Способ обогащения золотосодержащих продуктов



Способ обогащения золотосодержащих продуктов
Способ обогащения золотосодержащих продуктов
Способ обогащения золотосодержащих продуктов

 


Владельцы патента RU 2598668:

Общество с ограниченной ответственностью "Таилс КО" (RU)

Изобретение относится к обогащению полезных ископаемых и может быть использовано в золотодобывающей и цветной металлургии при обогащении продуктов, содержащих свободные частицы золота, серебра, платины. Способ обогащения золотосодержащих продуктов включает подачу исходного питания и воды в операцию гидравлической классификации в гидроциклоне, выделение слива и песков, возврат песков в операцию гидравлической классификации, прекращение подачи исходного питания по истечении заданного времени, подачу воды и песков гидроциклона в операцию гидравлической классификации до достижения в песках заданной степени концентрации благородных металлов, получение обогащенного продукта в виде песков гидроциклона. Пески гидроциклона после прекращения подачи исходного питания подвергают в процессе циркуляции грохочению с удалением из них в надрешетный продукт крупных частиц пустой породы. Технический результат - повышение степени концентрации благородных металлов в песках гидроциклона за счет удаления из циркулирующего продукта крупных частиц пустой породы, а также повышение эффективности обогащения. 2 ил., 1 табл.

 

Изобретение относится к обогащению полезных ископаемых и может быть использовано в золотодобывающей и цветной металлургии при обогащении продуктов, содержащих свободные частицы золота, серебра, платины.

Известен способ обогащения, включающий подачу исходного питания и воды в операцию гидравлической классификации в гидроциклоне, выделение слива и песков, возврат песков в операцию гидравлической классификации, получение обогащенного продукта в виде песков гидроциклона [1].

Наиболее близким техническим решением к заявленному является способ обогащения, включающий подачу исходного питания и воды в операцию гидравлической классификации в гидроциклоне, выделение слива и песков, возврат песков в операцию гидравлической классификации, прекращение подачи исходного питания по истечении заданного времени, подачу воды и песков гидроциклона в операцию гидравлической классификации до достижения в песках заданной степени концентрации благородных металлов, получение обогащенного продукта в виде песков гидроциклона [2].

Недостатком указанных способов обогащения является малая степень концентрации благородных металлов в песках.

Предлагаемое изобретение направлено на повышение степени концентрации благородных металлов в песках гидроциклона за счет удаления из циркулирующего продукта крупных частиц пустой породы.

Указанный технический результат достигается тем, что в способе обогащения, включающем подачу исходного питания и воды в операцию гидравлической классификации в гидроциклоне, выделение слива и песков, возврат песков в операцию гидравлической классификации, прекращение подачи исходного питания по истечении заданного времени, подачу воды и песков гидроциклона в операцию гидравлической классификации до достижения в песках заданной степени концентрации благородных металлов, получение обогащенного продукта в виде песков гидроциклона, пески гидроциклона после прекращения подачи исходного питания подвергают в процессе циркуляции грохочению с удалением из песков в надрешетный продукт крупных частиц пустой породы.

На фиг. 1 приведена технологическая схема обогащения по предлагаемому способу; на фиг. 2 - схема цепи аппаратов, при помощи которой можно осуществить предлагаемый способ обогащения.

Схема обогащения включает операцию гидравлической классификации, в которую подается исходное питание и предусмотрена подача воды. Получаемый в гидравлической классификации слив является хвостами обогащения и удаляется из схемы. Пески классификации после грохочения являются циркулирующим продуктом и направляются в процесс гидравлической классификации.

Схема цепи аппаратов включает гидроциклон 1, переключатель потока 2, зумпф 3, насос 4, грохот 5. Исходное питание в виде пульпы через делитель 2 подается в зумпф 3, из которого насосом 4 подается в гидроциклон 1. В гидроциклоне 1 осуществляется гидравлическая классификация материала с получением слива и песков. Слив является отвальными хвостами и удаляется из процесса. Пески гидроциклона 1 направляются в зумпф 3, в котором смешиваются с исходным питанием. Смесь исходного питания с песками подается насосом 4 в гидроциклон 1. Таким образом создается циркуляция песков через зумпф 3 и гидроциклон 1, происходит накопление материала в зумпфе 3.

С целью поддержания заданных условий работы гидроциклона по содержанию твердого в питании в зумпф 3 подается вода.

Подача исходного питания прекращается по истечении заданного времени, которое устанавливается исходя из технических возможностей накопления циркулирующего материала в зумпфе 3 до его заполнения.

По истечении заданного времени накопления благородных металлов в циркулирующем продукте прекращается подача исходного питания в зумпф 3, а пески гидроциклона направляются на грохот 5 для выделения и удаления из процесса надрешетного продукта. В процессе многократного пропускания материала через гидроциклон 1 и грохот 5 количество материала в зумпфе 3 снижается, а в песках происходит повышение концентрации благородных металлов, обусловленное удалением в слив и надрешетный продукт породных частиц.

Процесс циркуляции песков через гидроциклон 1 прекращается при достижении заданной степени концентрации благородных металлов. Оставшийся в схеме циркулирующий продукт является концентратом и направляется на дальнейшую переработку.

Эффективность обогащения золотосодержащих продуктов достигается выбором размеров гидроциклона и производительности насоса, обеспечивающим заданную крупность разделения материала, при которой свободные частицы тяжелых минералов гарантированно остаются в циркулирующем продукте.

Пример реализации способа

Для осуществления способа обогащению подвергали хвосты Семеновской золотоизвлекательной фабрики. Исследования проведены в лабораторных условиях на непрерывной обогатительной установке при объемной производительности 1 м3/ч. Массовая доля твердого в хвостах составляла 30%. Массовая доля золота в хвостах 1,2 г/т. Золото представлено на 20% свободными частицами крупностью от 1 до 0,02 мм, 80% находится в сростках с сульфидами.

Обогатительная установка включала гидроциклон 1 диаметром 50 мм, переключатель потока 2, зумпф 3 емкостью 10 л, песковый насос 4, грохот 5.

Исходное питание непрерывно подавали в зумпф 3, из которого насосом 4 подавали в гидроциклон 1. В гидроциклоне 1 осуществлялась гидравлическая классификация материала. Тяжелые частицы, в том числе свободные частицы благородных металлов, выделялись в пески и направлялись в зумпф 3, где они смешивались с исходным питанием и циркулировали через гидроциклон 1 и зумпф 3. Поступающие с исходным питанием свободные частицы благородных металлов накапливались в циркулирующем продукте, в то время как основную массу породных частиц удаляли в слив гидроциклона 1. После прекращения подачи исходного питания пески гидроциклона 1 подвергали грохочению на грохоте 5, размер отверстий сита которого принимали исходя из крупности частиц благородных металлов равным 2 мм. На грохоте осуществляли разделение песков гидроциклона по крупности. Частицы благородных металлов, имеющие крупность меньше размера отверстий сита, попадали в подрешетный продукт грохота 5. Крупные частицы пустой породы удалялись в надрешетный продукт грохота 5, повышая тем самым качество подрешетного продукта.

Подачу исходного питания в зумпф 3 осуществляли в течение 3 мин. При этом в зумпфе 3 накопилось 2 л материала.

После прекращения подачи исходного питания накопленный в зумпфе 3 материал проходил через гидроциклон 1 и грохот 5. Процесс осуществляли в течение 3 мин, после чего пески гидроциклона выделяли в концентрат. Продукты обогащения подвергали пробирному анализу на золото.

Результаты экспериментов приведены в таблице.

Предлагаемый способ обогащения золотосодержащих продуктов обеспечивает более высокие показатели обогащения хвостов Семеновской золотоизвлекательной фабрики за счет удаления из циркулирующего продукта крупных частиц пустой породы.

1. Шохин, В.Н. Гравитационные методы обогащения. Учебник для ВУЗов. 2-е изд., перераб. и доп. / В.Н. Шохин, А.Г. Лопатин. - М.: Недра, 1993. - 350 с.

2. Патент РФ №2095145, кл. В03В 5/34, 1997.

Способ обогащения золотосодержащих продуктов, включающий подачу исходного питания и воды в операцию гидравлической классификации в гидроциклоне, выделение слива и песков, возврат песков в операцию гидравлической классификации, прекращение подачи исходного питания по истечении заданного времени, подачу воды и песков гидроциклона в операцию гидравлической классификации до достижения в песках заданной степени концентрации благородных металлов, получение обогащенного продукта в виде песков гидроциклона, отличающийся тем, что пески гидроциклона после прекращения подачи исходного питания подвергают в процессе циркуляции грохочению с удалением из них в надрешетный продукт крупных частиц пустой породы.



 

Похожие патенты:

Изобретение относится к горнодобывающей промышленности и промышленности по обработке алмазов. Устройство разделения фракций содержит загрузочный бункер, соединенный с механическим дробильным устройством крупных агрегатов, соединенным с верхней секцией короба с прикрепленным к ней активатора металлов в виде источника высокого напряжения, емкости для приема фракций.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических и медно-цинковых руд. Способ флотационного разделения коллективных цинково-пиритных концентратов включает получение коллективного цинково-пиритного концентрата из сульфидных руд, осуществляемое в щелочной среде, создаваемой известью, пропарку и кондиционирование пульпы с медным купоросом, ксантогенатом и вспенивателем, флотацию цинковых минералов в пенный продукт.

Способ переработки упорных пирит-арсенопирит-пирротин-антимонитовых золотосодержащих руд (варианты) относится к металлургии благородных и тяжелых цветных металлов.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических руд, медно-цинковых и других биметаллических руд.

Изобретение относится к плавучему сортировочно-классификационному комплексу. Комплекс включает виброгрохот, гидроциклон для песка, соединительные трубопроводы, лотки гравийный и песковый, грунтовый насос, гидроклассификатор, снабженный сливом и грунтосборником.

Изобретение относится к обогащению полезных ископаемых и, в частности, к разработке золото-платиносодержащих россыпных месторождений с содержанием мелких и тонких частиц.
Изобретение относится к горно-перерабатывающей промышленности и предназначено для подземной разработки мощных железорудных месторождений. Способ разработки железорудных месторождений включает отработку запасов месторождения этажно-камерной системой разработки или иными камерными системами с закладкой выработанного пространства и полное обогащение добытой руды на подземной обогатительной фабрике, для чего осуществляют сооружение подземных камер с установкой в них обогатительного оборудования, включающего устройства для дробления, измельчения, классификации, сухой и многостадийной мокрой магнитной сепарации руды, обезвоживания концентрата и выдачи его на поверхность.

Изобретение относится к области горнорудной промышленности и может быть использовано при утилизации отходов производства горно-обогатительных предприятий вольфрам-молибденовых руд, содержащих редкие и ценные металлы.

Изобретение относится к обогащению полезных ископаемых. Гематит-браунитовые и магнетитовые типы железомарганцевой руды раздельно дробят в щековой дробилке.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении тантал-ниобиевых и других редкометалльных руд. Обогащение тантал-ниобиевых руд гравитационно-магнитным способом включает дробление исходной руды с направлением дробленого материала на предварительную классификацию с выделением крупнозернистой фракции и готовой к переработке мелкозернистой фракции, измельчение в замкнутом цикле с мельницей крупнозернистой фракции, последующее гравитационное разделение мелкозернистой фракции с использованием винтовой сепарации на легкую и тяжелую фракции с доводкой ее тяжелой фракции концентрацией на столе с получением чернового гравитационного концентрата 1, отвальных хвостов и промежуточных продуктов, подвергаемых последующей вторичной, более тонкой классификации с выделением мелкозернистых и крупнозернистых фракций, измельчение в замкнутом цикле с мельницей крупнозернистой фракции, концентрацию мелкозернистых фракций на шламовом столе с получением отвальных хвостов и гравитационного концентрата 2, магнитную сепарацию черновых гравитационных концентратов 1 и 2.
Наверх