Способ получения магнитной жидкости

Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. При получении магнитной жидкости из оксидгидроксида железа (III) или гетита и олеиновой кислоты в среде алкенов при 300°С синтезируют олеат железа (III). Полученный олеат железа (III) декарбоксилируют при температуре 300-340°С с получением наночастиц магнетита, покрытых стабилизатором углеводородом в среде алкена. В качестве алкенов используют гептадецен-1 или октадецен-1. Изобретение позволяет повысить устойчивость магнитной жидкости до 6 месяцев. 3 пр.

 

Изобретение относится к области получения магнитных жидкостей. Магнитные жидкости (коллоидные дисперсные системы), благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и находят применение в различных областях техники: при создании магнитно-жидкостных уплотнений вращающихся валов, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине.

Получение магнитных жидкостей состоит из двух основных операций. 1. Получение наночастиц магнетита. 2. Стабилизация наночастиц магнетита в дисперсионной среде с использованием стабилизирующего вещества, предотвращающего агрегирование и оседание наночастиц магнетика.

Известен способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+- избытком щелочи (NaOH и NH4OH) [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, Институт АН Латвийской ССР, 1980. - С. 21-28]. Осадок магнетита промывают декантацией от избытка щелочи и удаления солей до достижения рН 7. Полученный магнетит обладает нужной дисперсностью, легко стабилизируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор - ПАВ. В качестве дисперсионной среды используется керосин, в качестве стабилизатора - олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя.

Известен способ получения магнитной жидкости, включающий образование суспензии наночастиц магнетита, покрытие поверхности наночастиц магнетита адсорбированным слоем олеиновой кислоты в качестве стабилизирующего вещества, подогрев суспензии наночастиц магнетита с адсорбированным на них слоем стабилизирующего вещества, отделение от суспензии фракции, содержащей стабилизированные магнитные частицы в керосине в качестве жидкости-носителя, причем в качестве источника двух- и трехвалентного железа для получения суспензии наночастиц магнетита используют природный магнетит следующего химического состава: Feoбщee=65,6%, FeO=26,7%, F2O3=63,4, МnOмакс=0,11%, СаOмакс=0,60%, MgOмакс=0,8%, Al2O3макс=0,40%, Sмакс=0,15%, P2O5макс=0,025%, SiO2макс=7,75%, Na2Oмaкc=0,063%, К2Омакс=0,063%, предварительно растворенный в соляной кислоте и переосажденный 28%-ным гидроксидом аммония (Патент РФ на изобретение 2391729, МПК 6 H01F 1/44, C01G 49/08, C09G 1/04).

Недостатки данного способа получения магнитной жидкости таковы. Во-первых, магнитная жидкость обезвоживается не полностью. Часть воды остается в керосине. Она эмульгируется олеиновой кислотой, остается на поверхности магнетита. Во-вторых, хемосорбция олеиновой кислоты плохо удерживает стабилизатор на поверхности наночастиц магнетита. Поэтому наблюдается недостаточная стабилизация дисперсии.

Технической задачей изобретения является улучшение стабилизации дисперсии. Технический результат достигается с помощью «сухого» способа получения магнитной жидкости. Технический результат достигается тем, что в способе получения магнитной жидкости, включающем образование наночастиц магнетита, покрытие поверхности наночастиц магнетита стабилизирующим веществом в среде углеводорода, согласно изобретению из оксидгидроксида железа(III) и олеиновой кислоты при 300°С в среде алкенов получают олеат железа (III), в качестве алкенов используют гептадецен-1 или октадецен-1, затем олеат железа (III) декарбоксилируют при температуре 300-340° для получения наночастиц магнетита, покрытых стабилизатором углеводородом в дисперсионной среде углеводорода.

Оксидгидроксид железа (III) или минерал гетит и олеиновую кислоту смешивают с алкеном (октадеценом-1 или гептадеценом-1), постепенно нагревают до 300°С. Получают олеат железа по реакции

FeO(ОН)+3СН3-(СН2)7-СН=СН-(СН2)7СООН=[СН3-(СН2)7-СН=СН-(СН2)7СОО]3Fe+2H2O.

Цвет гетита желтый, охряно-желтый, желто-бурый, бурый. Поэтому и цвет раствора олеата железа будет примерно такого же цвета, как гетит.

После этого повышают температуру до 320-340°С и проводят реакцию декарбоксилирования олеата железа по схеме

n[СН3-(СН2)7-СН=СН-(СН2)7СОО]3Fe=(Fe3O4)n-[СН2-(СН2)7-СН=СН-(СН2)6СН3]m+9CO2.

Получают наночастицы магнетита в алкене, покрытые алкеном. Магнетит черного цвета. По изменению цвета дисперсии можно ориентировочно наблюдать завершение реакции. Вода при такой высокой температуре 320-340°С испаряется из зоны реакции. Такая дисперсия не расслаивается в течение полугода. Разбавление керосином не влияет на длительность расслаивания.

Изобретение иллюстрируется примерами.

Пример 1. Смесь 0,36 г гетита 7,0 г олеиновой кислоты и 8,0 г октадецена-1 помещают в двухгорлую колбу с термометром, конденсатором, магнитной мешалкой и нагревают 30 мин при 300°С до полного растворения порошка гетита. Затем повышают температуру до 340°С и декарбоксилируют 1 час до появления черной дисперсии магнетита. Размеры и форму наночастиц порошка магнетита определяли с помощью просвечивающей электронной микроскопии с использованием микроскопа фирмы JEOL JEM-1011 при ускоряющем напряжении 100 кВ. Их диаметр был в пределах 10,2-15,0 нм. Фазовый анализ выполняли рентгеновским порошковым дифрактометром GBC EMMA. На дифрактограмме зафиксированы пики только магнетита. Дисперсия была устойчивой в течение 6 месяцев.

Пример 2. Смесь 0,4 г гетита 5 г олеиновой кислоты и 10,0 г гептадецена-1 помещают в двухгорлую колбу с термометром, конденсатором, магнитной мешалкой и нагревают 20 мин при 300°С до полного растворения порошка гетита. Затем повышают температуру до 320°С и декарбоксилируют 45 мин до появления черной дисперсии магнетита. Размеры и форму наночастиц порошка магнетита определяли с помощью просвечивающей электронной микроскопии с использованием микроскопа фирмы JEOL JEM-1011 при ускоряющем напряжении 100 кВ. Их диаметр был в пределах 10,1-12,2 нм. Фазовый анализ выполняли рентгеновским порошковым дифрактометром GBC EMMA. На дифрактограмме зафиксированы пики только магнетита. Дисперсия была устойчивой в течение 6 месяцев.

Пример 3. Получают магнитную жидкость известным способом (Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. - В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, Институт АН Латвийской ССР, 1980. - С. 21-28). Устойчивость такой магнитной жидкости 25 дней.

Таким образом, хемосорбция олеиновой кислоты через слой гидратированных наночастиц магнетита в мокром способе меняется в на ковалентную связь углеводорода с наночастицами магнетита в сухом способе. Поэтому устойчивость магнитной жидкости значительно улучшается.

Способ получения магнитной жидкости, включающий образование наночастиц магнетита, покрытие поверхности наночастиц магнетита стабилизирующим веществом в среде углеводорода, отличающийся тем, что из оксидгидроксида железа (III) и олеиновой кислоты в среде алкенов при 300°С получают олеат железа (III), который декарбоксилируют при температуре 300-340°С для получения наночастиц магнетита, покрытых стабилизатором углеводородом в среде алкена, в качестве которого используют гептадецен-1 или октадецен-1.



 

Похожие патенты:

Изобретение относится к области металлургии. Для уменьшения потерь энергии в трансформаторах во время работы получают лист электротехнической текстурированной стали, имеющий характеристики потерь в железе в диапазоне возбуждения от 1,5 до 1,9 Тл, в котором вблизи областей линейных деформаций сформировано остаточное напряжение 150 МПа или более, причем каждая такая область имеет протяженность на 300 мкм или менее в направлении прокатки и на 42 мкм или более в направлении толщины листа, а области линейных деформаций сформированы периодически с интервалами от 2 мм до 10 мм в направлении прокатки.

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств.

Изобретение относится к области получения магнитотвердых материалов, которые могут быть использованы в электротехнике и машиностроении. Предложенный способ получения магнитотвердого соединения Sm2M17Nx позволяет увеличить коэрцитивную силу (Hc) и температуру Кюри (Тс) конечного продукта, что является техническим результатом изобретения.

Изобретение относится к области металлургии. Для снижения потерь и отклонений значений потерь в электротехнической текстурированной стали способ изготовления листа включает горячую прокатку сляба из стали, содержащей, мас.%: С: 0,002-0,10, Si 2,0-8,0 и Mn 0,005-1,0 для получения горячекатаного листа, при необходимости отжиг в зоне горячих состояний, однократную, двукратную или многократную холодную прокатку горячекатаного стального листа с промежуточным отжигом между ними с получением листа конечной толщины, обезуглероживающий отжиг холоднокатаного листа в сочетании с отжигом первичной рекристаллизации, нанесение отжигового сепаратора на поверхность стального листа и окончательный отжиг, причем в процессе нагрева под обезуглероживающий отжиг проводят быстрый нагрев со скоростью не менее 50°C/с в диапазоне 200-700°C с выдержкой при температуре 250-600°C в течение 1-10 с.

Изобретение относится к изготовлению редкоземельного магнита. На первом этапе получают прессованную порошковую деталь из порошка, включающего в себя основную фазу RE-Fe-B, где RE является по меньшей мере одним из элементов Nd и Pr, и фазу межзеренной границы вокруг основной фазы в виде сплава RE-X, где X является металлом.

Способ получения ферромагнитной жидкости включает растворение в воде двойной соли железа - соли Мора, с последующим парциальным окислением раствора перекисью водорода до соотношения Fe3+:Fe2+=1,7-2:1 из расчета 2,7-3 моль Fe2+/моль H2O2, контроль ведут при помощи окислительно-восстановительного электрода Fe2+/Fe3+.

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi3/C. Техническим результатом является получение нанокомпозита FeNi3/C, содержащего наночастицы FeNi3 с размером от 12 до 85 нм.

Изобретение относится к области металлургии. Для сокращения потерь W17/50 Вт/кг в сердечнике используют сляб, имеющий заданный состав, содержащий Sn от 0,02 до 0,20 мас.% и Р от 0,010 до 0,080 мас.%.

Изобретение относится к области электротехники, а именно к оксидному керамическому материалу с анизотропным магнитодиэлектрическим эффектом, т.е. к материалу, диэлектрической проницаемости которого может изменяться под действием внешнего магнитного поля.

Изобретение относится к области металлурги. Для повышения магнитных свойств нетекстурированной кремнистой стали осуществляют выплавку стали в конверторе, при этом температура Т расплавленной стали во время выпуска из конвертера при выплавке, содержание углерода [С] в стали и содержание свободного кислорода [О] удовлетворяют следующей формуле: 7,27·103≤[О][С]е(-5000/Т)≤2,99·104.
Изобретение может быть использовано в сельском хозяйстве. Для приготовления раствора для подкормки плодовых деревьев готовят исходный раствор смешением раствора FeSO4 с раствором перекиси водорода.

Изобретение может быть использовано в неорганической химии. Магнитоактивное соединение получают путем конденсации из растворов соли железа(II) и окислителя при их смешении и добавлении щелочного реагента.

Изобретение может быть использовано в химической технологии. Магнитоактивное соединение получают путем конденсации из растворов сульфата или хлорида железа (II) и окислителя при их смешении.

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта.

Изобретение может быть использовано при получении тераностических композиций для гипертермического лечения и/или диагностики опухолей с помощью магнитно-резонансной томографии.
Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза.

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине.

Изобретение относится к получению биосовместимых магнитных наночастиц и может быть использовано для терапевтических целей, в частности для борьбы с раком. Способ получения наночастиц, включающих оксид железа и кремнийсодержащую оболочку и имеющих значение удельного коэффициента поглощения (SAR) 10-40 Вт на г Fe при напряженности поля 4 кА/м и частоте переменного магнитного поля 100 кГц, содержит следующие стадии: А1) приготовление композиции по меньшей мере одного железосодержащего соединения в по меньшей мере одном органическом растворителе; В1) нагрев композиции до температуры в диапазоне от 50°C до температуры на 50°C ниже температуры реакции железосодержащего соединения согласно стадии С1 в течение минимального периода 10 минут; С1) нагрев композиции до температуры между 200°C и 400°C; D1) очистку полученных частиц; Е1) суспендирование очищенных наночастиц в воде или водном растворе кислоты; F1) добавление поверхностно-активного соединения в водный раствор, полученный согласно стадии E1); G1) обработку водного раствора согласно стадии F1) ультразвуком; H1) очистку водной дисперсии частиц, полученных согласно стадии G1); I1) получение дисперсии частиц согласно стадии H1) в смеси растворителя из воды и растворителя, смешивающегося с водой; J1) добавление алкоксисилана в дисперсию частиц в смеси растворителя согласно стадии I1); и К1) очистку частиц.

Изобретение относится к способам получения магнитоактивных соединений. .

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).

Изобретение относится к области металлургии. Стальной сляб, содержащий, мас.%: С 0,001- 0,10, Si 1,0 - 5,0, Mn 0,01- 0,5, S и/или Se 0,01- 0,05, раств. Al 0,003- 0,050 и N 0,0010-0,020%, подвергают горячей прокатке, однократной, двукратной или многократной холодной прокатке, при необходимости промежуточному отжигу между ними для получений холоднокатаного листа окончательной толщины. Проводят первичный рекристаллизационный отжиг холоднокатаного листа при нагреве в диапазоне температур от 550°C до 700°C со средней скоростью 40- 200°C/с, при этом в какой-либо зоне температур от 250°C до 550°C со скоростью нагрева не более 10°C/с в течение 1 - 10 секунд, затем наносят отжиговый сепаратор и осуществляют окончательный отжиг, в результате чего достигается измельчение зерна вторичной рекристаллизации и стабильно получается лист текстурированной электротехнической стали с низкими потерями в железе. 1 з.п. ф-лы, 2 табл., 3 ил.
Наверх