Стеклокристаллический материал

Изобретение относится к производству высокотемпературных радиопрозрачных стеклокристаллических материалов в бесщелочной магнийалюмосиликатной системе с оксидами титана и циркония в качестве катализатора кристаллизации. Технический результат изобретения - повышение температуры деформации при сохранении высокой радиопрозрачности, низкого значения ТКЛР и температуры варки. Стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, дополнительно содержит нанопорошок или гидрозоль бинарного соединения TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2·ZrO2 в виде нанопорошка или гидрозоля TiO2·ZrO2 - 1,7-8,2. Температура варки стекла составляет (1550±10)°C, максимальная температура кристаллизации (1250-1320)°C. 2 табл.

 

Изобретение относится к производству радиопрозрачных стеклокристаллических материалов (ситаллов) в бесщелочной магнийалюмосиликатной системе с повышенной температурой деформации (выше 1300°C), низким тепловым расширением и термостабильностью свойств в рабочем интервале температур эксплуатации изделий для авиакосмической и ракетной техники.

Известны стеклокристаллические материалы, используемые для аналогичных целей, в частности, стронцийаннортитовые ситаллы (Патент RU 2440936, МПК C03C 10/14. Радиопрозрачный стеклокристаллический материал для авиационной техники. П.Д. Саркисов, Л.А. Орлова, Н.Ю. Михайленко и др. РХТУ им. Д.И. Менделеева). Данные материалы характеризуются повышенной температурой деформации, термостабильностью свойств в диапазоне температур 20-1200°C. Недостатком стронцийанортитовых ситаллов является высокое значение диэлектрической проницаемости (более 8 на частоте 1010 Гц) и высокий ТКЛР (49-54·10-7К-1).

В работе G. Carl, T. Hoche. Crystallisation behavior of a MgO-Al2O3-SiO2-TiO2-ZrO2 glass // Phys. and Chem. of Glasses. 2002. V.43C. P. 256-258 приведены стеклокристаллические материалы в магнийалюмосиликатной системе, в составе которых проведена частичная замена катализатора TiO2 на ZrO2, поскольку комбинация этих оксидов оказывает эффективное воздействие на процессы нуклеации и кристаллизации стекол, обеспечивая при термообработке получение материалов с объемной тонкодисперсной кристаллизацией и повышенными термическими и механическими свойствами. Недостатком этих составов являются повышенные температуры варки (выше 1580°C) и сложность формования изделий из-за повышенной температуры верхнего предела кристаллизации.

Наиболее близкими к заявляемому изобретению по химическому составу являются кордиеритовые стеклокристаллические материалы на основе системы SiO2-Al2O3-MgO-TiO2 (Патент RU 2374190, МПК C03C 10/08. Стеклокристаллический материал. ФГУП «Технология»), содержащие следующие компоненты, мас.%: SiO2 - 43,8-52,5; Al2O3 - 24,6-30,2; MgO - 9,3-11,9; TiO2 - 8,8-12,9; As2O3 - 0,1-1,9; ZnO - 0-1,5, CeO2 - 0-2,5, фторопол - 0,1-7,5. Данный материал характеризуется низкими значениями диэлектрической проницаемости и ТКЛР: 8 на частоте 1010 Гц - 6,3-7,6; ТКЛР в интервале температур 20-900°C - 20-30·10-7 К-1 и термостабильностью основных параметров во всем диапазоне рабочих температур.

Недостатками прототипа являются относительно низкая рабочая температура, не превышающая 1200°C, наличие в составе экологически нежелательного фторсодержащего компонента - фторопола в количестве 0,1-7,5 мас.% и высокотоксичного оксида мышьяка в количестве 0,1-1,9 мас.%.

Техническим результатом настоящего изобретения является создание высокотемпературных радиопрозрачных стеклокристаллических материалов, имеющих низкие значения ТКЛР, высокую радиопрозрачность на СВЧ частотах и повышенную по сравнению с прототипом температуру деформации (1300-1350)°C при сохранении температуры варки, не превышающей 1550°C, и высокой стабильности основных свойств в рабочем интервале температур.

Технический результат достигается тем, что стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, дополнительно содержит бинарное соединение TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2 ZrO2 - 1,7-8,2, причем бинарное соединение TiO2·ZrO2 вводят в шихту в виде нанопорошка или гидрозоля.

Исследование каталитического воздействия TiO2+ZrO2 на природу первично выделяющихся кристаллических фаз показало, что при концентрации ZrO2 3-5% на начальной стадии выделяется твердый раствор на основе шрилан-кита TiO2 ZrO2, катализирующий выделение основных силикатных фаз. В связи с этим целесообразно было вводить в шихту нанопорошок или гидрозоль бинарного соединения TiO2·ZrO2, выступающего в роли инициатора объемной тонкодисперсной кристаллизации.

Авторами установлено, что сочетание компонентов в заявляемом соотношении и введение в состав шихты каталитических добавок оксидов титана и циркония в виде нанопорошка или водного высококонцентрированного золя двойного соединения TiO2·ZrO2, обеспечивает получение радиопрозрачного стеклокристаллического материала с повышенной температурой деформации и низкими значениямИ ТКЛР и диэлектрической проницаемости.

Причина повышения температуры деформации заявляемого стеклокристаллического материала объясняется частичной заменой оксида титана на более высокотемпературный оксид циркония. Снижение температуры варки кордиеритового стекла, несмотря на присутствие в нем ZrO2, определяется введением его в шихту в виде наноразмерного порошка или гидрозоля, что активирует процессы стеклообразования. Применение нанопорошка или гидрозоля бинарного соединения TiO2·ZrO2 в качестве сырьевого компонента обеспечивает также, при исключении его агломерации и соблюдении условий равномерного перемешивания с шихтой, получение стеклокристаллического материала с однородной тонкодисперсной структурой и однородным фазовым составом, что является залогом высоких физико-механических и диэлектрических свойств по всему изделию. Кроме того, повышается трещиностойкость (K1c=2,2 МПа·м-1/2) по сравнению с трещиностойкостью ситалла того же состава, но полученного на традиционном сырье (оксидов титана и циркония), для которого величина K1c находится на уровне 1,2 МПа·м-1/2, в результате чего образцы склонны к растрескиванию при механических обработках.

В таблицах 1 и 2 приведены конкретные примеры составов стеклокристаллического материала и их термические, механические и диэлектрические характеристики.

Сочетание приведенных составов и выбранного режима термообработки с максимальной температурой кристаллизации (1250-1320)°C позволило повысить температуру деформации до (1300-1360)°C, обеспечить получение высокой радиопрозрачности, низкого ТКЛР и их термостабильности во всем диапазоне рабочих температур. Кроме того, применение нанопорошка бинарного соединения TiO2·ZrO2 в качестве сырьевого компонента позволяет проводить варку при температуре, не превышающей 1550°C, и получать материал с высокой трещиностойкостью.

Предлагаемые составы радиопрозрачных стеклокристаллических материалов обеспечат надежность работы авиационных, ракетных и аэрокосмических систем и достижение ими заданной цели.

Используемая литература

1. Патент Патент RU 2440936, МПК C03C 10/14 от 09.11.2010 г.

2. G. Carl, T. Hoche. Crystallisation behavior of a MgO-Al2O3-SiO2-TiO2-ZrO2 glass // Phys. and Chem. of Glasses. 2002. V. 43 C. P. 256-258.

3. Патент RU 2374190, МПК C03C 10/08 от 22.04.2008 г.

Стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, отличающийся тем, что он дополнительно содержит бинарное соединение TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2·ZrO2 - 1,7-8,2, причем бинарное соединение TiO2·ZrO2 вводят в шихту в виде нанопорошка или гидрозоля.



 

Похожие патенты:

Изобретение относится к производству стеклокристаллического материала радиотехнического назначения и может быть использовано в керамической и авиационной промышленности.

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике и производства изделий электронной техники, преимущественно фазовращателей, модулей управляемых решеток и т.д.

Изобретение относится к батарее твердооксидных электролитических элементов (SOEC), изготовляемой способом, который включает следующие стадии: (a) формирование первого блока батареи элементов путем чередования по меньшей мере одной соединительной пластины и по меньшей мере одного узла элемента, причем каждый узел элемента содержит первый электрод, второй электрод и электролит, расположенный между этими электродами, а также обеспечение стеклянного уплотнителя между соединительной пластиной и каждым узлом элемента, причем стеклянный уплотнитель имеет следующий состав: от 50 до 70 мас.% SiO2, от 0 до 20 мас.% Аl2О3, от 10 до 50 мас.% СаО, от 0 до 10 мас.% МgО, от 0 до 2 мас.% (Na2O+K2O), от 0 до 10 мас.% В2O3 и от 0 до 5 мас.% функциональных элементов, выбранных из TiO2, ZrO2, F2, P2O5, МоО3, Fе2O3, MnO2, La-Sr-Mn-O перовскита (LSM) и их комбинаций; (b) превращение указанного первого блока батареи элементов во второй блок со стеклянным уплотнителем толщиной от 5 до 100 мкм путем нагревания указанного первого блока до температуры 500°C или выше и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) превращение указанного второго блока в конечный блок батареи твердооксидных электролитических элементов путем охлаждения второго блока батареи, полученного на стадии (b), до температуры ниже, чем на стадии (b), при этом стеклянный уплотнитель на стадии (a) представляет собой лист стекловолокон.
Изобретение относится к производству высокотермостойких керамических материалов, используемых в изделиях радиотехнического назначения. Технический результат изобретения заключается в снижении диэлектрической проницаемости и тангенса угла диэлектрических потерь.
Изобретение относится к производству радиопрозрачных стеклокристаллических материалов. .

Изобретение относится к составу стеклокристаллического материала и может быть использовано в химической, строительной промышленности, для изготовления ювелирно-поделочных изделий и пробирного камня.

Изобретение относится к производству высокотермостойких радиопрозрачных стеклокерамических материалов, используемых в изделиях радиотехнического назначения. Технический результат – упрощение технологического процесса получения стеклокерамического материала. Способ включает измельчение стекла магнийалюмосиликатного состава мокрым способом до получения водного шликера с плотностью 2,06-2,20 г/см3, рН 8,0-9,5 и тониной с остатком на сите 0,063 мм 6,0-12,0% в присутствии натриевой соли полиакриловой кислоты в количестве 1,6-2,0% от объема загружаемой дисперсионной среды. Формуют заготовки и термообрабатывают их со скоростью подъема и снижения температуры не более 500°С в час. Термообработку отливок осуществляют в две стадии - при температуре первой стадии 850°C с выдержкой в течение 3 часов, далее при температуре в интервале 1330-1350°C с выдержкой в течение 1-3 часов. 2 пр., 1 табл.

Изобретение относится к оптически прозрачным стеклокристаллическим материалам магнийалюмосиликатной системы. Предлагается прозрачный ситалл, содержащий, мас.%: SiO2 40-50; Al2O3 10-15; MgO 6-10; ZnO 20-25; Na2O 0,5-3; TiO2 3-9; ZrO2 1-6; As2O3 0,1-1. Окраску материала обеспечивают следующие компоненты, вводимые сверх 100%: СоО 0,001-3, и Nd2O3 0,001-3, и Ce2O 0,001-3, мас.%, или SnO2 0,001-3, и СоО 0,001-3, и Au 0,001-3, мас.%. Способ получения прозрачного ситалла включает перемешивание смеси сырьевых материалов в смесителе барабанного типа и варку в электрической печи в корундовых тиглях при температурах 1560±2°С и длительности выдержки не менее 2 часов. Отжиг проводят при температуре 610±2°С не менее 4 часов с последующей дополнительной термообработкой при температуре 780±2°С в течение 4-6 часов. Технический результат – снижение температуры синтеза материала. 2 н.п. ф-лы, 3 ил.
Наверх