и состоящим из синтетического карборунда (SiC) со структурой муассанита политип 6Н со средним размером частиц 34±3 нм в количестве 0,1-1,5 мас. %.

Способ получения заявляемого полимерного пленочного материала включает горячее смешение гранулированного полимера в количестве 98,5-99,9 масс. % и наноразмерного карбида кремния 0,1-1,5 масс. % при 120-130°C для сополимера с винилацетатом, 140-150°C для полиэтилена высокого давления, 160-170°C для полиэтилена низкого давления, 170-180°C для полипропилена и 160-180°C для смесей полимеров в течение 5-10 минут до образования гомогенной смеси, либо готовят суперконцентрат, содержащий 5-15 мас. % наноразмерного кремния и 95-85% полимера или смеси полимера при тех же условиях. Затем композиционный материал разогревают до 200-230°C для смеси с полипропиленом, 190-210°C для смеси с полиэтиленом низкого давления и композиций полимеров, 170-190°C для смеси с полиэтиленом высокого давления и 130-140°C для смеси сополимера этилена с винилацетатом и формуют пленку методом экструзии расплава.

Технический результат, обеспечиваемый заявляемым изобретением пленочного полимерного материала, выражается в снижении спектрального пропускания материала в зоне опасного для биологических объектов УФ-излучения (200-290 нм) от 90 и практически до 100% при введении в полимер частиц наноразмерного карбида кремния в количестве 0,1-1,5 мас. % (при толщине пленки 50-100 мкм).

Примеры выполнения изобретения.

Пример 1

Осуществляют предварительное горячее смешение гранулированного полиэтилена высокого давления (ПЭВД) в количестве 99,0 и наноразмерного карбида кремния в количестве 0,1 мас. % в смесителе открытого (вальцы) или закрытого типа (двухшнековый экструдер, кулачковая смесительная камера) в течение 5-10 мин до образования гомогенной смеси. Смешение производят при температурах от 140 до 150°C. Приготовленная смесь гранулируется и затем поступает в экструдер для получения плоской или рукавной пленки. Температурные режимы формования пленки на экструзионной установке АРП-20-25 (Россия) находятся в границах 170-190°C.

Пример 2

Аналогично примеру 1, только содержание наноразмерного карбида кремния 0,5%.

Пример 3

Аналогично примеру 1, только содержание наноразмерного карбида кремния 1,0%.

Пример 4

Аналогично примеру 1, только наноразмерный карбид кремний взят в количестве 1,5%.

Пример 5

Аналогично примеру 4, только в качестве полимера взят сополимер этилена с винилацетатом.

Пример 6

Аналогично примеру 4, только в качестве полимера выбран полипропилен.

Значения интегрального пропускания в области 200-290 нм и прочностные показатели образцов приведены в таблице.

Методика механических испытаний

Для механических испытаний из пленок при растяжении с помощью специального нарезного устройства вырезали образцы в виде полосок шириной 10 мм и длиной 50 мм. Для определения прочности при разрыве (МПа) использовали универсальную разрывную машину UTS-211 (Германия). Скорость движения зажимов 100 мм/мин, расстояние между зажимами 30 мм. Температура испытаний 21°C.

Предлагаемая полимерная нанокомпозиция позволит получить пленочные и др. материалы с широким спектральным диапазоном поглощения средневолнового УФ-излучения (200-420 нм) и с усиленной защитой в опасной для биологических объектов коротковолновой области УФ-диапазона (200-290 нм). Данное изобретение найдет применение в сельском хозяйстве (парниковые пленки) и упаковочной индустрии (для упаковки продуктов питания, продукции электронной техники и др.).

Полимерная нанокомпозиция, защищающая от УФ-излучения, включающая полиолефин или сополимер олефина, отличающаяся тем, что в качестве УФ-абсорбера взят наноразмерный карбид кремния, который является однофазным поликристаллическим и состоящим из синтетического карборунда (SiC) со структурой муассанита политип 6Н со средним размером частиц 34±3 нм в количестве 0,1-1,5 мас. %, а диапазон поглощения УФ-излучения и величина интегрального пропускания составляют 200-420 нм и 90-100% соответственно.



 

Похожие патенты:

Изобретение относится к термопластичным эластомерным композициям, которые обладают воздухонепроницаемостью. Причем динамически вулканизированный расплав содержит по меньший мере один эластомер, содержащий звенья, образованные из изобутилена, по меньшей мере одну термопластичную смолу и от 2 до 30 ЧПК функционализированного ангидридом олигомера, привитого к термопластичной смоле.

Изобретение относится к виброизоляционной резиновой композиции и сшитой виброизоляционной резиновой композиции. Виброизоляционная резиновая композиция включает: каучуковый компонент, имеющий сополимер сопряженное диеновое соединение/несопряженный олефин, и полимер на основе несопряженного диена; в качестве вулканизирующего агента - бисмалеимидное соединение.
Изобретение относится к применению невулканизируемой полимерной композиции в изолирующем слое силового кабеля постоянного тока, к силовому кабелю постоянного тока и способу его получения.

Изобретение относится к области экспериментального определения температуры хрупко-вязкого перехода при распространении быстрой трещины в образцах материалов, на основе полиолефинов при их испытании на растяжение в исследуемом интервале температур и предназначено для использования при создании однородного хрупкого слоя на поверхности образца, действующего в качестве инициатора трещины.

Изобретение относится к полимерной композиции с улучшенными электрическими свойствами при постоянном токе, к применению композиции для получения слоя силового кабеля и к силовому кабелю.

Изобретение относится к эмульсии, способу ее получения и применению. Эмульсия содержит от 2 до 75 мас.% полиолефина, от 0,05 до 40 мас.% полимера Px, представляющего собой соединение формулы , где R = H, метил, R′=H, метил, n=от 2 до 100, X=O-, OH, OR, NH2 и их соли, Y=O-, OH, OR, NH2 и их соли, и воду в количестве от 10 до 97,95 мас.%, в пересчете на общую массу эмульсии.

Изобретение относится к термопластичным эластомерным композициям. Динамически вулканизируемый сплав включает: а) по меньшей мере один эластомер, содержащий изобутилен; б) по меньшей мере одну термопластичную смолу, в) функционализированный ангидридом олигомер, причем олигомер перед функционализацией имеет молекулярную массу в интервале от 750 до 1250; и г) пластификатор, который выбирают из группы, включающей третичные амины, вторичные диамины и сульфонамиды, причем функционализированный ангидридом олигомер и пластификатор присутствуют в отношении, составляющем от 0,15 до 3,0, эластомер присутствует в диспергированной фазе в виде мелких вулканизированных или частично вулканизированных частиц в сплошной фазе термопластичной смолы.

Изобретение относится к водной дисперсии полимера для применения в качестве добавки для композиций, содержащих гидравлическое вяжущее вещество или вяжущее вещество с латентными гидравлическими свойствами, многокомпонентной композиции для получения вяжущих растворов, строительных растворов или цемента, затвердевшей композиции для применения в конструкции гражданского строительства или строительной конструкции, к указанным строительным конструкциям, а также к применению вышеуказанной водной дисперсии полимера.
Изобретение относится к способу изготовления дисперсного природного материала. Способ включает сухое механическое измельчение целлюлозосодержащего сырья известными приемами, предварительную обработку штабеля материала электромагнитными волнами дециметрового диапазона в течение 30-300 с при максимальном размере штабеля не более 20 см, начальной водной влажности полимера от 8 % до 40 % и удельном расходе излучаемой мощности от 0,5 Вт/г до 1,5 Вт/г.

Изобретение относится к композиции полиолефинов, не пропускающей кислород, предназначенной для применения при изготовлении упаковок для пищи. Композиции содержит полиолефин, в состав которого входит сополимер этилена с виниловым спиртом, содержащий от 27 до 44% мол.

Изобретение относится к резиновой промышленности, в частности к производству резиновых смесей, используемых для изготовления уплотнительных элементов, применяемых в производстве пакерно-якорного оборудования нефтегазодобывающей промышленности.

Изобретение относится к композиционным материалам на основе полиэтилентерефталата, предназначенных для изготовления однослойных емкостей в виде бутылок и контейнеров различного назначения, обладающих улучшенными свойствами газопроницаемости.

Изобретение относится к области создания композиционных материалов на основе волокнистых наполнителей и наномодифицированного эпоксидного связующего и может быть использовано при производстве стеклопластиковых труб и других изделий, получаемых методом намотки и применяемых в тепловых сетях, системах горячего водоснабжения с сетевой водой, системах водоснабжения, с рабочей температурой до 150°С.

Изобретение относится к сельскому хозяйству, в частности к полимерным композиционным материалам для парников и теплиц. Светопреобразующий композиционный полимерный материал включает полимерную матрицу с диспергированным в ней красным неорганическим широкополосным люминофором, состав которого отвечает формуле: Lis(M(1-x)-Eux)1MgmAlnSipNq, где М=Sr, Са, Ва, взятые порознь или совместно, и где значения индексов у элементов, входящих в состав соединения, составляют: 0,045≤s≤0,60, 0,005≤х≤0,12, 0≤m≤0,12, 0≤n≤1,0, 1,0≤р≤2,40, 3,015≤q≤4,20, с ограничением, что для всех композиций 2,0≤p+n≤2,40 и q≠4.

Настоящее изобретение относится к связующему на основе полиуретана с применением изоцианатов, содержащих уретониминовые и/или карбодиимидные группы для получения стержней и литейных форм, к смеси формовочных материалов, содержащей связующее, и к способу применения связующего для получения литейных форм.

Изобретение относится к эластомерным нанокомпозитам. Нанокомпозит включает эластомер и модифицированный нанонаполнитель.

Изобретение относится к полимерному нанокомпозиту, содержащему модифицированный филлосиликат, способу его получения, а также его применению для изготовления упаковки.

Изобретение относится к композиции модифицированного филлосиликата для армирования полимеров, содержащей смесь модифицирующих агентов, к способу ее получения и ее применениям.

Изобретение относится к каучуковой композиции для шины. Каучуковая композиция для шины состоит из 100 мас.ч.

Изобретение относится к области химии и нефтехимического производства и может быть использовано для применения при строительстве, реконструкции и ремонте дорог, мостов и аэродромов в качестве полимерно-битумного вяжущего.

Изобретение относится к получению синтетических формованных изделий, например, для изготовления снижающих трение лент, используемых в качестве промежуточного слоя гибких жидкостных трубопроводов, например, для транспортирования нефти.

Изобретение относится к полимерным нанокомпозициям, предназначенным для получения пленочных материалов, защищающих от УФ-излучения и фотохимического старения. Композиция содержит полиолефин или сополимер олефина и УФ-абсорбер. УФ-абсорбер представляет собой наноразмерный карбид кремния, который является однофазным поликристаллическим и состоящим из синтетического карборунда со структурой муассанита политип 6Н со средним размером частиц 34±3 нм в количестве 0,1-1,5 мас. . Полимерная нанокомпозиция позволяет получать пленочные материалы с широким спектральным диапазоном поглощения средневолнового УФ-излучения. При этом опасный диапазон УФ-излучения поглощается на 100-90. 1 табл.

Наверх