Модульный электронный конструктор

Изобретение относится к обучающим играм и учебным макетным пособиям и может быть использовано для обучения студентов и детей школьного возраста основам физики, электротехники и электроники. Модульный электронный конструктор содержит блок интегральных схем, кнопки управления, датчики, блок дискретных элементов, звуковой индикатор, схему световой индикации, наборное поле, оснащенное элементами механического и электрического соединения устанавливаемых на нем в зависимости от поставленной учебной задачи модулей, сетевой блок питания, блок микропроцессорного управления и блок дистанционного управления, модуль электромеханических преобразователей, модуль электромеханического генератора, модуль беспроводной передачи электроэнергии и блок релейного управления. Техническим результатом является расширение арсенала средств обучения основам физики, электротехники и электроники, а также, за счет увеличения количества исследуемых схем, расширение функциональных возможностей модульного электронного конструктора. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к обучающим играм и учебным пособиям, и может быть использовано для обучения студентов и детей школьного возраста основам физики, электротехники и электроники.

Известен электронный конструктор [Патент РФ на полезную модель №38245, МПК G09B 5/14, B42D 1/04. Опубл. 27.05.2004], содержащий по меньшей мере одно основание с нанесенными на него символами, выполненное в виде информационно-образовательных карточек, при этом совокупность одного вида карточек образует блок формирования заданий, содержащий классифицированный модуль учебных задач, модуль опросных таблиц с иерархическим построением по степени сложности учебного материала и модуль выбора заданий, содержащий автоматическую или/и ручную выборку, а другая совокупность карточек образует блок управления учебным процессом, содержащий модуль матриц контроля, модуль сравнения и анализа решения, модуль решения задач и модуль матриц диагностики, при этом оба блока скомпонованы и информационно взаимосвязаны, формируют электронную базу данных учебного материала.

Недостатками электронного конструктора являются отсутствие возможности компоновки и натурного исследования дополнительных пользовательских электронных схем.

Известно электронное самообучающее устройство [Патент США №4358273, МПК G09B 19/02. Опубл. 09.11.1982], содержащее дисплей, регистры, счетчики, арифметическое устройство, генератор случайных чисел, функциональную клавиатуру, память, схему контроля и схему проверки правильности ответа, и представляющее собой устройство для самотестирования, в котором запрограммированы правильные ответы на вопросы. В процессе тестирования обучающийся вводит с помощью клавиатуры номер ответа, а на дисплее отображается информация о правильном или неправильном ответе на вопрос.

Недостатками электронного самообучающего устройства являются отсутствие возможности натурного исследования электронных устройств.

Известно электронное учебное пособие [Патент США №5632624. МПК G09B 19/02. Опубл. 27.05.1997], содержащее микропроцессор, жидкокристаллический дисплей с контроллером, клавиатуру, переключатели, блок памяти, источник питания. Электронное учебное пособие находится в корпусе, к нему прилагаются сменные картриджи с размещенным на них текстовым материалом, включающим вопросы и ответы на каждый вопрос. Микропроцессор анализирует ответ на вопрос и выводит на дисплей общее количество ответов и номер правильного ответа.

Недостатками электронного учебного пособия являются отсутствие возможности натурного исследования электронных устройств.

Известен электронный конструктор «Знаток» [Электронный ресурс. Режим доступа: http://www.znatok.ru/Konstruktor.html. - Загл. с экрана], содержащий набор дискретных элементов, позволяющий собирать аналоговые и цифровые электронные схемы и предназначенный для изучения школьниками основ электроники и физики.

Недостатками электронного конструктора «Знаток» являются ограниченное количество исследуемых схем, отсутствие возможности исследования электромеханических устройств, устройств беспроводной передачи электроэнергии, микропроцессорных и релейных систем управления, а также отсутствие модуля дистанционного управления.

Наиболее близким является электронный конструктор [Патент РФ на полезную модель №14420, МПК A6F 9/24. Опубл. 27.07.2000], содержащий автогенератор, выключатели и кнопки управления, звуковой индикатор, датчики, блок интегральных схем, расширители, блок дискретных элементов, схему световой индикации, причем выход автогенератора подключен к входу блока интегральных схем, другие входы которого соединены с выключателями и кнопками управления, с выходами датчиков, с расширителями, а выходы блока интегральных схем закоммутированы с расширителями, с входом звукового индикатора, с входами схемы световой индикации и блока дискретных элементов, выход которого подключен к входу схемы световой индикации.

Недостатками данного электронного конструктора являются отсутствие возможности исследования электромеханических устройств, устройств беспроводной передачи электроэнергии, микропроцессорных и релейных систем управления, а также возможности дистанционного управления.

Задача, на решение которой направлено заявляемое изобретение, заключается в создании удобного в использовании модульного электронного конструктора с расширенными функциональными возможностями.

Техническим результатом является расширение арсенала средств обучения основам физики, электротехники и электроники, а также, за счет увеличение количества исследуемых схем, расширение функциональных возможностей модульного электронного конструктора.

Технический результат достигается тем, что модульный электронный конструктор содержит блок интегральных схем, кнопки управления, датчики, блок дискретных элементов, звуковой индикатор, схему световой индикации, при этом в него введены наборное поле, сетевой блок питания, блок релейного управления, блок микропроцессорного управления, блок дистанционного управления и съемные модули, причем наборное поле оснащено элементами механического и электрического соединения с возможностью установки и взаимодействия блоков и съемных модулей.

Модульный электронный конструктор характеризуется тем, что для исследования электромеханических преобразователей в конструктор введен съемный модуль электромеханических преобразователей.

Модульный электронный конструктор характеризуется тем, что для исследования процессов электромеханического преобразования и передачи электроэнергии в конструктор введены съемный модуль электромеханического генератора и модуль беспроводной передачи электроэнергии.

Сущность предлагаемого технического решения заключается в том, что в состав модульного электронного конструктора введены модуль электромеханических преобразователей, модуль электромеханического генератора, модуль беспроводной передачи электроэнергии, модули микропроцессорных и релейных систем управления, а также модули дистанционного управления, что позволяет увеличить количество выполняемых учебных задач.

На чертеже приведена структурная схема модульного электронного конструктора. Модульный электронный конструктор состоит из корпуса 1, наборного поля 2, оснащенного элементами механического и электрического соединения с устанавливаемыми на нем блоками и съемными модулями в зависимости от поставленной учебной задачи, к которому подсоединены блок интегральных схем 3, кнопки управления 4, датчики 5, блок дискретных элементов 6, звуковой индикатор 7, схема световой индикации 8, сетевой блок питания 9, модуль электромеханических преобразователей 10, модуль электромеханического генератора 11, модуль беспроводной передачи электроэнергии 12, блок релейного управления 13, содержащий набор электромеханических реле, и блок микропроцессорного управления 14, блок дистанционного управления 15, причем все устанавливаемые модули объединены в единую систему через наборное поле 2, а питание всех установленных на наборном поле модулей осуществляется от сетевого блока питания 9.

Модульный электронный конструктор работает следующим образом. Блок сетевого питания 9 модульного электронного конструктора подключается к электросети. В зависимости от поставленной учебной задачи к наборному полю 2 подключаются модули с необходимыми для конкретной работы элементами, и производится их коммутация через наборное поле 2 и кнопки управления 4.

Блок интегральных схем 3 содержит набор аналоговых и цифровых микросхем и позволяет исследовать как их работу, так и различные виды электрических схем, построенных с применением микросхем из блока интегральных схем 3.

Блок дискретных элементов 6 содержит набор различных дискретных элементов, например резисторы, конденсаторы, катушки индуктивности, диоды, транзисторы, и позволяет исследовать как сами дискретные элементы, так и различные виды электрических схем, а также различные виды электрических связей между подключенными модулями.

При исследовании электромеханических преобразователей используются датчики 5, которые фиксируют положение подвижных частей электромеханических преобразователей, входящих в модуль электромеханических преобразователей 10, а также частоту вращения и температуру окружающей среды, а также обеспечивают связь с блоком дистанционного управления 15.

Модуль электромеханического генератора 11 и модуль беспроводной передачи электроэнергии 12 позволяют исследовать процессы электромеханического преобразования и передачи электроэнергии, в том числе и беспроводной передачи электроэнергии.

Управление всеми установленными на наборном поле 2 модулями осуществляется от блока микропроцессорного управления 14 непосредственно, или через блок релейного управления 13. Ручное управление установленными на наборном поле 2 модулями осуществляется через кнопки управления 4 и блок интегральных схем 3.

Все установленные на наборное поле 2 модули получают питание от сетевого блока питания 9.

Пример использования модульного электронного конструктора для выполнения лабораторной работы по исследованию шаговых электромеханических приводных систем. При этом достигаются следующие учебные цели: изучение основ электромеханического преобразования энергии, изучение принципов управления режимами работы шаговых электромеханических приводных систем, получение навыков разработки и схемной реализации системы декодирования информационных сигналов датчиков обратной связи и управления шаговой электромеханической приводной системой.

Исследуемая шаговая электромеханическая приводная система реализована на входящем в состав блока электромеханических преобразователей 10 шаговом двигателе ДШИ-200-1-1. Рабочим органом шаговой электромеханической приводной системы является подъемно-транспортное устройство (вариант а), горизонтальное транспортное устройство (вариант б). Для оценки сигналов обратной связи использованы датчики тока, напряжения, датчик скорости и система датчиков пространственного позиционирования перемещаемого груза, которая реализуется на оптико-электронных датчиках (вариант а) и электромагнитных датчиках (вариант б). Управление шаговым двигателем, входящим в состав шаговой электромеханической приводной системы осуществляется посредством элементов блока релейного правления 13, элементов блока интегральных схем 3 и блока дискретных элементов 6, а так же с использованием функциональных возможностей блока микропроцессорного управления 14. Для индикации режимов работы шаговой электромеханической приводной системы, крайних положений перемещаемого груза и моделируемых аварийных режимов работы шаговой электромеханической приводной системы, таких как перегруз, продолжительный тяжелый пуск шагового электродвигателя, свал (обрыв) груза и потеря питающего напряжение, используются звуковой индикатор 7 и схема световой индикации 8.

Проведение лабораторной работы состоит из следующих учебных модулей: разработки релейной системы управления подключения шаговой электромеханической приводной системы, реализуемой на базе кнопок управления 4, блока интегральных схем 3, функциональных возможностей блока микропроцессорного управления 14, и шагового двигателя, входящего в состав блока электромеханических преобразователей 10 (модуль 1); разработки алгоритма, реализации и отладки системы получения и обработки сигналов первичной информации с используемых в лабораторной работе датчиков обратной связи - датчиков тока, напряжения, скорости и системы датчиков распознавания положения перемещаемого рабочего органа шаговой электромеханической приводной системы, использовании элементов блока интегральных схем 3 и элементов блока дискретных элементов 6, а так же функциональных возможностей блока микропроцессорного управления 14 (модуль 2); разработки алгоритма, реализации и отладки системы управления шаговым двигателем модуля электромеханических преобразователей 10 с использованием функциональных возможностей блока микропроцессорного управления 14 и сигналов обратной связи с реализованной ранее системы сбора и обработки первичной информации датчиков. В рамках проведения лабораторной работы обучаемыми могут быть использованы готовые решения по реализации схем и алгоритмов систем управления (модуль 3).

Для измерения электромеханических параметров исследуемой шаговой электромеханической приводной системы в лабораторной установке используется информация первичных датчиков и алгоритм ее обработки и пересчета, с использованием функциональных возможностей блока микропроцессорного управления 14. Полученные экспериментальные данные и зависимости выводятся на графический дисплей блока световой индикации 8.

Помимо устройств, входящих в состав модульного электронного конструктора, предусмотрена возможность проведения осциллографических измерений наблюдаемых электромеханических параметров лабораторной работы при помощи подключаемого стороннего оборудования.

В ходе лабораторных работ исследуются рабочие характеристики шаговой электромеханической приводной системы в статических и динамических режимах ее работы, алгоритмы систем релейного и микропроцессорного управления, а так же исследуются рабочие характеристики используемых в лабораторной работе датчиков обратной связи.

Таким образом, лабораторная работа по исследованию шаговых электромеханических приводных систем, реализуемая на базе модульного электронного конструктора, охватывает значительную часть теоретического и практического материала из области электротехники, электрических машин и электропривода, электроники и микропроцессорной техники, а так же учебного материала по метрологии и измерительной технике. В ходе лабораторной работы студенты приобретают навыки разработки и отладки программ для микроконтроллеров.

Алгоритм проведения данной лабораторной работы может быть следующим:

- реализация модуля 1

1. Разработать релейно-контактную схему подключения шаговой электромеханической приводной системы, используя рассматриваемые в лекционном курсе методы синтеза и оптимизации систем управления (или воспользоваться вариантом, предложенным в методическом приложении к лабораторному практикуму).

2. Выбрать из предложенной элементной базы блока релейного управления 13 и элементной базы кнопок управления 4 требуемые элементы для реализации разработанной релейно-контактной схемы подключения шаговой электромеханической приводной системы.

3. Выполнить сборку разработанной релейно-контактной схемы подключения шаговой электромеханической приводной системы, используя в качестве сигнализации реализации команд управления элементы схемы световой индикации 8.

4. Выполнить проверку работоспособности реализуемой релейно-контактной схемы подключения шаговой электромеханической приводной системы.

- реализация модуля 2

1. Выполнить анализ требуемых для реализации системы управления с обратной связью шаговой электромеханической приводной системой информационных сигналов и необходимых для их получения датчиков 5 модульного электронного конструктора (или воспользоваться вариантом, предложенным в методическом приложении к лабораторному практикуму).

2. Получить экспериментально рабочие характеристики выбранных датчиков обратной связи, используя функциональный интерфейс датчиков 5.

3. Разработать схемы преобразования первичного сигнала датчиков и дальнейшего сопряжения с блоком микропроцессорного управления 14, используя элементную базу блока интегральных схем 3 и блока дискретных элементов 6, а так же функциональных возможностей блока микропроцессорного управления 14 (или воспользоваться вариантом, предложенным в методическом приложении к лабораторному практикуму).

4. Разработать алгоритм и реализовать схему вывода служебных и информационных сигналов на графический дисплей схемы световой индикации 8 (или воспользоваться вариантом, предложенным в методическом приложении к лабораторному практикуму), воспользовавшись функциональным интерфейсом и программным обеспечением схемы световой индикации 8 и блока микропроцессорного управления 14.

5. Выполнить сопряжение преобразованных сигналов датчиков обратной связи и схемы управления выводом служебных и информационных сигналов на графический дисплей схемы световой индикации 8, используя функциональные возможности блока микропроцессорного управления 14.

6. Разработать систему питания датчиков, используя модуль электромеханического генератора 11 и модуль беспроводной передачи электроэнергии 12.

7. Выполнить проверку работоспособности интегрированной системы съема, обработки и вывода на графический дисплей сигналов обратной связи.

- реализация модуля 3:

1. Разработать алгоритм управления и реализовать систему управления шаговым двигателем ДШИ-200-1-1, используя устройства и функциональные возможности модуля электромеханических преобразователей 10 и блока микропроцессорного управления 14 (или воспользоваться вариантом, предложенным в методическом приложении к лабораторному практикуму).

2. Получить экспериментальные рабочие характеристики шагового электродвигателя ДШИ-200-1-1 в режимах статической нагрузки и режимах, моделирующих аварийную работу шаговой электромеханической приводной системы, таких как перегруз, затяжной пуск при повышенных токах и обрыв или свал груза, используя устройства и функциональные возможности модуля электромеханических преобразователей 10 и блока микропроцессорного управления 14, а также используя индикаторы схемы световой индикации 8.

3. Интегрировать разработанную систему обратной связи в систему управления шаговой электромеханической приводной системы. Получить экспериментально рабочие характеристики шагового электродвигателя ДШИ-200-1-1 в режимах статической нагрузки и режимах, моделирующих аварийную работу шаговой электромеханической приводной системы, таких как перегруз, затяжной пуск при повышенных токах и обрыв или свал груза, используя устройства и функциональные возможности модуля электромеханических преобразователей 10 и блока микропроцессорного управления 14, а также используя индикаторы схемы световой индикации 8.

Все операции с блоком микропроцессорного управления 14 также могут быть выполнены при помощи блока дистанционного управления 15.

Таким образом, введение наборного поля в состав модульного электронного конструктора, оснащенного элементами механического и электрического соединения с устанавливаемыми на нем, в зависимости от поставленной учебной задачи съемными модулями, в том числе модуля электромеханических преобразователей, модуля электромеханического генератора и модуля беспроводной передачи электроэнергии, блока релейного, блока микропроцессорного управления и блока дистанционного управления ,позволяет за счет увеличения количества исследуемых схем расширить функциональные возможности модульного электронного конструктора, а так же наращивать конфигурацию исследуемой системы.

1. Модульный электронный конструктор, содержащий блок интегральных схем, кнопки управления, датчики, блок дискретных элементов, звуковой индикатор, схему световой индикации, отличающийся тем, что в него введены наборное поле, сетевой блок питания, блок релейного управления, блок микропроцессорного управления, блок дистанционного управления и съемные модули, причем наборное поле оснащено элементами механического и электрического соединения с возможностью установки и взаимодействия блоков и съемных модулей.

2. Модульный электронный конструктор по п. 1, отличающийся тем, что для исследования электромеханических преобразователей в него введен съемный модуль электромеханических преобразователей.

3. Модульный электронный конструктор по п. 1, отличающийся тем, что для исследования процессов электромеханического преобразования и передачи электроэнергии в него введены съемный модуль электромеханического генератора и модуль беспроводной передачи электроэнергии.



 

Похожие патенты:

Изобретение относится к занимательным играм-головоломкам для развития логического мышления и для тренировки внимания, памяти, моторики пальцев рук и координации движений кисти руки и может быть также использовано в качестве обучающего инструмента.

Изобретение относится к компьютерному имитационному моделированию, а более конкретно к взаимодействию пользователя с имитационными моделями. Некоторые варианты реализации настоящего изобретения преимущественно обеспечивают системы, оборудование и способы обеспечения интерактивной электронной игры.

Изобретение относится к пространственному игровому устройству, улучшающему логические навыки и ловкость, в частности игре-лабиринту, имеющей правильную, неправильную или неупорядоченную охватывающую форму.

Изобретение относится к компьютерному моделированию и к генерации синтезированных сред. .

Изобретение относится к индустрии развлечений, в частности к игровому устройству и способу эксплуатации игрового устройства. .

Изобретение относится к области часовой промышленности и может быть использовано в электронных шахматных часах, используемых для контроля времени в шахматной партии между удаленными соперниками в режиме реального времени, и направлено на повышение помехоустойчивости и достоверности приема, обработки и передачи информации о ходах и времени на обдумывание.

Изобретение относится к области развлекательных и азартных игр, и может быть использовано в системе назначения приз-бонус, охватывающей игровые автоматы, объединенные в сеть.

Изобретение относится к игровой индустрии и может быть использовано для разработки азартных игр, используемых в игровой индустрии. .

Описываются система и способ для сбора и совместного использования данных игры консоли. В вариантах осуществления данные игрового процесса получают непосредственно на игровой консоли без необходимости внешних аппаратных средств. Это дает возможность пользователям легко захватывать богатый опыт в игре на консоли и совместно использовать его через множество точек выхода. В одном варианте осуществления способы, описанные в документе, могут быть реализованы с помощью программной вставки или драйвера в операционной системе устройства пользователя, делая ненужным сложную модификацию исходного кода игры. Обеспечивается автоматическое выполнение обработки данных. 3 н. и 21 з.п. ф-лы, 5 ил.

Описываются система и способ для сбора и совместного использования данных игры на консоли. В вариантах осуществления данные игрового процесса собирают непосредственно на игровой консоли без необходимости внешних аппаратных средств. Это дает возможность пользователям легко записывать богатый опыт в игре на консоли и совместно использовать его через множество точек выхода. В одном варианте осуществления способы, описанные в документе, могут быть реализованы с помощью программной вставки или драйвера в операционной системе устройства пользователя, делая ненужным сложную модификацию исходного кода игры. Обеспечивается автоматическое выполнение упомянутой обработки данных. 3 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к способу обработки данных игрового процесса, выполняемому процессором, причем способ содержит извлечение сохраненного игрового процесса и метаданных игрового процесса из памяти, идентификацию релевантных ссылок на основании метаданных игрового процесса; вложение по меньшей мере одной из релевантных ссылок в сохраненный игровой процесс; и сохранение игрового процесса с вложенными ссылками в памяти. Технический результат заключается в исключении сложных внешних аппаратных компонентов для захвата игрового процесса. 3 н. и 20 з.п. ф-лы, 5 ил.
Способ оптимизированного изготовления объемного объекта с использованием метода оригами фусен, отличающийся тем, что в начале создания объемного объекта на имеющем форму квадрата листе, из которого изготавливается объемный объект, создают следы перегибов по линиям диагоналей этого квадрата, а также по линиям перпендикуляров к каждой диагонали в серединах их каждой половины и в серединах их каждой четверти, а также по линиям перпендикуляров к каждой стороне этого квадрата в серединах сторон, в серединах их каждой половины и в серединах их каждой четверти. Достигается повышение удобства изготовления объемных объектов, расширение возможностей применения при этом различных материалов, расширение сферы применения изготовления объемных объектов с использованием метода оригами фусен вследствие обеспечиваемой ИЗ возможности при изготовлении заготовок производить перегибы, сгибать плоские заготовки по уже имеющимся следам перегибов, расправлять изготовленную для придания внутреннего объема путем его наполнения плоскую заготовку, имеющую четыре внешних больших угла и два расположенных противоположно внешних меньших угла, прилагая усилия к позволяющим уже при расправлении формировать оптимальные ребра местам перегибов.

Изобретение относится к области информационных технологий и может быть использовано для дистанционного проведения конкурсных мероприятий по робототехнике для обучающихся общеобразовательных организаций, профессиональных образовательных организаций и организаций дополнительного образования. Изобретение направлено на расширение арсенала автоматизированных дистанционных систем, снижение затрат на организацию конкурсного мероприятия по робототехнике с привлечением большого количества участников, контроль и достоверность подведения итогов дистанционного конкурсного мероприятия за счет дистанционного проведения конкурсного мероприятия, программно-модульного комплекса, оборудованных рабочих мест пользователей, расширения эксплуатационных возможностей размещения и передачи информации при проведении конкурса, обеспечения проведения автоматизированной оценки результата работы соревнующихся команд, обеспечения отдаленным участникам и наблюдателям соревнования трансляции и визуализации подведения итогов дистанционного конкурсного мероприятия. 6 з.п. ф-лы, 1 ил., 1 табл.

Группа изобретений относится к вариантам игровых наборов. Они могут использоваться людьми разного возраста и состояния здоровья, но, прежде всего, рекомендованы для работы с детьми, в частности с детьми, имеющими индивидуальные особенности развития. Первый вариант набора состоит из отдельных полых замкнутых прямоугольных призм, каждая из которых имеет основание в форме прямоугольного равнобедренного треугольника. Второй вариант набора помимо названных призм содержит игровые элементы в виде отдельных полых замкнутых кубов. В полости каждого из этих элементов расположен наполнитель в виде сыпучего материала, а снаружи элемент имеет шероховатое многоцветное покрытие 8. Все призмы и кубы сочетаются между собой по размерам и изображенным на их гранях рисункам. Технический результат изобретения состоит в обеспечении полисенсорной стимуляции пользователя при взаимодействии с элементами наборов. 7 з.п. ф-лы, 11 ил.

Изобретение относится к игровой системе, имеющей компьютерную программу, сохраненную на энергонезависимом машиночитаемом носителе. Средства обмена информацией обеспечивают вносителям доступ к этому серверу и позволяют дарополучателям получать информацию о взносах, направляемых вносителями через этот сервер. Компьютерной программой измеряется значение накопления. Со стоимостью накопления связано триггерное значение. Из числа дарополучателей производится выбор по меньшей мере одного получателя награды, причем этот выбор производится компьютерной программой при достижении триггерного значения. Осуществляется уведомление по меньшей мере одного соответствующего лица из числа вносителей и передача по меньшей мере одной награды, соответствующей пороговой стоимости. Таким образом, заявленная система является малозатратной в реализации и обслуживании при сохранении ее эффективности. 14 з.п. ф-лы, 3 ил.
Наверх