Способ очистки рециркулирующего потока этилена с винилацетатом от низкомолекулярного сополимера, масел и других органических примесей

Изобретение относится к химической и нефтехимической промышленности, в частности к способу очистки рециркулирующего потока этилена с винилацетатом от сополимера, низкомолекулярного сополимера, масел и других органических примесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления. Способ включает двухступенчатое отделение сополимера при снижении давления и температуры от рециркулирующего газового потока высокого давления в первой ступени до величин, при которых первоначальное содержание низкомолекулярного сополимера этилена с винилацетатом, масел и других органических примесей в газовом потоке не превышает 0,04% масс., и от газового потока низкого давления во второй ступени, охлаждение газового потока высокого давления в серии холодильников до температуры 40-45°С и сепарацию конденсата после каждого холодильника, при этом температуру конденсата после каждого холодильника поддерживают на уровне, превышающем значение температуры его застывания на 3-7°С, охлаждение и сепарацию газового потока низкого давления до температуры 15-25°С при давлении 0,13-0,36 МПа и скорости движения смеси 2-15 м/с, поддержание температуры газового потока низкого давления после каждого холодильника, кроме последнего, равной или выше температуры каплепадения и повышение температуры газового потока перед подачей его в основной процесс на 3-5°С. Изобретение обеспечивает предотвращение высаждения конденсата в трубопроводах и оборудовании первой ступени очистки и проходимости в ней газового потока и повышение технико-экономических показателей процесса производства сополимеров. 1 ил., 1 табл., 11 пр.

 

Изобретение относится к химической и нефтехимической промышленности, в частности к способам очистки рециркулирующих газовых смесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления в присутствии радикальных инициаторов.

Известен (Е.В. Веселовская, Н.Н. Северова, Ф.И. Дунтов. Сополимеры этилена\ - Л., Химия, 1983, с. 54-55.) способ очистки рециркулирующего потока этилена с винилацетатом, образовавшегося в процессе производства сополимеров этилена с винилацетатом методом высокого давления, от сополимера, низкомолекулярного сополимера (НМСП), масел и других органических примесей, включающий двухступенчатое отделение сополимера при снижении давления до 14,7-27,0 МПа и температуры до 220-270°C от рециркулирующего газового потока этилена с винилацетатом высокого давления в первой ступени и от рециркулирующего газового потока низкого давления во второй ступени, охлаждение газовых потоков высокого и низкого давлений в серии холодильников, сепарацию конденсата после каждого холодильника и последующую подачу очищенных газовых потоков этилена с винилацетатом высокого и низкого давлений в основной процесс.

Описанный способ позволяет очистить рециркулирующие газовые потоки от основной массы НМСП, масел и других органических примесей, однако их остатки в рециркулирующих потоках при снижении температуры высаждаются на стенках трубопроводов, что приводит к потере проходимости рециркулирующего потока в системе первой ступени очистки и к гидроударам при его сжатии во второй ступени очистки.

Наиболее близким к заявляемому способу по совокупности существенных признаков и достигаемому эффекту является способ очистки рециркулирующего потока этилена с винилацетатом от сополимера, НМСП, масел и других органических примесей, описанный в авторском свидетельстве SU №1560257. Согласно этому способу, принятому нами в качестве прототипа, очистку рециркулирующего потока этилена с винилацетатом от сополимера, НМСП, масел и других органических примесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления, включающему двухступенчатое отделение сополимера при снижении давления и температуры от рециркулирующего газового потока высокого давления в первой ступени и от газового потока низкого давления во второй ступени, охлаждение газового потока высокого давления в серии холодильников и сепарацию конденсата после каждого холодильника, охлаждение и сепарацию газового потока низкого давления до температуры 15-25°C при давлении 0,13-0,36 МПа и скорости движения потока 2-15 м/с, поддержание температуры газовой смеси низкого давления после каждого холодильника, кроме последнего, равной или выше температуры каплепадения, и последующее повышение температуры газового потока перед подачей его в основной процесс на 3-15°C.

Способ позволяет очистить рециркулирующий поток от сополимера и основного количества НМСП, масел и других органических примесей, предотвратить гидроудары при сжатии газовой смеси в бустерном компрессоре и компрессоре первого каскада, но не предотвращает высаждение конденсата в оборудовании и трубопроводах первой ступени, особенно при производстве сополимеров с высоким (более 20% масс.) содержанием винилацетата, что приводит к потере проходимости газового потока в системе первой ступени и остановке процесса сополимеризации производства в целом.

Задачей изобретения является обеспечение предотвращения высаждения конденсата в трубопроводах и оборудовании первой ступени очистки и проходимости в ней газового потока этилена с винилацетатом.

Согласно изобретению способ очистки рециркулирующего потока этилена с винилацетатом от сополимера, низкомолекулярного сополимера, масел и других органических примесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления, включающий двухступенчатое отделение сополимера при снижении давления и температуры от рециркулирующего газового потока высокого давления в первой ступени и от газового потока низкого давления во второй ступени, охлаждение газового потока высокого давления в серии холодильников и сепарацию конденсата после каждого холодильника; охлаждение и сепарацию газового потока низкого давления до температуры 15-25°C при давлении 0,13-0,36 МПа и скорости движения смеси 2-5 м/с, поддержание температуры газового потока низкого давления после каждого холодильника, кроме последнего, равной или выше температуры каплепадения, последующее повышение температуры газового потока перед подачей его в основной процесс на 3-15°C, характеризуется тем, что в первой ступени снижение давления и температуры газового потока ведут до величин, при которых первоначальное содержание низкомолекулярного сополимера, масел и других органических примесей не превышает 0,04% масс., охлаждение газового потока ведут до температуры 40-45°C, при этом температуру конденсата после каждого холодильника поддерживают на уровне, превышающем значение температуры его застывания на 3-7°C, а очищенный газовый поток перед подачей его в основной процесс подогревают на 3-5°C.

Сущность заявленного технического решения поясняется чертежом, на котором представлена принципиальная схема установки с однозонным трубчатым реактором, на которой реализуют заявленный способ очистки рециркулирующего потока этилена с винилацетатом от сополимера, низкомолекулярного сополимера, масел и других органических примесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления.

Установка включает следующие технологические устройства: смеситель 1, промежуточный компрессор 2, компрессор высокого давления 3, подогреватель 4, однозонный трубчатый реактор 5, холодильник 6, отделитель высокого давления 7, систему охлаждения и сепарации, в которую входит холодильник 8, сепаратор 9, холодильник 10, сепаратор 11, холодильник 12 и сепаратор 13, колонну 14, отделитель низкого давления 15, холодильник 16, сепаратор 17, холодильник 18, сепаратор 19, холодильник 20, сепаратор 21, теплообменник 22, бустерный компрессор 23, подогреватель 24, дросселирующий вентиль 25 и дросселирующий вентиль 26.

В работе (Ratzch М., Findeisen R., Sernov V.S., - Z. Phys. Chem., Leipzig, 1980, Bd. 261, N 5, S.995) на установке для исследования фазовых равновесий определено, что растворимость сополимера этилена с винилацетатом в равновесной газовой смеси этилена с винилацетатом зависит от содержания винилацетата в сополимере и газовой фазе. Чем выше содержание винилацетата в сополимере и равновесной газовой фазе, тем выше их взаимная растворимость при одинаковых значениях температуры и давления.

В процессе создания настоящего изобретения на аналогичной установке исследования растворимости компонентов рециркулирующего потока в газовых смесях этилена с винилацетатом показали, что для обеспечения проходимости рециркулирующего потока в системе первой ступени максимальное содержание НМСП, масел и других органических примесей в газовой фазе не должно превышать 0,04% масс. Например, такое содержание НМСП, масел и других органических примесей при получении сополимеров с 28% винилацетата достигается в газовой фазе при давлении 150 МПа и температуре 150°C, а при синтезе сополимеров с 5% масс. винилацетата - при давлении 350 МПа и температуре 240°C.

Другим необходимым условием для обеспечения нормальной работы установки является определенный температурный режим охлаждения рециркулирующего газового потока высокого давления. Его устанавливают таким образом, чтобы выделяющийся при охлаждении конденсат после каждого холодильника имел температуру, превышающую температуру его застывания на 3-7°C. Это предотвращает налипание конденсата на стенках трубопроводов и тем самым предупреждает их забивку.

Очищенный таким образом рециркулирующий поток высокого давления перед подачей его в компрессор высокого давления подогревают на 3-5°C. Это предупреждает выпадение конденсата на стенках цилиндра и клапанах компрессора, поскольку подогретая смесь находится при параметрах, превышающих параметры точки росы.

Реализация вышеперечисленных приемов позволяет нормализовать работу производства сополимеров этилена с винилацетатом, улучшить технико-экономические показатели производства сополимеров за счет сокращения простоев, вызванных потерей проходимости в системе рецикла высокого давления, и уменьшить количество некондиционного сополимера. Реализация настоящего изобретения может быть осуществлена в производствах сополимеров, использующих как автоклавные, так и трубчатые реакторы.

Изобретение иллюстрируется следующими примерами.

Пример 1. Свежий этилен и рецикловый газовый поток этилена с винилацетатом второй ступени соединяют в смесителе 1, после чего сжимают в промежуточном компрессоре 2 до давления 21 МПа. В поток смеси от промежуточного компрессора 2 вводят винилацетат, затем эту смесь соединяют с газовым потоком рецикла первой ступени и подают на всас компрессора высокого давления 3. Количество подаваемой в реактор смеси 35 кг/ч, состав смеси: этилен - 72% масс., винилацетат 28% масс. Рабочую смесь, сжатую до 220 МПа, направляют в подогреватель 4, где она разогревается до температуры 175°C, а затем в однозонный трубчатый реактор 5, в рубашку которого подается горячая вода с температурой 190°C. В начало реактора подают 10% масс. раствор инициатора трет-бутилпероксибензоата. В реакторе, представляющем собой ряд последовательно соединенных труб высокого давления с рубашками, сначала происходит разогрев реакционной смеси до температуры начала реакции, затем сополимеризация, в результате которой температура реакционной смеси возрастает до 210°C. Образовавшийся сополимер вместе с непрореагировавшими мономерами через дросселирующий вентиль 25 и холодильник 6 направляют в отделитель высокого давления 7, где поддерживается давление 180 МПа и температура 150°C. При этих условиях происходит отделение основной массы расплавленного сополимера от непрореагировавшей смеси мономеров. Расплав сополимера из нижней части отделителя высокого давления 7 поступает в отделитель низкого давления 15, а смесь мономеров, содержащую 0,036% масс. НМСП, масел и других органических примесей, из отделителя 7 направляют в систему охлаждения и сепарации, состоящую из холодильников 8, 10, 12 и установленных за холодильниками сепараторов 9, 11, 13. Температура рециркулирующего потока после холодильника 8 равна 105°C, после холодильника 12-42°C. Температура застывания конденсата в сепараторе 9 составляет 101°C, в сепараторе 11-70°C, в сепараторе 13-38°C; т.е. температура рециркулирующего потока после холодильника 8 превышает температуру конденсата, выделившегося в сепараторе 9, на 4°C, после холодильника 10 температура потока выше температуры конденсата в сепараторе 11 на 5°C и после холодильника 12 превышает температуру застывания конденсата в сепараторе 13 на 4°C. Далее возвратный поток высокого давления подают в колонну 14, где происходит доочистка возвратного потока от остатков НМСП, масел и органических примесей и затем направляют в подогреватель 24, в котором температура потока повышается на 3°C, т.е. до 45°C.

Сополимер из отделителя высокого давления 7 с остатками газовой смеси этилена, винилацетата, масел и НМСП через дросселирующий вентиль 26 направляют в отделитель низкого давления 15, где при давлении 0,27 МПа происходит окончательное отделение целевого продукта (сополимера) от газовой смеси.

Свойства полученного сополимера полностью соответствуют требованиям ТУ 6-05-1636-97 на марку 11708-1250.

Образовавшийся газовый поток второй ступени с температурой 175°C при давлении 0,27 МПа со скоростью 4 м/с проходит серию холодильников 16, 18, 20, в которых за счет уменьшения температуры происходит расслоение насыщенной газовой смеси на жидкую и газообразную фазы. После прохождения холодильника 16 температура газовой смеси составляет 110°C (температура каплепадения смеси равна 98°C). После прохождения холодильника 18 температура газовой смеси составляет 75°C (температура каплепадения смеси равна 70°C). После последнего холодильника 20 конечная температура охлаждения потока составляет 25°C.

Отделение НМСП, масел и примесей от газообразного потока происходит в серии сепараторов 17, 19, 21. Насыщенную газовую смесь этилена с винилацетатом подогревают в теплообменнике 22 на 5°C и далее газовая смесь с температурой 30°C поступает на сжатие в бустерный компрессор 23.

При эксплуатации установки в описанном режиме очистки рециркулирующего потока нарушений проходимости в первой ступени и возникновения гидроударов во второй ступени не наблюдается.

Примеры 2-4. Опыты ведут в условиях примера 1, но при этом изменяют температуру и давление в отделителе первой ступени (параметры, определяющие содержание НМСП, масел и других примесей в газовой смеси этилена с винилацетатом), а также температурные режимы охлаждения рециклового потока первой ступени, температуры застывания конденсата после холодильников 8, 10, 12 и величину температурного подогрева в подогревателе 24. Параметры процесса очистки в системе первой ступни примеров 2-4 и остальных примеров приведены в таблице 1.

Пример 5. Опыт проводят в условиях примера 1, но содержание винилацетата в исходной реакционной смеси 5% масс., максимальные давление в реакторе 230 МПа и температура 270°C. Технологические параметры работы отделителя первой ступени: давление 35 МПа, температура 250°C, содержание низкомолекулярного сополимера, масел и органических примесей в газовой фазе 0,039% масс. Температурный режим охлаждения газовой смеси первой ступени: 140°C после холодильника 8 и 95°C после холодильника 12. Температура застывания конденсата: 135°C после сепаратора 9, 91°C после сепаратора 11 и 39°C после сепаратора 13. Перед подачей в компрессор 3 газовый поток подогревают на 5°C до температуры 48°C.

Очистку газового потока второй ступени проводят в соответствии с примером 1. Получают сополимер, полностью соответствующий требованиям ТУ 6-05-1636-97 на марку 10104-007.

При эксплуатации установки в примерах 2-5 нарушений проходимости рециркулирующего потока в системе первой ступени не наблюдалось.

Примеры 6к-10к (контрольные). Опыты проводят в условиях примера 1, но выходящие за заявляемые пределы по первоначальному содержанию в рециркулирующем потоке НМСП, масел и органических примесей (опыт 6к), по значениям температуры застывания конденсата (опыт 7к) и величине температуры подогрева газового потока (опыт 8к), поступающего на сжатие компрессора 3. В опытах 6к и 7к происходит периодическое нарушение проходимости газового потока в системе охлаждения и сепарации первой ступени, вызванное налипанием высаждающегося конденсата на стенки трубопроводов. В опыте 8к рециркулирующий поток, поступающий на сжатие компрессора 3, имеет слишком высокую (65°C) температуру, что недопустимо по условиям компримирования. В опыте 9к газовый поток после сепарации в колонне 14 не подогревают, что вызывает образование на стенках и клапанах компрессора 3 полимерной пленки, снижающей его производительность.

Подогрев рециркулирующего потока на 10°C до температуры 58°C (опыт 10к) также недопустим, поскольку нарушает штатные условия компримирования.

Пример 11к (контрольный по прототипу). Опыт проводят в условиях примера 1. Условия синтеза сополимера: давление в реакторе 180 МПа, максимальная температура в реакторе 220°C. Смесь непрореагировавших этилена с винилацетатом и образовавшегося сополимера через дросселирующий вентиль 25 и холодильник 6 подают в отделитель высокого давления 7, где при давлении 230 МПа и температуре 300°C происходит отделение основного потока этилена с винилацетатом от сополимера. При этих условиях растворимость НМСП, масел и органических примесей в газовой смеси, содержащей 28% масс. винилацетата, составляет 0,095% масс. Параметры функционирования системы охлаждения и сепарации первой ступени приведены в таблице. Параметры охлаждения и сепарации второй ступени соответствуют примеру 1. В опыте наблюдается эпизодическое нарушение проходимости в системе охлаждения и сепарации первой ступени, вызываемое высаждением конденсата на стенках трубопроводов.

Использование предлагаемого способа позволяет нормализовать работу установок по производству сополимеров этилена как с низким, так и с высоким содержанием винилацетата, значительно увеличить фонд рабочего времени за счет сокращения простоев, вызванных непроходимостью рециркулирующего газового потока в первой ступени отделения сополимера от непрореагировавшей реакционной смеси и уменьшить количество некондиционного сополимера. Это позволяет существенно улучшить технико-экономические показатели производств этилена с винилацетатом, основанных на методе высокого давления с использованием радикальных инициаторов.

Способ очистки рециркулирующего потока этилена с винилацетатом от сополимера, низкомолекулярного сополимера, масел и других органических примесей в процессе производства сополимеров этилена с винилацетатом методом высокого давления, включающий двухступенчатое отделение сополимера при снижении давления и температуры от рециркулирующего газового потока высокого давления в первой ступени и от газового потока низкого давления во второй ступени, охлаждение газового потока высокого давления в серии холодильников и сепарацию конденсата после каждого холодильника, охлаждение и сепарацию газового потока низкого давления до температуры 15-25°С при давлении 0,13-0,36 МПа и скорости движения смеси 2-15 м/с, поддержание температуры газового потока низкого давления после каждого холодильника, кроме последнего, равной или выше температуры каплепадения, последующее повышение температуры газового потока перед подачей его в основной процесс на 3-5°С, отличающийся тем, что в первой ступени снижение давления и температуры газового потока ведут до величин, при которых первоначальное содержание низкомолекулярного сополимера этилена с винилацетатом, масел и других органических примесей в газовом потоке не превышает 0,04% масс., охлаждение газового потока ведут до температуры 40-45°С, при этом температуру конденсата после каждого холодильника поддерживают на уровне, превышающем значение температуры его застывания на 3-7°С, а очищенный газовый поток перед подачей его в основной процесс подогревают на 3-5°С.



 

Похожие патенты:
Настоящее изобретение относится к вспененному, ячеистому материалу, содержащему вторичный полиэтилентерефталат. Описан вспененный, ячеистый материал, который содержит по крайней мере 50 мас.

Изобретение относится к дорожному строительству, а именно к составам асфальтобетонной смеси. Асфальтобетонная смесь включает вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, при этом вяжущее дополнительно включает серу при соотношении серы с битумом 10-40:60-90, указанное серобитумное вяжущее содержится в количестве 4,5-6,0 мас.% сверх 100% по отношению к минеральной части, в качестве минерального порошка смесь содержит порошкообразные отходы электродного производства, состоящие в основном из углерода, в качестве щебня - известняковый щебень и указанного песка - песок из шлаков Надеждинского металлургического комбината при следующем соотношении компонентов, мас.%: битум - 3,6-4,05 сверх 100% от минеральной части; сера - 0,45-2,4 сверх 100% от минеральной части; щебень - 50,5-60,0; шлаковый песок - 32,5-40,3; минеральный порошок - 6,5-11,0.
Изобретение относится к области материалов для дорожного покрытия, в частности к модифицированным асфальтобетонным смесям, и может быть использовано в дорожном и аэродромном строительстве.

Изобретение предназначено для получения активированного минерального порошка для дорожного строительства и может быть использовано в нефтегазовой промышленности.
Изобретение относится к экологичной плите, в частности к экологичной плите с нулевым выбросом углекислого газа при ее изготовлении и высоким содержанием волокон, синтезированной из порошка из негодных печатных плат, а также к способу изготовления такой плиты.
Изобретение относится к способу получения битумных композиций и может найти применение в дорожном строительстве, производстве кровельных материалов и гидроизоляции.

Изобретение относится к способам обезвреживания и утилизации нефтесодержащих отходов и может быть использовано на предприятиях нефтегазового комплекса и предприятиях по переработке отходов.
Изобретение относится к способу получения синтетического топлива, который заключается в том, что в теплоизолированный топливный бак загружают брикеты твердого полиэтилена, нагревают их в баке до температуры более 85°С и подают в бак углеводородное топливо (церезин, керосин, дизтопливо), чем обеспечивают интенсивное растворение полиэтилена до жидкой фазы, после чего прогревают раствор до температуры 110-130°С и в виде жидкого топлива подают в горелки котельной, поршневой или турбинной энергетической установки внутреннего сгорания.

Изобретение относится к способам обезвреживания и утилизации нефтесодержащих отходов и фильтровочных и поглотительных отработанных масс стадии винтаризации процесса рафинации растительного масла и может быть использовано на предприятиях нефтегазового комплекса и организациях по переработке отходов.

Изобретение относится к способу переработки отходов. Способ переработки отходов переработки нефти включает подачу отходов переработки нефти и пластмасс в котел и нагрев объединенных отходов переработки нефти и пластмасс, используя дальнее инфракрасное излучение, таким образом, чтобы выделить летучие углеводороды, где выделенные летучие углеводороды собирают для последующего использования.
Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для устройства верхнего и нижнего слоев покрытий дорожных одежд автомобильных дорог, велосипедных дорожек, тротуаров и площадок. Способ включает приготовление смеси, состоящей из, мас.%: песка - отсевов дробления прочных пород фр. 0,1-10 мм - 31,0; песка природного кварцевого фр. 0,1-5 мм - 31,0-7,0; известнякового минерального порошка - 12,0 и битума вязкого - 5,2-3,3 (сверх 100 мас.%). При этом в минеральную часть вводят асфальтогранулят холодного фрезерования фр. 0-10 мм в количестве 26,0-50,0% от массы минеральной части смеси или в количестве 24,7-48,4% от массы смеси. Техническим результатом является повышение прочности асфальтобетона для покрытий и оснований в сухом и водонасыщенном состояниях, теплостойкости, водостойкости и трещиностойкости. 2 табл.

Изобретение относится к способу получения водорода из биомассы и может быть использовано для получения водородсодержащих продуктов путем получения водорода из продуктов пиролиза растительного биотоплива, а также в системах аккумулирования и транспорта энергии, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ получения включает измельчение и сушку биомассы, ее последующий пиролиз с помощью нагретого твердого теплоносителя и перегретого водяного пара, разделение водородсодержащих газов пиролиза и пиролизной массы, которую подвергают высокотемпературной газификации. При этом в качестве твердого теплоносителя используют карбонаты, образующие оксиды при высокотемпературной газификации, нагрев твердого теплоносителя производят путем сжигания пиролизной массы в кислороде, получаемом при электролизе воды, образующейся в процессе сушки биомассы. Технический результат изобретения заключается в снижении тепловых затрат, а также позволяет производить различные энергоносители из различной биомассы при отсутствии потребления кислорода из атмосферы. 9 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области охраны окружающей среды, в частности к технологическим процессам утилизации нефтесодержащих отходов, отработанного силикагеля и отходов масложировой промышленности. Предварительно разогретые до температуры 80-85°С нефтесодержащие отходы перемешивают с отходами масложировой промышленности в пропорции 1:(0,05-0,2). Добавляют порционно при перемешивании обезвреживающую композицию, содержащую измельченные до мелкодисперсного состояния негашеную известь и отработанный силикагель в соотношении 1:(0,125-0,25). Вводят расчетное количества воды для реакции с негашеной известью, необходимое количество которой определяют с учетом воды, имеющейся в нефтесодержащем отходе, и водопоглощаемости отработанного силикагеля. В качестве отходов масложировой промышленности используют рециклизованные фильтровочные и поглотительные отработанные массы, полученные после многократной регенерации диатомитового фильтровального порошка. При этом к смеси отходов обезвреживающую композицию добавляют в пропорции 1:(0,75-0,95) до образования однородного гидрофобного сыпучего мелкодисперсного порошка. Обеспечивается понижение вымываемости загрязняющих веществ из продукта утилизации нефтесодержащих отходов. 1 табл., 6 пр.

Изобретение относится к области охраны окружающей среды, в частности к технологическим процессам утилизации нефтесодержащих отходов и рециклизованных фильтровочных и поглотительных отработанных масс, и может быть использовано на предприятиях нефтегазового комплекса и на предприятиях по переработке отходов. Предварительно разогретые нефтесодержащие отходы с отходами масложировой промышленности перемешивают, добавляют порционно при перемешивании негашеную известь, вводят реагирующую с негашеной известью воду, количество которой определяют с учетом воды, имеющейся в нефтесодержащих отходах. При этом в качестве отходов масложировой промышленности используют рециклизованные фильтровочные и поглотительные отработанные массы, полученные после многократной регенерации диатомитового фильтровального порошка, причем нефтесодержащие отходы смешивают с отходами масложировой промышленности в пропорции 1:(0,1-0,3) по массе, негашеную известь добавляют в количестве 62-91 мас.% от массы смеси отходов до образования однородного гидрофобного сыпучего мелкодисперсного порошка, а нефтесодержащие отходы с отходами масложировой промышленности перемешивают, предварительно разогревая до температуры 80-85°С. Техническим результатом является понижение вымываемости загрязняющих веществ из продукта утилизации нефтесодержащих отходов при использовании более эффективных доступных обезвреживающих компонентов со свойствами модификатора и адсорбента. 1 табл., 6 пр.

Изобретение относится к методам переработки путем термической деполимеризации органических и твердых полимерных бытовых отходов. Способ переработки включает проведение двухступенчатой деполимеризации твердых полимерных бытовых отходов в трубчатых единичных реакторах-модулях - по четыре – в первой и второй ступенях нагрева. При этом получают важные виды энергетических и моторных топлив - автобензин, котельное топливо, легкие жидкие и газообразные фракции углеводородов и строительных материалов ─ портландцементов. Изобретение позволяет снизить энергоемкость процесса переработки отходов, повысить ее эффективность, продуктивность, сохраняя при этом экологичность процесса переработки. 2 ил., 2 пр.

Изобретение относится к области технологии неорганических веществ, в частности к утилизации загрязненного шламом белого фосфора. Способ осуществляется путем окисления белого фосфора кислородом до пятиокиси фосфора с последующей ее гидратацией, причем загрязненный шламом белый фосфор помещают в реакционную камеру трехкамерного электролизера, на электроды подают постоянный электрический ток, образующийся в результате электролиза воды кислород окисляет белый фосфор до пятиокиси фосфора, поглощаемой водой до образования фосфорной кислоты, при этом шлам откладывается в анодной камере электролизера, после полного окисления фосфора электролизер автоматически отключается от электрической сети. Технический результат заключается в утилизации загрязненного шламом фосфора, а также в получении фосфорной кислоты в одном аппарате и предотвращении потерь пятиокиси фосфора с выбросами в атмосферу. 1 ил., 2 пр.

Изобретение относится к профилактическим смазкам, предназначенным для защиты металлической поверхности горно-транспортного оборудования от примерзания влажных сыпучих пород. Антиобледенительная жидкость представляет собой смесь смазочной основы, в качестве которой используют щелочной сток производства капролактама (ЩСПК), с добавкой, предотвращающей расслоение и понижающей температуру застывания. Жидкость дополнительно содержит гильсонит, повышающий механическую прочность кокса, в качестве добавки, предотвращающей расслоение и понижающей температуру застывания, использовано масло ПОД - побочный продукт окисления и дегидрирования циклогексанола, в качестве добавки, понижающей кинематическую вязкость состава, использован карбамид азота - диамид угольной кислоты. Технический результат заключается в понижении кинематической вязкости состава, сохранении текучести состава, улучшении показателей спекаемости и коксуемости угля. 2 табл., 3 пр.
Изобретение относится к области технологии неорганических веществ, в частности к утилизации загрязненного шламом белого фосфора и получению фосфорной кислоты. Способ получения фосфорной кислоты заключается в том, что загрязненный шламом белый фосфор загружают в электролизер, где кислородом, полученным электролизом воды на сетчатом аноде, окисляют загрязненный шламом белый фосфор до образования пятиокиси фосфора с последующей гидратацией до образования фосфорной кислоты. При этом на электроды подают постоянный электрический ток при напряжении 10 В, плотность тока составляет 0,10 А/см2, а время обработки зависит от количества шламсодержащего белого фосфора. Технический результат - утилизация загрязненного шламом фосфора, получение чистой фосфорной кислоты в одном аппарате и предотвращение потерь Р2О5 с выбросами в атмосферу. Проведение процесса по предлагаемому способу в одном аппарате позволяет осуществить утилизацию фосфора, загрязненного шламом, без потерь и образование промежуточных фосфорсодержащих соединений, предотвратить выбросы в атмосферу ядовитых соединений. 2 пр.

Изобретение относится к области получения смесей для дорожного строительства и может быть использовано для получения органоминерального порошка для изготовления асфальтобетонных покрытий дорог. В способе получения активированного органоминерального порошка для асфальтобетонных смесей осуществляют совместное измельчение в шаровой мельнице силикагеля и золошлаковых отходов. Производят отбор от полученного измельченного материала рабочей фракции размером 0,07-0,31 мм, упомянутую рабочую фракцию загружают в смеситель, в который также загружают гашеную известь, и осуществляют промежуточное перемешивание. Затем в смеситель загружают гидрофобное ПАВ в количестве 0,3-0,5 мас.% от количества гашеной извести и осуществляют конечное перемешивание до получения гомогенной смеси. Изобретение обеспечивает повышение экологической и экономической эффективности получения активированного органоминерального порошка. 1 табл., 3 пр.

Изобретение относится к утилизации углеродсодержащих смесей и может быть использовано при утилизации промышленных, сельскохозяйственных, производственных и бытовых отходов, содержащих твердые и жидкие углеводороды, для получения из них синтетического жидкого топлива как источника энергии. Способ переработки твердых и жидких отходов, содержащих углеводороды, и получения из них синтетического жидкого топлива основан на электрогидравлическом разрушении структуры их молекулярных связей управляемым импульсным электрическим разрядом. Способ заключается в том, что в трубчатый импульсный реактор подают исходную среду, обеспечивая постоянное смещение среды в трубе реактора, трижды по ходу смещения исходной среды воздействуют на находящуюся в реакторе среду прямоугольными электрическими высоковольтными импульсами. Способ отличается тем, что используют среду, образованную только сырьем в виде углеродсодержащих отходов и водой, где соотношение вода/сырье в процентах составляет: для твердых углеводородов - 50÷60/40÷50, для жидких углеводородов - 30÷35/65÷70, а для материалов, содержащих углеводороды, - 60÷80/20÷40, напряжение воздействующих импульсов устанавливают в диапазоне 6-10 кВ, при этом для каждого из трех воздействий задают различные длины и частоты воздействующих импульсов так, что частота воздействующих импульсов от первого до третьего воздействия увеличивается в диапазоне от 2 Гц до 50 Гц, а их длительность уменьшается от 250 мс до 10 мс с удалением образующегося синтез-газа и получением синтетического жидкого топлива. Технический результат - переработка твердых и жидких отходов, содержащих углеводороды, получение из них синтетического жидкого топлива без использования растворителей и/или катализаторов. 4 ил., 2 пр.
Наверх