Способ разрушения мембраны

Изобретение относится к машиностроению и может быть использовано при экспериментальной отработке объектов, в состав которых входит разрушаемая мембрана. Перед погружением объекта, содержащего разрушаемую мембрану, в стенд рассчитывают величину гидростатического давления, давления наддува стенда, объем его газовой подушки, диаметр дренажного отверстия и градиент изменения давления в стенде при сбросе его в атмосферу. Затем нагружают стенд гидростатическим давлением и одновременно производят наддув внутренней полости отсека с мембраной компенсирующим давлением воздуха. После этого производят дополнительный наддув стенда и внутренней полости давлением заданной величины, а затем производят сброс давления воздуха из стенда с заданным градиентом изменения давления и регистрируют характер разрушения мембраны и величину избыточного давления, разрушающего ее. Техническим результатом является повышение точности определения характеристик разрушения мембраны и снижение стоимости экспериментальных работ. 1 ил.

 

Изобретение относится к машиностроению и может быть использовано при экспериментальной отработке объектов, содержащих разрушаемую мембрану.

Известны различные разрушаемые крышки пусковой трубы, например, патенты на изобретения №2460960, 2461787, МПК F41F 3/077.

Известно также предохранительное устройство с разрушаемой мембраной SU А.с. 1213300, кл. F16K 17/16.

Известна установка для испытаний мембранных узлов на воздействие внешнего избыточного давления, в которой мембранный узел устанавливают в корпус, нагружают мембрану внешним избыточным давлением и измеряют величину ее прогиба (СССР, А.с. №206121, МКИ F41F 25|00, 1984).

Известен также способ определения работоспособности мембраны в составе экспериментальной сборки 12к232. 600 на установке 32к123, корпус с установленной в нем мембраной, в котором мембрану подвергают динамическому воздействию воздухом и жидкостью, а затем производят проверки ее герметичности и величину давления, при котором прорывается мембрана (Отчет по испытаниям 32-230-78. ГОНТИ - 11, 1978).

За прототип принят способ определения характеристик разрушения мембраны в составе объекта, реализованном на стенде, представляющем собой цилиндрическую емкость внутренним диаметром 3 м, высотой 10 м и объемом 75 м3 и предназначенном для проверки работоспособности систем ракеты при воздействии на них внешнего давления на испытуемый узел до 15 атмосфер. Испытания по определению характеристик разрушения мембраны внутренним избыточным давлением от работающего порохового аккумулятора давления (ПАД), размещенного внутри объекта, производят в следующей последовательности: испытуемый объект устанавливают в стенде, стенд заполняют водой, затем производят задействование ПАДа и регистрируют параметры, характеризующие разрушение мембраны (СКБ-385, КБ машиностроения, ГРЦ «КБ им. академика В.П. Макеева», М.: «Военный парад» - ГРЦ «КБ им. академика В.П. Макеева», 2007, стр. 187 и технический отчет №033/044-060-04, ГОНТИ-11, 2004).

Недостатком прототипа является сложность и недостаточная точность определения параметров, характеризующих разрушение мембраны (давления и визуального контроля), а также повышенная стоимость экспериментальных работ, обусловленная необходимостью использования ПАДа.

Задачей изобретения является устранение недостатков прототипа.

Поставленная задача решается тем, что при исследовании характеристик разрушения мембраны используется способ, включающий помещение испытуемого объекта, содержащего мембрану с замкнутой подмембранной полостью, в емкость, частичное заполнение емкости водой, герметизацию емкости, создание в ней гидростатического давления, обеспечение заданного закона изменения перепада давления между емкостью и подмембранной полостью, вызывающего разрушение мембраны, и регистрацию параметров разрушения мембраны, в котором заполнение емкости водой производят до уровня, обеспечивающего расчетный объем воздушной подушки, а заданный закон изменения перепада давления организуют путем сброса давления из воздушной подушки емкости по законам адиабатического дренажа в атмосферу.

Совокупность отличительных признаков предложения обеспечивает решение поставленной задачи.

Сущность изобретения поясняется чертежом, где на фиг. 1 показана конструктивная схема стенда для определения характеристик разрушения мембраны с составе объекта, содержащего замкнутый объем, предлагаемым способом.

Предназначенный для этого стенд представляет собой цилиндрическую емкость 1, в которую помещают испытуемый объект 2, включающий разрушаемую мембрану 3 с замкнутой подмембранной полостью 4.

Стенд снабжен системами:

- заправки 5 и слива 6 воды;

- наддува 7 и сброса 8 давления воздуха;

- измерения, включающей датчик уровня 9 и датчик давления 10.

На емкости 1 установлен предохранительный клапан 11. Слив воды из стенда производится в сливной трап 12.

На испытуемом объекте 2 установлена система наддува 13, датчик давления 14 и предохранительный клапан 15.

Последовательность проведения испытания.

Предварительно рассчитывают величины гидростатического давления, давления наддува емкости 1, объем воздушной подушки 16, диаметр дренажного отверстия в системе сброса давления (дренажа) 8 и градиент изменения давления в емкости 1 при сбросе воздуха в атмосферу. Затем производят заполнение емкости 1 водой 17 до уровня, обеспечивающего расчетный объем воздушной подушки 16. Контроль уровня воды в емкости 1 обеспечивается датчиком уровня 9. Одновременно с нагружением емкости 1 гидростатическим давлением производят наддув подмембранной полости 4 компенсирующим давлением воздуха. После этого производят дополнительный наддув емкости 1 и подмембранной полости 4 до достижения расчетной величины, обеспечивающей получение заданного графика изменения давления, имитирующего штатные условия работы испытуемого объекта 2. Затем производят сброс воздуха из емкости 1 с заданным градиентом изменения давления (обеспечивается установкой в систему сброса 8 шайбы соответствующего диаметра, на чертеже шайба не показана) и регистрируют характер разрушения мембраны 3. Измерение перепада давления, вызывающего разрушение мембраны 3, осуществляют датчиками давления 10 и 14. По окончании испытания производят слив воды 17 из емкости 1 и дефектацию материальной части.

Предложенный способ позволяет повысить точность определения характеристик разрушения мембраны в составе отсека ракеты и сократить расходы на проведение экспериментальных работ.

Предложение рекомендовано к внедрению.

Способ разрушения мембраны, включающий помещение испытуемого объекта, содержащего мембрану с замкнутой подмембранной полостью, в емкость, частичное заполнение емкости водой, герметизацию емкости, создание в ней гидростатического давления, обеспечение заданного закона изменения перепада давления между емкостью и подмембранной полостью, вызывающего разрушение мембраны, и регистрацию параметров разрушения мембраны, отличающийся тем, что заполнение емкости водой производят до уровня, обеспечивающего расчетный объем воздушной подушки, а заданный закон изменения перепада давления организуют путем сброса давления из воздушной подушки емкости по законам адиабатического дренажа в атмосферу.



 

Похожие патенты:

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, а также регистрирующую аппаратуру, при этом на основании устанавливают исследуемый объект, например аппаратуру летательных аппаратов, в виде двух одинаковых бортовых компрессоров для получения сжатого воздуха.

Изобретение относится к машиностроению к способам определения эффективности взрывозащиты в испытательном макете взрывоопасного объекта. В боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения.

Изобретение относится к взрывным метающим устройствам, которые могут быть использованы при испытаниях военной техники. Способ задержки прорыва продуктов взрыва по краям метаемой пластины-ударника во взрывном метающем устройстве включает заглубление краев пластины-ударника в пазы, выполненные в примыкающих к ней элементах взрывного метающего устройства.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. Систему мониторинга с обработкой полученной информации об опасной зоне используют в испытательном боксе.

Изобретение относится к области испытания материалов, к исследованиям поведения веществ при динамическом воздействии на них и может быть использовано в любой области техники, где необходимо знание, например, прочностных свойств перспективных конструкционных материалов, жидкостей, газов при динамических нагрузках.

Изобретение относится к машиностроению. Установка содержит взрывной сосуд, в котором производится взрыв горючей смеси.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования, в частности защиты аппаратов от разрушения при взрыве горючей смеси разрывной мембраной.

Изобретение относится к машиностроению, в частности к установке для исследования взрывозащитных мембран. Установка для исследования взрывозащитных мембран содержит взрывной сосуд.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик. Затем сравнивают полученные характеристики и делают выводы об эффективности виброизоляции каждой из исследуемых систем. При этом для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний, при расшифровке которых судят о собственных частотах системы и логарифмическом декременте затухания колебаний каждой из исследованной двухмассовой системы виброизоляции. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 4 ил.

Изобретение относится к области прикладной газовой динамики, а именно к способам генерирования воздушной ударной волны (ВУВ) путем создания газовой смеси в эластичной оболочке, расположенной в ударной трубе, и подрыва, и может быть применено для испытаний конструкций и объектов на механическое действие импульса давления. Способ включает подачу в эластичную оболочку горючего газа и газа-окислителя, с образованием взрывчатой газовой смеси стехиометрического состава, инициирование взрыва газовой смеси. В качестве горючего газа используют ацетилен, при этом создают необходимое количество и концентрацию взрывчатой газовой смеси по заданным параметрам ударной волны. Инициирование взрыва осуществляют генератором детонационной волны, заполненным газовой смесью ацетилена и газа-окислителя сбалансированного состава. Газовые смеси в герметизирующей оболочке и генераторе детонационной волны разделяют мембраной. Взрыв газовой смеси в генераторе детонационной волны инициируют высоковольтным искровым разрядом. Герметизирующую оболочку помещают в зарядной секции ударной трубы. Технический результат способа - обеспечение возможности испытаний объектов и конструкций в ударных трубах на действие генерируемой ВУВ с расширенным диапазоном параметров, при снижении токсичности и удешевлении при его применении. 2 з.п. ф-лы, 3 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик. Затем сравнивают полученные характеристики и делают выводы об эффективности виброизоляции каждой из исследуемых систем. При этом для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний. Кроме того, для измерения амплитудно-частотных характеристик основания дополнительно устанавливают датчик, сигнал с которого направляют на усилитель и спектрометр для получения коэффициентов передачи вибрации от основания через жесткую переборку, с установленными бортовыми компрессорами, и при обработке полученных амплитудно-частотных характеристик выявляют оптимальные характеристики: жесткость и коэффициент демпфирования каждой из систем виброизоляции. Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 5 ил.

Изобретение относится к устройствам для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в том числе и пространственных систем. Стенд состоит из приспособления в виде панели с установленными на ней испытуемой аппаратурой и регистрирующими датчиками, пиротехнических устройств, при этом панель выполнена в виде сменной металлической плиты, установленной на пневмоопоры с помощью зажимов, а пиротехнические устройства выполнены неразделяемыми с резьбой на цилиндрическом корпусе и подвижным сменным бойком, которые установлены в переходные элементы, выполненные в виде полого цилиндра с днищем с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой для крепления пиротехнического устройства, и с фланцем с отверстиями с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры, при этом оси симметрии бойков лежат в срединной плоскости панели или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка. Технический результат заключается в повышении качества испытаний приборов и оборудования на ударные воздействия высокой интенсивности в более широком диапазоне воспроизводимых нагрузок. 5 ил., 1 табл.

Изобретение относится к области специального оборудования, предназначенного для испытаний на работоспособность средств инициирования (СИ), взрывных и пиротехнических устройств (ВУ и ПУ), а также систем взрывной автоматики (СВА), в частности электродетонаторов (ЭД) в условиях действия ударных перегрузок. Стенд содержит испытательную зону и операционную зону, в испытательной зоне расположен копер, управляемый из отделенной от испытательной зоны перегородкой операционной зоны, копер содержит наковальню, молот с расположенным на нем испытуемым изделием, захватное приспособление, посредством которого имеется возможность подъема-спуска молота через трос, связанный с электродвигателем, пульт управления которого находится в операционной зоне. В испытательную зону введены подрывная установка, устройство формирования электрической команды на задействование подрывной установки и крешерное устройство, установленное на наковальне, формирующее входной импульс ударного ускорения на места крепления имеющейся оснастки, формирующей окончательный вид импульса ударного ускорения, блок контактных датчиков, соединенный с испытуемым изделием, двухканальное устройство измерения параметров импульса ударного ускорения и, по крайней мере, один многоканальный цифровой осциллограф. Технический результат: синхронизация выдачи электрического импульса на задействование испытываемого устройства с амплитудно-временными характеристиками импульса ударного ускорения. На стенде могут испытываться устройства как с низковольтным, так и с высоковольтным задействованием и временем работы от долей миллисекунды до десятков миллисекунд с возможностью испытания устройств и систем, в которых реализуются сразу несколько физико-химических процессов или срабатывают несколько устройств. 2 ил.

Изобретение относится к области взрывозащиты технологического оборудования. Стенд для исследований параметров взрывозащитных устройств содержит системы мониторинга и обработки полученной информации об опасной зоне, размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон. Чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами. Защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса. Внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении. Выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта. В потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко вмонтирован в потолок макета, а на втором имеется горизонтальная перекладина. Между взрывным осколочным элементом и проемом, выполненным в потолочной части макета и закрытым взрывозащитным элементом, по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен со входом блока записывающей и регистрирующей аппаратуры. По обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры. В макете установлен набор взрывных осколочных элементов, состоящий, по крайней мере, из двух взрывных осколочных элементов, соответственно соединенных с инициаторами взрыва, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, которые проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов. На штырях, к их горизонтальной перекладине, закрепляют динамометры, выполненные в виде, по крайней мере, двух листовых рессор, один конец каждой из которой жестко закрепляют на листах-упорах, а второй - на свободно размещенной и охватывающей штыри втулке. Листовые рессоры выполняют арочного типа с выпуклостью, направленной в сторону от штырей, а на периферийной части выпуклости каждой листовой рессоры закрепляют тензорезисторы. На одной рессоре - с внутренней стороны, а на другой - с внешней, для регистрации как напряжений сжатия, так и растяжения. Сигналы с тензорезисторов направляют на тензоусилитель, а с него на блок записывающей и регистрирующей аппаратуры, выход которого соединяют с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта. Технический результат - повышение эффективности защиты технологического оборудования от взрывов. 3 ил.

Изобретение относится к области испытательных и экспериментальных исследований по определению параметров элементов осколочного фронта различных боеприпасов. В способе применяют в качестве регистратора фактов пробития жесткую каркасную систему, состоящую из 6 квадратных рамок, выполненных из деревянного бруса квадратного сечения со стороной длиной 20 мм с прикрепленными к ним преградами из пенопласта или пенополиуретана со стороной длиной 1080 мм и толщиной 15 мм, разнесенных на равном расстоянии. На преграды нанесены размерные линейки. Для регистрации временных моментов фактов пробития используется цифровая высокоскоростная камера с разрешением не менее 640×480 пикселей при скорости в 19000 кадр/с, установленная за защитное сооружение на штатив с высотой h, равной 500 мм. За наиболее удаленной от эпицентра взрыва рамкой с преградой устанавливается осколкоулавливатель, состоящий из деревянной плиты толщиной 300 мм с квадратным сечением со стороной длиной 1080 мм, и баллистический тканевый пакет квадратной формы со стороной 1080 мм, состоящий из 100 слоев арамидной ткани ТСВМ ДЖ арт. 56319. Изобретение позволяет снизить число подрывов однотипного испытуемого боеприпаса, увеличить число получаемых величин исходных данных, необходимых для расчёта параметров объемно-распределённых элементов осколочного фронта. 5 з.п. ф-лы, 2 ил.

Изобретение относится к испытательному оборудованию и может быть использовано для испытания систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, и настраивают регистрирующую аппаратуру, а на основании устанавливают два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата. При этом один компрессор устанавливают на штатных резиновых виброизоляторах, а другой компрессор устанавливают на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же, как и штатные резиновые виброизоляторы компрессора, устанавливают на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании. На жесткой переборке, между компрессорами, закрепляют вибродатчик, сигнал с которого направляют на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров. Затем делают выводы об эффективности виброизоляции каждой системы, на которой они установлены, а для определения собственных частот каждой из исследуемых систем виброизоляции производится имитация ударных импульсных нагрузок на каждую из систем и записываются осциллограммы свободных колебаний, при расшифровке которых судят о собственных частотах системы и логарифмическом декременте затухания колебаний каждой из исследованной двухмассовой системы виброизоляции. Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 4 ил.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата. При этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции. Последняя включает в себя резиновые виброизоляторы и упруго-демпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же, как и штатные резиновые виброизоляторы компрессора, установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании. На жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров, и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 1 з.п. ф-лы, 5 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. Это достигается тем, что в стенде для исследования параметров взрывозащитных элементов при чрезвычайной ситуации на взрывоопасном объекте, содержащем систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом, устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. 3 ил.
Наверх