Способ измерения дальности цели в ближней радиолокации

Изобретение относится к области ближней радиолокации, в частности к радиолокационным станциям (РЛС) ближнего действия, в которых применяются цифровые методы обработки сигналов. Достигаемый технический результат - повышение точности измерения дальности цели с помощью вычисления поправки к дальности, позволяющей избежать ошибок, связанных с временной дискретизацией сигнала. Указанный технический результат достигается тем, что в способе измерения дальности после дискретизации сигнала в аналого-цифровом преобразователе выделяют огибающую принятого сигнала с большим отношением сигнал-шум, затем определяют временную задержку принятых колебаний, которая однозначно связана с дальностью до цели, формируют опорный сигнал, смещенный на время, соответствующее полученной временной задержке, после чего вычисляют разность фаз принятого и опорного сигналов, полученное значение пересчитывают в поправку к дальности относительно первоначально измеренного значения дальности до цели. 6 ил.

 

Данное изобретение относится к области ближней радиолокации, в частности к радиолокационным станциям (РЛС) ближнего действия, в которых применяются цифровые методы обработки сигналов. К радиолокаторам ближнего действия можно отнести обнаружители заглубленных в грунт объектов или объектов за преградой. Уменьшения затухания радиоволн в среде, как правило, достигают использованием зондирующих сигналов с частотой порядка десятков-сотен мегагерц. Точность определения дальности до цели δr определяется известным отношением элемента разрешения ΔR к отношению сигнал-шум (ОСШ) q [1, с. 65]:

Указанный способ показывает, как повысить точность измерения дальности до цели, не прибегая к расширению полосы сигнала для улучшения разрешающей способности.

При цифровой обработке сигналов вследствие теоремы Котельникова для восстановления принятого эхо-сигнала требуется формирование двух отсчетов цифрового сигнала на элемент разрешения [2, с. 187], то есть , td - период дискретизации сигнала, - ширина спектра сигнала. Что является предельным случаем теоремы Котельникова, и координата цели по дальности будет определяться с точностью до элемента разрешения. Как показано в [3, с. 51], использование низкой частоты дискретизации повышает уровень боковых лепестков сжатого в согласованном фильтре эхо-сигнала и ухудшает элемент разрешения по дальности.

Традиционными методами измерения дальности являются измерение по переднему фронту импульса, то есть измерение пересечения передним фронтом импульса некоторого порогового уровня [4, с. 555], либо измерение при использовании селектирующих сигналов и согласованных фильтров [4, с. 556]. Однако данные хорошо известные методы не учитывают особенностей сигналов в РЛС при их дискретизации.

Увеличение точности определения дальности может быть достигнуто применением способов сверхразрешения [например, 5, с. 139-147], однако данные методы требуют знания большого количества априорной информации о сигнале, которая в реальных условиях может отсутствовать.

В качестве прототипа заявляемого способа обработки сигналов выбран медианный метод оценки времени задержки сигнала [6, с. 164]. Для реализации данного метода на устройство сравнения подаются функция огибающей сигнала U(t) от цели по дальности и функция двух сомкнутых стробов u(t-t0), асимметричных по отношению к точке t0 (фиг. 1). Далее производится сравнение площадей S1 и S2 под U(t).

Медианной оценке времени задержки сигнала по дальности соответствует положение t0, при котором S1-S2=0. Недостатком данного метода является уменьшение точности измерения при уменьшении частоты дискретизации принимаемых колебаний в соответствии с обобщенной теоремой Котельникова.

Ранние источники утверждают [7, с. 99], что повысить точность измерения дальности до цели можно, используя информацию, содержащуюся в сигнале высокой частоты. Однако данная информация редко используется из-за возникающей неоднозначности измерений.

Смещение цели относительно РЛС по дальности характеризуется непрерывным изменением фазы сигнала. Изменение фазы принимаемых колебаний на 2π означает, что расстояние до цели изменилось на величину, равную длине волны зондирующего сигнала λ. При цифровой обработке сигнала максимально возможная точность измерения дальности определяется расстоянием Δl, соответствующим периоду дискретизации . То есть , где - частота дискретизации сигнала, причем изменение дальности до цели на расстояние меньшее Δl невозможно отследить. Определить изменение фазы сигнала при его перемещении на расстояние Δl можно, используя соотношение:

где k=2π/λ - волновое число, - центральная частота зондирующего сигнала.

Величина φΔl показывает смещение фазы сигнала при изменении задержки отраженного от цели сигнала на dt, при этом сама форма дискретного сигнала также изменится. Фаза принимаемых колебаний определяется расположением цели по дальности. Для измерения дальности до цели с точностью выше Δl сформируем опорный сигнал в дискретные моменты времени, совпадающие с выборками АЦП, огибающая которого повторяет форму огибающей зондирующего сигнала, начальная фаза высокочастотного заполнения с частотой равна 0. Значит, вычисляя разность фаз Δφ опорного сигнала (с нулевой фазой) и сигнала, отраженного от цели, истинное положение которого соответствует временной задержке между двумя соседними дискретными выборками сигнала, можно определить смещение принятого сигнала внутри интервала dt.

Для измерения удобно использовать схему измерения разности фаз Δφ, аналогичную описанной в [8, с. 373], тогда Δφ будет вычисляться по формуле:

где суммирование производится по n дискретным выборкам сигналов, s1 - опорный сигнал, s2 - эхо-сигнал от цели, выражение соответствует преобразованию Гильберта сигнала s2. То есть величина Δφ дает поправку к координате цели по дальности относительно измеренной дальности до цели. Разность фаз Δφ определяет разность хода двух электромагнитных колебаний, длина волны λ которых известна, поэтому поправка к дальности Δr вычисляется по формуле:

.

Техническим результатом является повышение точности измерения дальности цели с помощью вычисления поправки к дальности Δr, позволяющей избежать ошибок, связанных с временной дискретизацией сигнала.

Для обнаружения сигнала по дальности, как правило, используется фильтр, согласованный с опорным сигналом, максимизирующий ОСШ. Рассмотрим преобразование в таком фильтре двух отраженных от цели простых гармонических сигналов, дискретизованных по времени и сдвинутых по фазе относительно друг друга на 50°. Как видно на фиг. 2а, фазовые структуры корреляционных функций данных сигналов с опорным различны, но в результате усреднения данных функций для измерения дальности (фиг. 2б) получим максимумы функций, совмещенные в одной временной выборке, то есть на одной дальности.

Автокорреляционная функция опорного сигнала дает нам сигнал без сдвига на измеренной дальности, относительно которого измеряется поправка Δφ в соответствии с формулой (2). На фиг. 3 показан график зависимости ошибки измерения разности фаз от разности фаз двух сигналов. Как видно из графика, при больших ОСШ ошибка измерения разности фаз незначительна.

В пересчете на поправку Δr с ОСШ=20 дБ (фиг. 4) дисперсия ошибки измерения дальности составляет порядка 0,05 м. Измерение дальности только амплитудным методом по максимуму корреляционной функции при выбранной ширине спектра зондирующего сигнала Δf=30 МГц дает точность измерения, равную δr≈0,5 м, согласно (1). То есть использование измерения разности фаз повышает точность измерения дальности в 10 раз.

Для уточнения координаты цели по дальности фазовым методом необходимо учитывать соотношение размеров одного интервала между дискретными выборками сигнала по дальности и длины волны сигнала. Однозначное измерение фазы возможно при соблюдении условия φΔl<π/2, которое, используя соотношение (1), можно переписать в виде:

В случае, когда изменение фазы отраженного от цели сигнала при перемещении на расстояние, соответствующее одной дискретной выборке, превышает π/2, то есть условие (4) не выполняется, могут возникнуть аномально большие ошибки измерения дальности, что проявляется в перескоке фазы на π (фиг. 5). При известных параметрах сигнала максимальная разность фаз при переходе от выборки к выборке вычисляется по формуле (2), что позволяет учитывать подобные ошибки адаптивно.

Таким образом, выбор частоты дискретизации необходимо осуществлять для конкретных параметров сигнала. Рассмотрим зависимость ошибки измерения разности фаз сигналов для выбранной разности фаз, равной 20° от частоты дискретизации (фиг. 6). По данному графику можно определить интервалы частот дискретизации, при которых разность фаз измеряется наиболее точно. Более того, существуют интервалы, на которых измеренная фаза отличается от реальной знаком, то есть при изменении знака аргумента функции arctg() формулы (3), точное измерение фазы сигналов также возможно.

Сохранение фазовой структуры сигнала с целью дальнейшего уточнения координаты цели по дальности возможно при соблюдении условия выбора частоты дискретизации сигнала (4). Данное условие не соответствует условию обобщенной теоремы Котельникова, так как сильное влияние наложения спектров в значительной степени искажает фазовую структуру сигнала. Тем не менее, для частот дискретизации от и более с использованием соответствующей обработки для конкретных параметров сигнала можно смягчить данное условие. В результате, применяя фазовый метод уточнения координаты цели по дальности при больших ОСШ, можно повысить точность измерения дальности в 10 раз по сравнению с медианным методом измерения дальности, что особенно важно при определении координат цели в ближней радиолокации, где требования к точности измерения координат высоки.

Литература:

1. Бартон Д. Радиолокационные системы. М.: Военное издательство, 1967, 480 с.

2. Антипов В.Н., Горяинов В.Т., Кулин А.Н. и др. Радиолокационные станции с цифровым синтезирванием апертуры антенны. М.: Радио и связь, 1988, 304 с.

3. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: Радио и связь, 1986. 352 с.

4. Сколник М. Введение в технику радиолокационных систем. М: Мир, 1965, 748 с.

5. Чижов А.А., Лебедев А.С., Курочкин А.Н. Экспериментальные исследования эффективности проекционного метода сверхрэлеевского разрешения // Вопросы радиоэлектроники, серия РЛТ, выпуск 1, 2011, 139-147 сс.

6. Кузьмин С.З. Цифровая радиолокация. Киев: КВiЦ, 2000, 428 с.

7. Вудворд Ф.М. Теория вероятностей и теория информации с применениями в радиолокации. М.: Советское радио, 1955, 128 с.

8. Бурдик B.C. Анализ гидроакустических систем. Ленинград: Судостроение, 1988, 392 с.

Способ измерения дальности цели в ближней радиолокации, в котором принятые в радиолокационной станции колебания дискретизуют в аналого-цифровом преобразователе, затем выделяют огибающую принятого сигнала с большим отношением сигнал-шум, далее определяют временную задержку принятого сигнала с точностью до периода дискретизации, которая определяет дальность до цели, отличающийся тем, что формируют опорный сигнал, смещенный на время, соответствующее полученной временной задержке, после чего вычисляют разность фаз принятого сигнала и опорного, полученное значение пересчитывают в поправку к дальности относительно первоначально измеренного значения дальности до цели.



 

Похожие патенты:

Изобретение относится к радиолокации и дальнометрии и может быть использовано в высокоточных радиолокационных и лазерных дальномерах, а в частности, в радиовысотомерах, автомобильных радарах безопасности, геодезических тахеометрах и 3-D сканнерах.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - увеличение помехоустойчивости устройства.

Изобретение относится к радиолокации и может быть использовано в бортовых радиовысотомерах. Достигаемый технический результат - повышение точности за счет снижения флюктуационной ошибки измерения высоты.

Изобретение относится к радиолокации протяженных целей и может быть использовано в бортовых радиовысотомерах. Достигаемый технический результат - обеспечение требуемой точности измерения при сниженных соотношениях сигнал : шум.

Изобретение относится к блоку радарного датчика обратного хода, используемого для автомобиля. Блок радарного датчика обратного хода содержит датчик, демпфирующее резиновое кольцо, размещенное на периферийной части датчика, основную крышку для приема передней части датчика и демпфирующего резинового кольца и верхнюю крышку.

Изобретение относится к области радиолокации. Достигаемый технический результат - увеличение точности определения дальности до места швартовки.

Изобретение относится к области радиолокационной техники. Способ заключается в проведении трехэтапных измерений: на первом этапе вычисляют грубое (предварительное) значение дальности до поверхности земли, на втором этапе вычисляют точное (окончательное) значение дальности до поверхности земли, на третьем этапе для подтверждения результатов точного измерения дальности используют скользящее окно, которое представляет собой n1  селектирующих импульсов, причем n1<<n и n1 - нечетное число, а временное положение центрального селектирующего импульса из n1 соответствует временному положению опорного сигнала с задержкой, равной длительности временного интервала, соответствующего точному (окончательному) значению временной задержки.

Изобретение может быть использовано для предупреждения о возможности попадания летательного аппарата (ЛА) в зону вихревого следа. Сущность изобретения состоит в том, что заявленный способ характеризуется осуществлением передачи данных «борт-борт» и «борт-система управления воздушным движением (УВД)» в радиовещательном режиме и/или в режиме «точка-точка» с передачей информации каждым ЛА (ЛА-генератором) о параметрах создаваемого им вихревого следа, получаемых путем измерений и/или расчета в самолетной системе координат ЛА-генератора, приемом этой информации каждым другим ЛА и/или системой УВД (далее абоненты), находящихся в зоне доступности передатчика соответствующего ЛА-генератора, последующим расчетом в системе координат ЛА-абонентов последствий воздействия вихревого следа и анализом этой информации ЛА-абонентами, причем в передаваемую информацию ЛА-генератора включают такие данные в самолетных координатах этого ЛА, как местоположение ЛА-генератора и категорию его передатчика, скорость и курс ЛА-генератора, его вес и время передачи им информации, данные турбулентности атмосферы, скорость и направление ветра, температуру и барометрическое давление, а принимающие информацию ЛА-абоненты оценивают возможность прохождения зоны создаваемого ЛА-генератором вихревого следа, и, в случае необходимости, проводят измерения характеристик атмосферы, и/или учитывают поступающие от системы УВД данные, необходимые для соответствующего расчета вихревого следа, и/или учитывают характеристики атмосферы с учетом изменчивости порывов ветра и/или турбулентности, при этом параметры вихревого следа определяют с учетом сноса вихревого следа, в том числе с учетом влияния стохастических атмосферных воздействий, например порывов ветра и/или турбулентности.

Изобретение относится к области радиолокации и может быть использовано в системах поиска и слежения за воздушными объектами. .

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности до поверхности земли, использующих принцип отражения радиоволн (радиодальномеры или дальномеры).

Изобретение относится к области радиолокации и может быть использовано в бортовых навигационных системах. Достигаемый технический результат - повышение устойчивости и точности измерения составляющих вектора путевой скорости летательного аппарата над гладкой водной поверхностью. Указанный результат достигается за счет того, что радиовысотомерная система (РВС) с адаптацией к гладкой водной поверхности содержит быстродействующий широкополосный усилитель с определенными взаимосвязями и логикой применения в составе РВС, излучающей в направлении подстилающей поверхности и принимающей отраженные от подстилающей поверхности короткие пакеты радиоимпульсов, которые в приемнике преобразуются в биполярные видеоимпульсы, флюктуирующие по амплитуде с частотой, определяемой доплеровским сдвигом частоты сигналов, а составляющие вектора путевой скорости определяются по максимуму взаимно-корреляционной функции пространственно разнесенных между собой отраженных от подстилающей поверхности сигналов, принимаемых разнесенными антеннами, расположенными на летательном аппарате с учетом геометрии антенной системы. 13 ил.

Изобретение относится к области радиолокационной техники и может быть применено при построении высотомеров малых высот летательных аппаратов, использующих в качестве зондирующих сигналов сверхкороткие импульсы. Достигаемый технический результат - повышение быстродействия, разрешающей способности и экономичности способа определения дальности до отражающей поверхности с использованием сверхкоротких импульсов. Сущность способа заключается в излучении в направлении отражающей поверхности радиоволн в виде сверхкоротких импульсов и последующем приеме отраженных радиоволн в виде импульсов, небольшую часть излучаемых сверхкоротких импульсов и отраженные импульсы квантуют по амплитуде, укорачивают по длительности, далее используют широкополосную дисперсионную задержку квантованных по амплитуде и укороченных по длительности излучаемых и отраженных импульсов, с помощью которой преобразуют каждый из них в линейно-частотно-модулированные сигналы равной длительности, и по сигналу биений разностной частоты этих линейно-частотно-модулированных сигналов определяют дальность до отражающей поверхности, при этом длительность линейно-частотно-модулированных сигналов превышает максимальную задержку отраженного сигнала. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокационной техники и может быть использовано при создании бортовых датчиков обнаружения цели на заданных дальностях с использованием сверхширокополосных шумовых сигналов. Достигаемый технический результат – высокие показатели быстродействия, диапазона дальностей, энергетического потенциала, а также однозначность обнаружения цели на заданной дальности. Указанный результат достигается за счет того, что способ обнаружения цели на заданной дальности сверхширокополосной шумовой радиолокационной станцией с обработкой сигналов методом двойного спектрального анализа отраженного сигнала включает параллельный спектральный анализ спектра суммарного сигнала, образованного сложением отраженного от цели сигнала с опорным сигналом в виде части излучаемого сигнала, при этом для параллельного спектрального анализа спектра суммарного сигнала используют многоканальную параллельную фильтрацию на частотах максимумов и минимумов спектра суммарного сигнала, причем решение о нахождении цели на заданной дальности принимают по наличию сигналов на выходе всех спектральных каналов, соответствующих максимумам спектра суммарного сигнала, и отсутствию их на выходе всех каналов, соответствующих минимумам спектра суммарного сигнала. 3 з.п. ф-лы, 10 ил.

Изобретение относится к измерению дальности космического аппарата (КА), расположенного на геостационарной орбите. Достигаемый технический результат – повышение точности измерения дальности КА. Указанный результат достигается за счет того, что система измерения дальности КА состоит из приемопередатчика космического аппарата и наземного комплекса управления (НКУ), содержащего персональный компьютер оператора, мультиплексор/кодер, передатчик, антенный пост, приемник, время-измерительный узел, опорный генератор, узел постоянной памяти команд и узел постоянной памяти дальномерных последовательностей, элемент ИЛИ, коррелятор со схемой поиска и узел усреднения, выход которого является выходом системы, причем первый выход персонального компьютера оператора соединен с узлом постоянной памяти команд и первым входом элемента ИЛИ, второй выход персонального компьютера оператора соединен с узлом постоянной памяти дальномерных последовательностей и вторым входом элемента ИЛИ, первый вход коррелятора со схемой поиска соединен с выходом мультиплексора/кодера, второй вход коррелятора со схемой поиска соединен с выходом приемника, выход коррелятора со схемой поиска соединен со вторым входом время-измерительного узла, третий вход время-измерительного узла соединен с выходом элемента ИЛИ, выход измерительного узла соединен с входом узла усреднения, выход мультиплексора/кодера соединен с входом передатчика, выход которого соединен с входом антенного поста, выход которого соединен с приемником, приемопередатчик КА соединен двумя радиолиниями с антенным постом, опорный генератор соединен с первым входом время-измерительного узла. 1 ил.

Изобретение относится к области радиолокации, а именно к гомодинным радиолокаторам. Достигаемый технический результат - уменьшение динамического диапазона принимаемых сигналов, а также упрощение радиолокатора. Указанный результат достигается за счет того, что гомодинный радиолокатор содержит приемно-передающую антенну, генератор зондирующего сигнала, циркулятор, смеситель, усилитель, амплитудный модулятор, генератор функции временного окна, усилитель с квадратурной амплитудно-частотной характеристикой, определенным образом соединенные между собой. 5 ил.

Изобретение относится к технике первичных дальностных измерений импульсно-доплеровских радиолокационных станций (ИД РЛС). Достигаемый технический результат - повышение помехоустойчивости первичной дальнометрии обнаруженной одиночной либо не разрешаемой по углу и скорости группы рассредоточенных по дальности целей, которые предварительно обнаружены на фоне интенсивных пассивных помех (ПП) с узкополосным энергетическим спектром, например отражений от подстилающей поверхности земли, местных предметов и малоскоростных метеообразований. Указанный результат достигается использованием в измерительном цикле зондирования адаптированных к фоноцелевой обстановке квазинепрерывных сигналов с оптимизированными параметрами модуляции и характеристиками приемообработки локационных сигналов. Благодаря этому обеспечивается типовая для ИД РЛС эффективная доплеровская селекция целей на фоне ПП с возможностью их первичной дальнометрии за один-два цикла зондирования с точностью, соизмеримой с точностью дальностных измерений нониусным методом с многократным перебором используемых частот повторения импульсов. 3 з.п. ф-лы, 7 ил.

Изобретение относится к области радиолокации и радионавигации. Достигаемый технический результат - увеличение диапазона однозначного измерения дальности за счет выбора некратных периодов повторения псевдослучайных последовательностей, который определяется как наименьшее общее кратное произведений числа символов одной последовательности на тактовую частоту другой. Сущность изобретения заключается в использовании сигнала с квадратурным уплотнением, синфазная и квадратурная компоненты которого манипулируются по фазе двоичными псевдослучайными последовательностями с различными периодами повторения.

Изобретение относится к радионавигации и может быть использовано для определения пространственных координат (ПК) объектов, стационарных или подвижных, и управления их движением в локальных зонах навигации. Достигаемый технический результат - обеспечение однозначного определения ПК без привлечения дополнительной информации. Указанный результат достигается за счет того, что системой n-х наземных станций передают радиосигналы в виде двух гармонических колебаний с соответственно заданными частотами и . Радиосигналы синхронизированно формируют заданным образом в едином центре в системе отсчета времени, связанной с ним, и передают по линиям связи на каждую станцию. При формировании и передаче радиосигналов обеспечивают выполнение заданных в способе условий. На объекте осуществляют прием совокупности аналоговых радиосигналов и преобразуют ее в соответствующую ей цифровую совокупность, каждый цифровой сигнал которой содержит две цифровые составляющие и . Для каждой из этих составляющих формируют квадратурные им цифровые компоненты и . По парам цифровых компонент и определяют в системе отсчета времени, связанной с объектом, моменты времен приема различных n-х радиосигналов и разности моментов времен приема различных двух n-х радиосигналов. По этим разностям и известным на объекте координатам фазовых центров антенн станций однозначно определяют относительные дальности до объекта от указанных фазовых центров антенн станций и по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.
Наверх