Устройство для определения механических свойств полимерных материалов

Изобретение относится к технике испытания материалов, в частности к испытаниям полимерных материалов на растяжение-сжатие. Устройство содержит термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей в виде сильфонов, один из которых сообщен с узлом крепления подвижного захвата, измерительное средство для замера усилий и деформаций. Узел крепления подвижного захвата включает в себя стержень с возможностью перемещения по направляющим цилиндрической формы, зафиксированным в пространстве с помощью стойки, один конец стержня сообщен с сильфоном, а другой - с подвижным захватом, при этом стержень проходит через рамку с установленным в ней ползуном, с возможностью передачи информации гибкой пластине для замера деформаций, один конец которой закреплен к рамке, а другой конец жестко закреплен к основанию камеры с помощью кронштейна. Технический результат: повышение точности измерения деформации испытуемого образца. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к технике испытания материалов, в частности к испытаниям полимерных материалов на растяжение-сжатие.

Известно устройство для измерения неметаллических образцов, преимущественно полимерных на сжатие (патент РФ №2261429 С1; МПК G01N 3/08; опубликован 27.09.2005), включающее механизм нагружения, камеру в виде стакана с крышкой, в которой установлены опора с пазами и пуансон, на верхнем торце которого расположено сферическое углубление, в которое установлено центрирующее средство со сферическим выступом для равномерного распределения давления по площади сечения образца, средство для снятия деформационной характеристики, связанное с узлом регистрации. Механизм нагружения выполнен из каркаса, в котором установлен разгружающий двигатель, жестко связанный с площадкой, на которой установлены разгружающие стержни, проходящие через верхние отверстия в каркасе, а на каркасе между этими стержнями установлен нагружающий двигатель со стержнями нагружения, на которые опираются съемные нижний и верхний дополнительный грузы, подвеска рабочей площадки через петлю навешивается на верхний рычаг системы рычагов с соотношением плеч рычага 1:10, выполненный в форме вилки, огибающей рабочий стержень пуансона, шарнирно закрепленный на верхней опоре станины и связанный шарнирно через тягу, на которой жестко закреплен уравновешивающий груз, с нижним рычагом, с соотношением его плеч 5:1, который шарнирно закреплен на нижней опоре станины и связан с рабочим стержнем шарнирным соединением, нижний конец которого имеет цилиндрический наконечник со сферическим выступом, упирающимся в углубление на пуансоне, выполненным для равномерного распределения давления по площади сечения образца.

Известно устройство для определения механических свойств полимерных материалов (патент РФ №934308; МПК G01N 3/36; опубликован 07.06.82, бюллетень №21), ближайшее по технической сущности и принятое за прототип, в котором содержится термокриокамера, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца и измерительные средства. Механизм деформации образца выполнен в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей, один из которых связан с подвижным захватом. Механизм деформации образца размещен внутри термокриокамеры, а гидродвигатели выполнены в виде сильфонов.

Однако известное устройство не может обеспечить требуемой точности определения механических свойств образцов, из-за жесткой базы измерения деформаций испытуемого образца и замера усилий механизма деформации.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении точности измерения деформации испытуемого образца.

Технический результат достигается тем, что в устройстве для определения механических свойств полимерных материалов, содержащем термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей в виде сильфонов, один из которых сообщен с узлом крепления подвижного захвата, измерительное средство для замера усилий и деформаций, новым является то, что узел крепления подвижного захвата включает в себя стержень с возможностью перемещения по направляющим цилиндрической формы, зафиксированным в пространстве с помощью стойки, один конец стержня сообщен с сильфоном, а другой - с подвижным захватом, при этом стержень проходит через рамку с установленным в ней ползуном, с возможностью передачи информации гибкой пластине для замера деформаций, один конец которой закреплен к рамке, а другой конец жестко закреплен к основанию камеры с помощью кронштейна.

Направляющие цилиндрической формы, обеспечивающие прямолинейное движение стержня, состоят из резьбовой крышки, с опорной поверхностью которой связана пружина, ограниченная пластиной-толкателем и роликом.

На фиг. 1 представлена схема устройства для определения механических свойств полимерных материалов.

На фиг. 2 представлен узел крепления подвижного захвата (вид с боку).

На фиг. 3 представлен узел крепления подвижного захвата (вид спереди).

На фиг. 4 представлен узел крепления подвижного захвата (в сечении).

На фиг. 5 представлена схема гибкой пластины.

Устройство содержит (фиг. 1) термокриокамеру 1, размещенные в ней узел крепления испытуемого образца 2, узел крепления подвижного захвата 3, механизм деформации образца 4, который выполнен в виде магнитогидродинамического насоса 5, канал 6 которого заполнен электропроводящей жидкостью, в качестве которой используется жидкий металл. Магнитогидродинамический насос 5 сообщен с двумя гидродвигателями, которые выполнены в виде сильфонов 7, причем последний связан с узлом крепления подвижного захвата 3. В термокриокамере размещены измерительные средства, в качестве которых используется датчик силы 8 для замера усилий и пластина гибкая 9 для замера деформаций. Термокриокамера закреплена на основании 10 с помощью винтов 11.

Узел крепления испытуемого образца 2 состоит из подвижного 12 и неподвижного захватов 13. Испытуемый образец 14 закрепляется в захваты 12, 13 с помощью штифтового соединения (штифт 15, гайка 16, шайба 17) по меткам, определяющим положение кромок таким образом, чтобы продольные оси захватов и ось образца совпадали между собой и направлениям движения подвижного захвата.

Узел крепления подвижного захвата 3 (фиг. 1) включает в себя гибкую пластину 9, закрепленную в кронштейне 18, с помощью стягивающих болтов 19, направляющие цилиндрической формы 21, внутри которых установлен стержень 22 с помощью винтов. Стержень с одной стороны сообщен с сильфоном 7, с другой стороны - с подвижным захватом 12 с помощью резьбового соединения 23. Кронштейн 18, в свою очередь, закреплен к основанию 10 с помощью анкерных болтов 20. Направляющие цилиндрической формы 21 (фиг. 4) состоят из резьбовой крышки 24, с опорной поверхностью которой связана пружина 25, которая ограничена пластиной-толкателем 26 и роликом 27. Фиксирование положения направляющих цилиндрической формы 21 (фиг. 2) в пространстве обеспечивается с помощью стойки 28. Она закреплена к основанию 10 с помощью винтов.

На конец гибкой пластины 9 (фиг. 5) приварена втулка 29, которая, в свою очередь, устанавливается на рамку 30 резьбовым соединением. На пластину 9, для замера деформаций образца, приклеивается тензодатчик проволочный 31.

Устройство работает следующим образом.

Испытуемый образец 14 (фиг. 1) закрепляют в захватах 12, 13, затем включают термокриокамеру 1 и задают требуемый температурный режим испытаний (23±2)°С и относительную влажность (50±5)%. Для деформации образца 14 подают на обмотку возбуждения магнитогидродинамического насоса 5 управляющий электрический сигнал, который вследствие взаимодействия электромагнитного поля обмотки с заполняющим канал 6 жидким металлом, преобразуется в механические перемещения торцов сильфонов 7 и стержня 22, который передает усилие от механизма деформации 4 на испытуемый образец 14 и вызывает изгиб гибкой пластины 9. Линейное перемещение стержня 22 осуществляется следующим образом: (фиг. 4) с помощью резьбовой крышки 24 создается напряжение на пружину 25. Пластина-толкатель 26 передает усилие от пружины 25 на ролик 27, равномерно распределяя усилие по образующей. Ролик 27, в свою очередь, обеспечивает прямолинейное движение стержня 22. Вместе с торцами сильфонов 7 (фиг. 1) и со стержнем 22 перемещается подвижный захват 12 узла крепления испытуемого образца 2, вызывая деформацию образца 14. При деформировании исследуемого образца 14 гибкая пластина 9 изгибается вместе с рамкой 30, которая передает усилие механизма деформации 4 на испытуемый образец 14. Внутри рамки 30 помещен ползун, который передает гибкой пластине 9 информацию для замера деформаций испытуемого образца. При изгибе гибкой пластины 9 меняются показания тензодатчика 31. Тензодатчик 31 преобразует величину продольной деформации испытуемого образца 14 в удобный для исследователя сигнал. При изгибе гибкой пластины 9 кронштейн 18 обеспечивает устойчивое поведение пластины 9. Датчик силы 8 обеспечивает измерение усилия, действующего на испытуемый образец 14.

Применение в узле крепления подвижного захвата гибкой пластины, для замера деформаций, позволяет отказаться от жесткой базы измерения, что повышает точность измерения продольной деформации образца.

1. Устройство для определения механических свойств полимерных материалов, содержащее термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде магнитогидродинамического насоса и сообщенных с ним двух гидродвигателей в виде сильфонов, один из которых сообщен с узлом крепления подвижного захвата, измерительное средство для замера усилий и деформаций, отличающееся тем, что узел крепления подвижного захвата включает в себя стержень с возможностью перемещения по направляющим цилиндрической формы, зафиксированным в пространстве с помощью стойки, один конец стержня сообщен с сильфоном, а другой - с подвижным захватом, при этом стержень проходит через рамку с установленным в ней ползуном, с возможностью передачи информации гибкой пластине для замера деформаций, один конец которой закреплен к рамке, а другой конец жестко закреплен к основанию камеры с помощью кронштейна.

2. Устройство по п. 1, отличающееся тем, что направляющие цилиндрической формы, обеспечивающие прямолинейное движение стержня, состоят из резьбовой крышки, с опорной поверхностью которой связана пружина, ограниченная пластиной-толкателем и роликом.



 

Похожие патенты:

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для физического моделирования геомеханических процессов на образцах горных пород и эквивалентных материалах.

Изобретение относится к механическим испытаниям объектов, а именно к устройствам для испытаний объектов на вибронагружение в различных средах при высоких температурах и давлениях.

Изобретение относится к механическим испытаниям, а конкретно к испытаниям токсичных материалов на растяжение в условиях малоциклового нагружения в вакууме при повышенных температурах.

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения работоспособности соединений при сборке конструкций с помощью муфт из материала с эффектом памяти формы.

Изобретение относится к испытательной технике, в частности к высокотемпературным испытаниям на прочность, и может быть использовано при исследовании свойств наплавленного металла, обладающего высокой твердостью, на установках тепловой микроскопии.

Изобретение относится к испытательному оборудованию, а конкретно к оборудованию для испытаний на статические силовые воздействия при повышенных температурах. Установка содержит силовую раму, тепловую камеру с нагревателем и крышкой, приспособление для установки в камере объекта испытаний (ОИ), механизм растягивающего нагружения, протоки охлаждения, регистрирующую аппаратуру, связанную с ПЭВМ.

Изобретение относится к механическим испытаниям, а конкретно к испытаниям токопроводящих материалов с целью получения диаграммы деформирования при одноосном растяжении и импульсном нагреве в вакууме или инертной среде.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, конкретно к способам определения температуры стеклования Tc, температуры α-перехода Tα температуры начала перехода из стеклообразного состояния в высокоэластичное Tнп и теплостойкости.

Изобретение относится к технике волоконно-оптической связи и может быть использовано для испытания стойкости оптического кабеля (ОК), предназначенного для прокладки в защитном полимерном трубопроводе (ЗПТ), к действию замерзающей воды в ЗПТ.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях для мониторинга прочности ответственного оборудования в процессе его эксплуатации, например паропроводов и корпусных элементов оборудования высокого давления. Сущность: периодически при останове оборудования известным способом проверяют наличие и уровень микроповрежденности наружной поверхности контролируемой детали. При достижении установленного опасного значения указанного уровня из неответственной части контролируемой детали изготавливают серию из нескольких одинаковых образцов круглого поперечного сечения. Каждый из указанных образцов испытывают на разрыв с нагревом образца для создания в нем при нагружении условий ползучести. Оценивают остаточный ресурс контролируемой детали путем математической обработки результатов указанных испытаний. Причем на каждый из указанных образцов наносят острый кольцевой надрез, моделирующий известным способом достигнутый уровень микроповрежденности на поверхности контролируемой детали, а заданное значение механического напряжения в указанном образце при его испытании поддерживают в гладкой части образца за пределами указанного кольцевого надреза. Технический результат: обеспечение возможности учета при испытании образцов уровня микроповрежденности контролируемой детали и проведения указанных испытаний при рабочих параметрах эксплуатации данной детали. 2 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к неразрушающему контролю материалов, обладающих эффектом памяти формы, и может быть использовано для контроля термомеханических характеристик в условиях пассивного деформирования материалов с эффектом памяти формы для определения и контроля температурных точек фазовых превращений, коэффициента термического и упругого восстановления, а также для контроля получаемых сплавов с памятью формы на соответствие заданным термомеханическим характеристикам, необходимым для обеспечения работоспособности термомеханических соединений при сборке с помощью термомеханических муфт из сплава с эффектом памяти формы. Сущность: осуществляют установку в приспособление для деформации кольцевого образца из материала с памятью формы в аустенитном состоянии с подведенными к нему термопарой и датчиком перемещений, определение наружного диаметра кольца образца, вертикальное нагружение кольцевого образца в аустенитном состоянии вдоль его диаметра, измерение упругой аустенитной деформации, охлаждение кольцевого образца с приложенной к нему вертикальной нагрузкой с одновременным измерением накопленной мартенситной деформации до завершения перехода материала с эффектом памяти формы кольцевого образца при прямом мартенситном превращении в мартенситное состояние до получения установившегося значения накопленной мартенситной деформации, определение полной деформации путем суммирования упругой аустенитной деформации и накопленной мартенситной деформации, нагрев кольцевого образца с приложенной к нему вертикальной нагрузкой с одновременным измерением термомеханической восстановленной деформации до завершения перехода материала с эффектом памяти формы кольцевого образца при обратном мартенситном превращении в аустенитное состояние до получения установившегося значения термомеханической восстановленной деформации, снятие приложенной вертикальной нагрузки с последующим измерением упругой восстановленной деформации и остаточной деформации, построение графика зависимости деформации от температуры, определение температур начала и окончания прямого и обратного мартенситных превращений с последующим определением среднеарифметических значений температур прямого и обратного мартенситных превращений, величины гистерезиса, относительных значений упругой аустенитной, накопленной мартенситной, полной, термомеханической восстановленной, упругой восстановленной и остаточной деформаций и термомеханических коэффициентов. Технический результат: повышение точности определения термомеханических характеристик за счет осуществления мартенситного сдвига в направлении вектора действующего напряжения в условиях пассивного деформирования с получением больших значений абсолютной деформации, реализации обратимости процесса формовосстановления, получения кривой (или диаграммы) полного цикла переходных процессов в виде гистерезисной петли, получения всех температурных точек фазовых превращений. 3 ил.

Изобретение относится к области исследования прочностных свойств материалов при высоких температурах в условиях индукционного нагрева в вакууме. Высокотемпературная установка содержит ВЧ индуктор, охватывающий испытуемый образец и жесткие верхний и нижний захваты, удерживающие его, а также контролирующую и регистрирующую аппаратуру. Установка снабжена вакуумной водоохлаждаемой камерой, по центру которой расположен вышеупомянутый ВЧ индуктор, окруженный разъемным тепловым экраном и здесь же, по центру, находятся два захвата, удерживающие образец, рабочая часть которого соответствует высоте ВЧ индуктора. Технический результат: повышение рабочей температуры на испытуемом образце до 4000°С в вакуумной камере. 1 ил.

Изобретение относится к области испытаний материалов, а конкретно к испытаниям металлических цилиндрических образцов методом деформирования (растяжения-сжатия или сжатия-растяжения), и может быть использовано для физического моделирования в лабораторных условиях процессов многократной пластической деформации металлов, происходящих в условиях промышленного производства и эксплуатации. Сущность: осуществляют термомеханическое циклическое нагружение цилиндрического образца, один цикл нагружения которого включает полуциклы растяжения и сжатия и промежуточный разгрузочный этап. Полуциклы растяжения и сжатия или сжатия и растяжения осуществляют с одинаковой скоростью нагружения и с получением одинаковой степени деформации образца, а промежуточный разгрузочный этап выполняют в течение времени, недостаточного для развития в металле образца процессов разупрочнения. Образец выполнен сплошным цилиндрическим с рабочей частью, имеющей понижение диаметра через переходные зоны. Соотношение длины и диаметра рабочей части образца составляет 1,0÷1,4. Технический результат: обеспечение многократного циклического воздействия растяжением-сжатием или сжатием-растяжением с сохранением исходной формы и размеров образца, исключение потери устойчивости деформации и локального разрушения образца, повышение точности контроля результатов испытаний. 2 н. и 3 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на прочность. Установка содержит основание, установленные на нем соосные захваты для образца, механический нагружатель, связанный с захватами, термический нагружатель, включающий вал, установленный параллельно захватам, привод вращения вала, шкив, установленный на валу, бесконечный элемент, охватывающий шкив без возможности скольжения, теплопроводное кольцо для закрепления на поверхности образца, охватываемое бесконечным элементом с возможностью фрикционного взаимодействия, и приспособление для регулируемого усилия натяжения бесконечного элемента. Установка снабжена дополнительным валом, установленным параллельно первому валу с противоположной стороны от оси захватов, приводом вращения дополнительного вала, дополнительным шкивом, установленным на дополнительном валу оппозитно первому шкиву, дополнительным бесконечным элементом, охватывающим дополнительный шкив без возможности скольжения, и дополнительным приспособлением для регулируемого усилия натяжения дополнительного бесконечного элемента. Дополнительный бесконечный элемент установлен с возможностью фрикционного взаимодействия с теплопроводным кольцом. Технический результат: возможность проводить испытания образцов при нагружении участков образца как при осевом и термическом нагружении, так и дополнительно при нагружении кручением и изгибом, что повышает объем информации при исследованиях свойств материалов. 1 ил.

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано на тепловых электростанциях для мониторинга прочности и оценки остаточного ресурса ответственного оборудования, например паропроводов и корпусных элементов оборудования высокого давления, в процессе его эксплуатации в условиях высоких температур и агрессивной рабочей среды. Сущность изобретения: после останова оборудования фиксируют время τэ с начала эксплуатации указанной детали до указанного останова, проверяют наличие микроповрежденностей в различных зонах наружной поверхности контролируемой детали, а также максимальный уровень микроповрежденности в наиболее поврежденной зоне. Искомое значение остаточного ресурса рассчитывают по математическому соотношению τор=Кор⋅τэ, где Кор - коэффициент остаточного ресурса, определяемый исходя из его экспериментальной зависимости от уровня микроповрежденности Ωкд контролируемой детали. Вырезают часть металла из наименее нагруженного участка контролируемой детали для изготовления серии образцов круглого сечения, каждый из образцов испытывают на ползучесть до разрушения с длительной нагрузкой при температуре выше рабочего значения в процессе эксплуатации КД. По результатам испытаний указанных образцов строят для данной серии графическую зависимость уровня микроповрежденности образца Ωоб от выработанной доли долговечности τвд=τi/τк, где τi - текущее время от начала испытаний, τк - время от начала испытаний до разрушения образца. Для нескольких точек (i) указанной графической зависимости рассчитывают значения коэффициента остаточной долговечности Код образца, исходя из математического соотношения τодi=Kодi⋅τi, где τодi=τк⋅(1-τвд). Строят новую графическую зависимость Код=f(Ωоб) с исключением параметра времени. Рассчитывают остаточный ресурс контролируемой детали, используют математическое соотношение τор=Код⋅τэ, в котором Код определяют из указанной графической зависимости Код=f(Ωоб). Серию составляют из по меньшей мере двух пар образцов, причем один из образцов каждой пары оставлен сплошным, а другой - с выполненным в центральной части кольцевым клиновидным надрезом, моделирующим известным способом заданное значение поверхностной микроповрежденности контролируемой детали так, чтобы уровню микроповрежденности Ωкд соответствовал уровень ω поврежденности сечения образца указанным кольцевым надрезом. Испытания образцов ведут при удельной нагрузке в пределах 0,9-1,1 от рабочего значения и температуре для каждой последующей пары выше предыдущей на 10-50°C, причем минимальная из указанных температур выбирается из условия, чтобы время до разрушения образца не превосходило 6200 ч. Образцу с кольцевым надрезом каждой выбранной для испытания пары задают свое значение ω. При построении указанной зависимости уровня микроповрежденности Ωоб=f(τвд) относительное время нагружения сплошного образца каждой из указанных пар до его разрыва на указанной графической зависимости фиксируют в качестве τк=1, а относительное время нагружения образца с кольцевым надрезом до его разрушения - в качестве τвд. Технический результат: устранение необходимости промежуточных остановов и замеров в процессе испытания образцов. 6 ил., 3 табл.
Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление образцов, определение их твердости в исходном состоянии и после облучения быстрыми нейтронами, определение сдвига температуры хрупко-вязкого перехода, причем изготавливают образцы стали с переменной концентрацией одного из компонентов по одному из габаритов образца, их макротвердость в точках с одинаковой концентрацией изменяемого компонента определяют методом Бринелля, а сдвиг температуры хрупко-вязкого перехода ΔТк для каждой точки определяют по формуле: ΔТк=А+В(ΔНВ)2, где ΔНВ=НВОБ-НВИ, НВОБ - твердость стали после облучения, МПа, НВИ - твердость стали в исходном состоянии, МПа, А=100°C, В=0,00012°C/(МПа)2. Изобретение позволяет снизить трудоемкость и время определения сдвига критической температуры хрупкости при разработке сталей для корпусов реакторов типа ВВЭР. 5 з.п. ф-лы.

Изобретение относится к способам воспроизведения аэродинамического теплового и силового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Сущность: осуществляют силовое воздействие к наружной поверхности обтекателя через многослойную структуру, состоящую из жесткой оболочки, упругой среды, гибкой и дискретной теплоизоляции и контактного нагревателя, а составляющие внешней силовой нагрузки прикладываются к наружной поверхности жесткой оболочки. Поперечная сила прикладывается в плоскости перпендикулярной плоскости приложения продольных сил, а теплоизоляция состоит из дискретных секторов эквидистантных наружной поверхности обтекателя. В плоскости приложения продольных сил на наружной поверхности обтекателя через нагреватель монтируют гибкую теплоизоляцию. Технический результат - повышение точности воспроизведения силовой нагрузки на обтекатель ракеты и увеличение технических возможностей оборудования для наземной отработки новых конструкций ракетной техники. 1 ил.

Изобретение относится к способам испытания металлов на растяжение с высокой температурой нагрева и может быть использовано при определении зависимости интенсивности напряжения от степени и скорости деформации, которые необходимо учитывать в технологических расчетах формоизменяющих операций изотермической штамповки листовых металлов. Сущность: перед испытанием производят измерение начальных размеров поперечных сечений образца, закрепление образца в захватах испытательной машины и нагревательном устройстве, установку термопар для измерения температуры на образце, нагрев образца до заданной температуры и времени выдержки. Затем испытание на растяжение осуществляют с записью диаграммы «нагрузка-перемещение». В процессе растяжения со скоростью перемещения захватного органа V1 на величину удлинения 5÷10% изменяют скорость перемещения захватного органа до скоростей перемещения V2 без остановки процесса растяжения, растягивают образец на величину удлинения 5÷10% и снова изменяют скорость перемещения захватного устройства до скорости V3 и т.д. с последующим повторением цикла переключения скоростей перемещения захватного устройства в процессе растяжения и получением пилообразной диаграммы «нагрузка-перемещение», на которой записывают не менее трех циклов переключения скоростей перемещения захватного устройства. Технический результат: повышение точности и снижение трудоемкости испытания путем определения зависимости интенсивности напряжения от степени и скорости деформации при растяжении с повышенной температурой образца из металла. 5 ил., 1 табл.

Изобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб. Предложено автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, согласно которому процесс охлаждения осуществляется комбинированно, как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечении образца. Технический результат - ускорение и автоматизация процесса охлаждения образцов в процессе проведения испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения. 1 ил.
Наверх