Способ измерения векторного поля скорости океанских и речных течений в космическом рса



Способ измерения векторного поля скорости океанских и речных течений в космическом рса
Способ измерения векторного поля скорости океанских и речных течений в космическом рса
Способ измерения векторного поля скорости океанских и речных течений в космическом рса
Способ измерения векторного поля скорости океанских и речных течений в космическом рса

Владельцы патента RU 2597148:

федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный гидрометеорологический университет" (RU)

Способ измерения векторного поля скорости протяженной поверхности относится к радиолокации поверхности Земли с космических аппаратов и может быть использован для одновременного формирования яркостных и векторно-скоростных портретов речных и океанских течений с необходимым пространственным разрешением и привязкой к координатам местности. Способ пригоден для использования в двух известных вариантах радиолокационных скоростных измерений - интерференционном и доплеровском, т.е. в обычном РСА и в ИРСА с продольной антенной базой. Технический результат - одновременное использование двух лучей, симметрично отклоненных на угол ±β от траверса, что позволяет, используя проекции тангенциальной и радиальной составляющих скорости отражателя на оба луча, а также свойства алгоритмов апертурного синтеза, вычислить обе составляющие скорости для каждой из разрешаемых площадок в широкой области по дальности. 2 ил.

 

Изобретение относится к радиолокации поверхности Земли с летательных аппаратов и может быть использовано для формирования скоростных портретов протяженной поверхности - океанских и речных течений. Различные алгоритмы обработки сигнала, принятого антенной радиолокатора с синтезированной апертурой (РСА), обеспечивают не только высокое пространственное разрешение rx по продольной оси (оси перемещения антенны), но и возможность раздельного формирования яркостного и скоростного радиолокационных изображений (РЛИ). При этом свойства синтезирующего алгоритма не должны препятствовать формированию «четырехмерного» радиолокационного изображения местности, где на обычную (яркостную) картину, отображающую положение неподвижных (природных и искусственных) объектов накладывается изображение движущихся объектов. Направление движения обычно обозначается ориентированной по странам света стрелкой, а модуль скорости - цветом. Подобная задача относится и к формированию в РСА изображений морских и речных течений на фоне береговой линии и стационарных объектов на суше.

В работах [1, 2] предлагаются способы обработки, позволяющие определять вектор скорости локального отражателя с самолета,- но только при высоких значениях скорости, достаточных для смещения отражателя на десятки элементов продольного и поперечного разрешения за время синтезирования. Известны и способы обработки сигналов в РСА, позволяющие измерять малые скорости объектов на поверхности Земли. В том числе способ, позволяющий восстанавливать радиальную скорость морских мезомасштабных течений по смещению медианы доплеровского спектра [3, 4]. В этом случае измеряемая скорость составляет (1-100) см/с, и для ее измерения необходимо накапливать отсчеты сигнала на километровых площадках, включающих несколько тысяч независимых элементов разрешения. Разработан и введен в действие космический аппарат TerraSAR-X, использующий интерферометр с продольной антенной базой [5] для формирования скоростных портретов при малых скоростях объектов с лучшим пространственным разрешением - но только для радиальной составляющей скорости. В работе [6] рассматривались различные аспекты и особенности интерференционного метода. Имеются и патенты [7, 8], где радиальная составляющая скорости измеряется в интерференционном РСА (ИРСА) с продольной базой при традиционном (разностно-фазовом) алгоритме синтеза. Разностно-частотный алгоритм синтеза для ИРСА предложен в недавно полученном патенте [9], где осуществляется некая оптимизации алгоритма обработки при формировании скоростного портрета поверхности, но опять-таки для радиальной составляющей скорости.

В данной заявке предлагается двухлучевой способ, позволяющий измерять обе составляющие скорости при использовании различных алгоритмов обработки сигнала. Сам же по себе многолучевой способ векторных радиолокационных измерений известен - например, он издавна применяется в космических СВЧ скаттерометрах при измерении вектора скорости ветра над морской поверхностью, используя пространственную анизотропию морских волн [10].

Прототипом предлагаемого метода может служить патент [8] для ИРСА.

В работе [6] показано, что азимутальный отклик скоростного канала ИРСА, в первом приближении и без использования оптимизации [9], имеет вид:

где U0 - амплитуда сигнала при реальной (несинтезированной) апертуре; N=Lx/WxTr - число когерентно накапливаемых импульсов при размере синтезированной апертуры Lx, скорости аппарата Wx и периоде следования импульсов Tr; rx=λRn/Lx - продольная (азимутальная) разрешающая способность при длине волны сигнала λ и наклонной дальности Rn визируемой площадки; xV=VyRn(sinγn)/Wx - пространственный сдвиг, обусловленный радиальной скоростью Vy площадки, визируемой под углом γn; ψn=arctg(2πfdyTr) - регистрируемый фазовый сдвиг внутри амплитудного пика, где fdy=2Vysinγn/λ - радиальный доплеровский сдвиг. При измерении малых скоростей с космического аппарата допустимо принять sinψn: ψn=2πfdyTr. Видно, что измеряемая скорость Vy в данном случае влияет как на фазу синтезированного сигнала, так и на его пространственный (азимутальный) сдвиг. При типовых значениях Tr=(0,1-0,3)·10-3 с для космического ИРСА и малых измеряемых скоростей Vy<3 м/с доплеровский сдвиг не превышает 100 Гц, а фазовый не превышает 10 град. Что же касается пространственного сдвига, то в данных условиях он значителен, составляя ~200 м при скорости Vy=3 м/с. Это означает, что пренебречь им можно, измеряя скорость слабых течений при соответствующем азимутальном разрешении (rx>>xV).

Формирование яркостного РЛ изображения в РСА или ИРСА определяется экспоненциальным множителем в выражении (1), который может быть представлен в функции пространственной координаты (x), а также временной координаты (t=x/Wx) и частотной координаты (f=2xWx/λRn). В последнем случае амплитудный пик в выражении (1) выглядит следующим образом:

где величина играет роль разрешающей способности по частоте. Таким образом, можно измерить сдвиг fdy и без помощи интерферометра, что известно из работ [3, 4].

Для измерения обеих составляющих вектора скорости предлагается использовать азимутальный разворот плоскости излучения на небольшой угол (β~15°), т.е. искусственный угол сноса. Решение заключается в формировании двух лучей, на каждый из которых проектируются как измеряемые скорости отражателя (Vx, Vy), так и подлежащие компенсации скорость аппарата (Wx) и скорость вращения Земли (WE) (фиг. 1). Как следует из фиг. 1, суммарные радиальные доплеровские сдвиги с учетом скорости аппарата Wx и скорости вращения Земли WE=WE0 cosα (WE0=462 м/с, α - широта места) - для левого и правого лучей антенны составляют

Введем компенсацию скорости вращения Земли WE и скорости аппарата Wx путем соответствующих частотных сдвигов сигнала в левом и правом приемных каналах:

и .

Тогда, в соответствии с выражением (2), на выходах двух независимых каналов ИРСА получим фазовые сдвиги

Складывая и вычитая эти сдвиги, можно получить обе составляющие скорости для каждой площадки с достижимой точностью при заданном разрешении:

Имеются и определенные ограничения. Задержка во времени между измерениями в двух лучах составляет , что в космических условиях составляет ~30 с, т.е. на два порядка превышает время синтеза. При малой скорости площадки, когда соблюдается условие Vx<rx/Δt, данный метод, по-видимому, позволяет измерить вектор скорости течения. Расчеты показывают, что современный космический ИРСА сможет измерить вектор скорости течения с точностью ~3 см/с - при достижимом в этом случае размере симметричной площадки d=rx~100 м [6]. Такие параметры являются намного лучшими по сравнению с параметрами, реализованными с использованием сдвига доплеровского спектра в РСА [3].

Тем не менее, предлагаемый двухлучевой метод выгоден для использования не только в ИРСА, но и в обычном РСА. Помимо рассмотренного эффекта, т.е. измерения обеих составляющих скорости вместо одной, оказывается ненужным сравнение измеренного доплеровского сдвига со сдвигом неподвижной площадки, ибо эту роль выполняет второй луч антенны. В этом случае, используя выражение (3) при такой же компенсации скоростей аппарата (Wx) и вращения Земли (WE), находим для левого и правого лучей их суммарный и разностный доплеровские сдвиги: , , а затем - составляющие скорости

Функциональная схема предлагаемого способа измерений вектора скорости течений в РСА представлена фиг. 2, где обозначены: 1 - двухлучевая антенна, 2 - смесители левого и правого каналов; 3 - синтезаторы левого и правого каналов; 4 - генератор опорного сигнала; 5 - вычислители выходных параметров левого и правого каналов; 6 - вычислитель измеряемых параметров с формированием азимутальной строки яркостного и скоростного изображений; 7 - многомерный дисплей; 8 - временной синхронизатор; 9 - датчик навигационных параметров, 10 - ввод навигационных параметров, 11 - ввод заданных параметров РЛ изображения.

Формирование азимутальной строки яркостного и векторно-скоростного изображений происходит следующим образом. Сигналы от двухлучевой антенны (1) поступают в смесители (2), где им придаются компенсирующие частотные сдвиги FE и Fx. Затем каждый из этих сигналов поступает на синтезатор (3), куда также поступает опорный сигнал от генератора (4). Затем в каждом из каналов вступает в действие вычислитель (5), вырабатывающий видеосигналы с амплитудами, пропорциональными амплитуде и доплеровскому сдвигу отклика движущейся площадки. В результате для левого и правого лучей образуются по две пары сигналов, определяющих, помимо интенсивности отраженного сигнала, модуль и направление скоростного вектора. В вычислителе (6) производится разделение составляющих скорости (Vx, Vy), их калибровка, калибровка интенсивности сигнала и формирование строки яркостного и скоростного изображений с учетом задержки при зондировании одной и той же площадки левым и правым лучами. Сформированные таким образом сигналы поступают на многомерный дисплей (7), тем или иным способом отображающий одновременно интенсивность (яркость) каждого элемента изображения, величину и направление скорости элемента. Для обеспечения согласованности и точности измерений служат временной синхронизатор (8) и датчик навигационных параметров (9), управляющие азимутальной разверткой дисплея, меняющимися по дальности задержкой Δt, частотой опорного сигнала и вырабатывающие частотные сдвиги FE и Fx. При измерении вектора скорости в ИРСА, где антенна имеет две секции, функциональная схема фиг. 2 не изменяется - конечно, при более сложных принципиальных схемах собственно антенны (1), синтезаторов (3) и блока синхронизации (8), что известно из литературы [6].

Источники информации

1. Объекты радиолокации. Обнаружение и распознавание, п/ред. А.В. Соколова / М., Радиотехника, 2007, глава 4: Радиолокационное изображение цели при апертурном синтезе со сверхвысоким разрешением радиолокатора с синтезированной апертурой, с. 117-128.

2. Pettersson M.I. Detection of Moving Targets in Wideband SAR // IEEE Trans, on Aerospace and Electronic Systems, 2004, v. 40, №3, pp. 780-786.

3. Достовалов М.Ю., Неронский Л.Б., Переслегин С.В. Исследование поля скорости океанских течений по фазометрическим данным, полученным РСА космического аппарата «ERS» // Океанология, 2003, т. 43, №3, с. 473-480.

4. Neronsky L.B., Dostovalov M.Ju., Pereslegin S.V. The extended algorithms for Doppler centroid estimation // Proc. EUSAR-2004, Ulm, Germany, May 2004, v. 2, pp. 709-712.

5. Romeiser R., Suchand S., Hartmut R., Steinbrecher U., Grimier S. First Analysis of TerraSAR-X Along-Track InSAR-Derived Current Fields // IEEE Trans, on Geoscience and Remote Sensing, v. 48, No 2, pp. 820-829.

6. Переслегин С.В., Халиков З.А. Обработка сигналов в радиолокаторах с синтезированной апертурой при восстановлении скоростных полей поверхности Земли // Изв. ВУЗов. Радиофизика. 2014, №1, с. 1-13.

7. Martin Suss, Werner Wiesbeck. Side-looking synthetic aperture radar system / ER Patent, Number 1.241.487. B1, Data of filing 15.03.2001.

8. Takashi Fujimura. Along-track interferometric synthetic aperture radar / US Patent, Number 5.945.937, Data of patent Aug. 31, 1999.

9. Переслегин С.В., Захаров А.И., Халиков З.А., Ивонин Д.В., Достовалов М.Ю., Шапрон А. Способ измерения радиальной скорости отражателя в радиолокаторе бокового обзора с синтезированной апертурой // Патент на изобретение №2537788, приоритет 10.09.2013.

10. А.И. Баскаков, Т.С. Жутяева, Ю.И. Лукашенко. Локационные методы исследования объектов и сред / М., ИЦ «Академия», 2011, глава 5.

Способ измерения векторного поля скорости океанских и речных течений космическим радиолокатором с синтезированной апертурой, использующий интерференционный либо доплеровский методы измерения радиальной скорости, отличающийся тем, что в антенне формируют два независимых луча, симметрично отклоненных по азимуту на угол ±β, в каждом из независимых каналов производят программируемый вдоль траектории сдвиг несущей частоты на определенную величину, зависящую от угла β, угла визирования площадки, скорости аппарата и скорости вращения Земли на данной широте, после операций синтеза азимутальной диаграммы направленности и измерения скорости площадки в каждом канале получают пару сигналов, амплитуды которых отображают интенсивность рассеяния и вектор скорости площадки, расположенной на заданной дальности, путем сравнения амплитуд двух пар скоростных сигналов вычисляют радиальную и тангенциальную составляющие скорости каждой площадки, формируют азимутальную строку яркостного и векторно-скоростного изображения местности на многомерном дисплее с учетом задержки, определяемой скоростью аппарата, углом β и углом визирования площадки.



 

Похожие патенты:

Изобретение относится к области авиационного метеорологического оборудования. Бортовая система измерения параметров вектора скорости ветра содержит неподвижное ветроприемное устройство, преобразователи информативных сигналов, канал аналого-цифрового преобразования, вычислительное устройство, соединенные определенным образом.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата, определяющих движение относительно окружающей воздушной среды.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата.

Изобретение относится к области для регистрации микроперемещений морской воды. Устройство для реализации заявленного способа для измерения скорости течений и волновых процессов в океане выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков.

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к методам расчета экстремальных значений гидрометеорологических параметров окружающей среды, которые используются при оценках риска индустриальной деятельности человека.

Настоящее изобретение относится к области измерения параметров потока текучей среды, протекающей по трубопроводу. Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей мере частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

Изобретение относится к неконтактным океанографическим измерениям и может быть использовано для определения статистических характеристик морского волнения с борта движущегося судна.

Изобретение может быть использовано для определения океанографических характеристик и выявления их пространственного распределения. Сущность: система включает подспутниковые (судовые) и спутниковые средства измерений океанографических характеристик.

Изобретение относится к неконтактным океанографическим измерениям и может быть использовано для определения статистических характеристик морского волнения с борта движущегося судна.

Изобретение может быть использовано для определения океанографических характеристик и выявления их пространственного распределения. Сущность: система включает подспутниковые (судовые) и спутниковые средства измерений океанографических характеристик.

Изобретение относится к области гидрологии и может быть использовано при мониторинге, моделировании, количественной оценке водных ресурсов. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ.

Изобретение относится к области океанографических измерений и предназначено преимущественно для определения характеристик коротких морских ветровых волн. Технический результат изобретения - повышение точности измерений за счет устранения фактора воздействия водного потока на струнные волнографические датчики, что обеспечивает их неподвижность даже в условиях штормового моря, а также за счет уменьшения длины погруженной в воду части штанги, несущей волнографические датчики, и одновременно с этим - обеспечения требуемого заглубления датчиков. Сущность: устройство содержит установленный над водной поверхностью выстрел с вертикальной штангой, пересекающей границу раздела воздух-вода.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля изменения состояния поверхности открытых водоемов, вызванного их загрязнением поверхностно-активными веществами, при проведении экологических и природоохранных мероприятий. Техническим результатом изобретения является возможность при осуществлении анализа характеристик бликов зеркального отражения учитывать фактор влияния, ветра, что обеспечивает повышение точности определения наличия загрязнения, а также степени его интенсивности. Согласно изобретению поверхность облучают лазером, регистрируют блики зеркального отражения и определяют их характеристики.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля загрязнения поверхности открытых водоемов при проведении экологических и природоохранных мероприятий. Технический результат - обеспечение возможности учитывать влияние длинных, по сравнению с брегговскими компонентами, поверхностных волн на характеристики рассеяния радиоволн, по которым оценивают изменения в пространстве спектра поверхностных волн, что повышает достоверность определения загрязнения акватории. Сущность: контролируемую область морской поверхности облучают одновременно радиоволнами разной длины с помощью скаттерометра и альтиметра, которые размещены на двух летательных аппаратах.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля загрязнения поверхности открытых водоемов при проведении экологических и природоохранных мероприятий. Технический результат изобретения - повышение вероятности обнаружения загрязнения и снижение вероятности ложных тревог за счет разделения на радиолокационных изображениях участков, созданных поверхностным загрязнением, и участков, созданных вариациями поверхностного течения. Сущность: контролируемую область поверхности облучают под азимутальным углом α1, регистрируют рассеянный назад сигнал и по изменению уровня сигнала выявляют аномальный участок поверхности, от которого рассеянный назад сигнал имеет более низкий уровень по сравнению с фоновым значением сигнала.

Изобретение относится к области гидрографии и может быть использовано для гидрографической оценки речной сети. Сущность: определяют количество притоков реки.

Изобретение относится к способам составления приливных карт. Сущность: определяют высоту прилива по гармонической составляющей волны, ограниченной по контуру акватории, задаваемой амплитудой, углом положения и периодом. При этом определяют вещественные плановые координаты точки акватории, направленные на восток и север соответственно. Определяют значения высоты прилива гармонической составляющей волны в фиксированный момент времени через проекцию точки на фазовую окружность, соответствующую данной высоте уровня моря. Причем параметры указанной высоты определяют с учетом местоположения внутренних точек акватории и ее контура. Кроме того, определяют амплитуду колебаний гармонической составляющей волны по значениям высоты прилива в точках с вещественными плановыми координатами для последовательного набора дискретных значений времени. По значению амплитуды определяют время максимального уровня прилива. Формируют ряды наблюдений путем разложения спектра колебаний на непересекающиеся интервалы и декомпозиции исходного ряда на составляющие для каждого интервала частот. Декомпозиции исходного ряда подвергают преобразованиям посредством вейвлета Мейера. Оценку гармонических постоянных выполняют для каждого отдельного светила. Дополнительно выполняют оценку устойчивости гармонических постоянных путем районирования приливных колебаний на заданной акватории океана по критерию равенства гармонических параметров. Причем указанный критерий определяют как разность фаз между двумя приливными колебаниями в двух различных точках акватории. Кроме того, определяют приливные колебания непериодического характера. Кроме того, при построении изолиний определяют меру близости между двумя системами изолиний путем построения метрики Хаусдорфа, определяют временную и пространственную изменчивость возраста прилива между амфидромическими точками изолиний. Технический результат: повышение достоверности при составлении приливных карт. 1 ил.
Наверх