Устройство внутритрубной дефектоскопии

Заявляемое изобретение относится к области неразрушающего контроля трубопроводного транспорта, в частности к устройствам внутритрубной диагностики, и предназначено для пространственной привязки результатов их измерений, привязки координат обнаруженных дефектов к координатам земной поверхности. Техническое решение обеспечивает упрощение конструкции системы внутритрубной дефектоскопии и повышение ее надежности благодаря тому, что система внутритрубной дефектоскопии содержит дефектоскоп и размещенные вдоль трубопровода пассивные маркерные накладки, выполненные в виде изогнутых металлических пластин и закрепленные на поверхности трубопровода с возможностью прилегания их внутренней поверхности к наружной поверхности трубопровода, при этом толщина маркерной накладки составляет ≥0,5 толщины стенки трубопровода, а дефектоскоп снабжен модулем измерения толщины стенки трубопровода. 5 ил.

 

Заявляемое изобретение относится к области неразрушающего контроля трубопроводного транспорта, в частности к устройствам внутритрубной диагностики, и предназначено для пространственной привязки результатов их измерений, привязки координат обнаруженных дефектов к координатам земной поверхности.

Существуют опорные точки привязки в виде активных маркеров, которые фиксируют факт прохождения дефектоскопа мимо них. Пассивные маркеры представляют собой устройства, искусственно созданные на трубопроводе, которые хорошо определяются системой записи дефектоскопа. На месте заложения пассивных маркеров на поверхности земли устанавливают специальные метки с записью расстояния и номера маркера.

Известно устройство для определения места дефекта трубопровода, содержащее маркерные станции, установленные вдоль трубопровода, снаряд-дефектоскоп, причем маркерные станции содержат таймеры, а снаряд-дефектоскоп - высокостабильный таймер и измерители пройденного пути и текущего времени, при этом устройство дополнительно содержит блок синхронизации и хранения информации, синхровыход которого соединен с входом синхронизации таймера каждой маркерной станции, входом синхронизации высокостабильного таймера снаряда-дефектоскопа, а информационный вход блока синхронизации и хранения информации присоединен к информационному выходу маркерных станций (патент SU №1770750, МПК G01D 5/00, опубл. 23.10.1992. Устройство для определения места дефекта трубопровода).

Известное устройство требует размещения множества маркерных станций на поверхности земли над трубопроводом, что усложняет конструкцию и повышает стоимость работы, кроме того, устройство отличается повышенной вандалоуязвимостью и невысокой надежностью его работы.

Недостатком этого устройства является также невысокая точность определения географических координат трассы трубопровода в связи с тем, что они с нужной точностью определены только для мест установки маркерных станций и не определены для текущей координаты при движении дефектоскопа.

Известно также устройство привязки измерителя пройденного пути движущегося в трубопроводе транспортного средства с координатами опорной точки на трубопроводе, содержащее расположенные вне трубопровода в опорной точке последовательно соединенные передатчик и передающую магнитную антенну и расположенные на транспортном средстве последовательно соединенные приемную магнитную антенну, обнаружитель сигнала, формирователь маркерного импульса и блок записи, при этом в устройство введен магнитный обнаружитель транспортного средства, причем магнитный обнаружитель транспортного средства установлен вне трубопровода в опорной точке и его выход соединен с входом включения передатчика (патент SU №1327802, МПК G01S 5/16, опубл. 30.07.1987. Способ привязки движущегося в трубопроводе транспортного средства с координатами опорной точки на трубопроводе и устройство для его осуществления).

В данном устройстве магнитный обнаружитель генерирует сигнал в результате относительного движения магнитов, размещенных на приближающемся внутритрубном дефектоскопе. Чувствительность магнитного обнаружителя зависит от различных условий его применения, в частности от толщины и качества состава грунта над трубопроводом, качества изоляционного слоя трубопровода и влияния на него климатических условий, что приводит к снижению надежности работы устройства.

Для каждой опорной точки, размещенной над трубопроводом, требуется установка передатчика с антенной, требующего для своей работы независимого источника питания, что связано с усложнением устройства и удорожанием работы устройства привязки измерителя пройденного пути, особенно в условиях низких температур.

Многошаговое определение опорной точки, содержащее фиксирование приближающегося в трубопроводе дефектоскопа наземным магнитным обнаружителем и последующее включение передатчика с антенной, генерирующего магнитное поле для определения обнаружителем дефектоскопа, приводит к усложнению конструкции и работы устройства привязки измерителя пройденного пути.

Задача заявляемого технического решения заключается в упрощении устройства внутритрубной дефектоскопии и повышении его надежности.

Поставленная задача решается благодаря тому, что в устройстве внутритрубной дефектоскопии, содержащем маркерные накладки и дефектоскоп, снабженный модулем измерения толщины стенки трубопровода, маркерные накладки выполнены в виде изогнутых металлических пластин, закрепленных на поверхности трубопровода вдоль его продольной оси, с возможностью прилегания их внутренней поверхности к наружной поверхности трубопровода, при этом толщина маркерной накладки составляет ≥0,5 толщины стенки трубопровода.

Выполнение опорных точек привязки в виде пассивных маркерных накладок, закрепленных на поверхности трубопровода вдоль его продольной оси, и наличие дефектоскопа, снабженного модулем измерения толщины стенки трубопровода, обеспечивает точное и недорогое позиционирование внутритрубного дефектоскопа при его перемещении внутри трубопровода. Наличие модуля измерения толщины стенки трубопровода гарантирует надежное обнаружение опорных точек привязки, соответствующих определенным маркерным накладкам, и является простым решением для внутритрубной дефектоскопии.

Выполнение маркерных накладок в виде изогнутых металлических пластин, закрепленных на поверхности трубопровода с возможностью прилегания внутренней поверхности маркерных накладок к наружной поверхности трубопровода, и толщина которых составляет ≥0,5 толщины стенки трубопровода, обеспечивает гарантию фиксирования опорных точек привязки, соответствующих определенным маркерным накладкам, что ведет к упрощению пространственной привязки результатов внутритрубной дефектоскопии.

Толщина маркерных накладок ≥0,5 толщины стенки трубопровода является необходимым и достаточным условием для обнаружения внутритрубным дефектоскопом искусственно созданных локальных утолщений стенки трубопровода путем размещения на его поверхности маркерных накладок.

Таким образом, использование указанных пассивных маркерных накладок упрощает конструкцию, повышает ее надежность, а также снижает стоимость устройства при обеспечении требуемой точности пространственной привязки результатов дефектоскопии при движении дефектоскопа внутри трубопровода.

Наличие отличительных признаков в заявляемом техническом решении позволяет сделать вывод о его соответствии условию патентоспособности «новизна». Существенные признаки заявляемого изобретения, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии изобретения условию патентоспособности «изобретательский уровень». Условие патентоспособности «промышленная применимость» подтверждена на примере конкретного осуществления.

Сущность изобретения поясняется чертежами, где

на фиг. 1 - общий вид размещения маркерных накладок на трубопроводе и дефектоскопа внутри трубопровода;

на фиг. 2 - схема монтажа маркерной накладки на трубопроводе;

на фиг. 3 - маркерная накладка в аксонометрии;

на фиг. 4 - поперечный разрез трубы и маркерной накладки;

на фиг. 5 - поперечный разрез трубы и маркерной накладки на изоляционном покрытии трубы.

Устройство внутритрубной дефектоскопии содержит маркерные накладки в виде изогнутых пластин 1, размещенных на наружной поверхности трубопровода 2 вдоль его продольной оси, и дефектоскоп 3, проходящий внутри трубопровода 2 и снабженный модулем 4 измерения толщины стенки трубопровода 2. Маркерные накладки 1 закреплены на трубопроводе 2 таким образом, что их внутренняя поверхность прилегает к наружной поверхности трубопровода 2. Для требуемой точности привязки дефекта к координатам местности маркерные накладки размещают на поверхности трубопровода 2 вдоль его продольной оси регулярно на расстоянии 1,5÷2,0 км друг от друга, что обеспечивает точность определения координат дефекта с погрешностью ±2,0 м. Маркерные накладки 1 выполнены в виде изогнутых металлических пластин и имеют толщину ≥0,5 толщины стенки трубопровода, благодаря чему модуль 4 дефектоскопа 3 фиксирует утолщения стенки трубопровода 2, соответствующие определенным маркерным накладкам 1. При толщине накладок <0,5 толщины стенки трубопровода 2 не гарантируется обнаружение утолщения стенки трубопровода 2.

В данном варианте исполнения маркерные накладки 1 закреплены с помощью термоусаживающейся ленты 5. Для установки маркерных накладок 1 поверхность трубопровода 2 должна быть тщательно очищена от грунта, грязи и пыли, после чего устанавливают маркерную накладку 1 по месту, и газовой горелкой производят нагрев поверхностей изоляции трубы и маркерной накладки 1 в местах контакта с термоусаживающейся лентой 5 до температуры +90±5°С. Затем устанавливают ленты 5, предварительно подогрев слой клея лент 5 газовой горелкой, и прикатывают ленты 5 термостойким роликом. Срок службы рассматриваемой маркерной накладки 1 составляет 30 лет. Каждой маркерной накладке 1 соответствует определенная опорная точка с конкретными координатами привязки к местности.

При использовании современных средств неразрушающего контроля в виде профилемеров, магнитных или ультразвуковых дефектоскопов оптимальными являются маркерные накладки, имеющие форму изогнутых пластин 1, изготовленных из металла и закрепленных на поверхности трубопровода 2, имеющих толщину ≥0,5 толщины стенки трубопровода 2 и имеющих определенные размеры, например для трубопроводов диаметром 530÷1420 мм размеры прямоугольных пластин составляют 450×450 мм. При этом установленные маркерные изогнутые пластины 1 должны иметь акустический контакт с основным материалом трубопровода 2, то есть должны восприниматься средствами контроля трубопровода 2 как утолщение его стенки. При прокладке трубопроводов 2 координаты этих маркерных изогнутых пластин 1 фиксируются на местности с помощью спутниковой системы определения координат. При прохождении магнитного дефектоскопа внутри трубопровода 2 под маркерной изогнутой пластиной 1 его модуль определения толщины стенки трубы выявляет маркерные пластины 1 как утолщение стенки трубопровода и определяет тем самым координату привязки к местности.

Благодаря выполнению маркерных накладок в виде изогнутых металлических пластин, размещенных непосредственно на поверхности трубопровода вдоль его продольной оси таким образом, что их внутренняя поверхность прилегает к наружной поверхности трубопровода, а их толщина составляет ≥0,5 толщины стенки трубопровода, обеспечивается пространственная привязка к местности результатов внутритрубной дефектоскопии, упрощается устройство и повышается надежность его работы.

Устройство внутритрубной дефектоскопии, содержащее маркерные накладки и дефектоскоп, снабженный модулем измерения толщины стенки трубопровода, характеризующееся тем, что маркерные накладки выполнены в виде изогнутых металлических пластин, закрепленных на поверхности трубопровода вдоль его продольной оси, с возможностью прилегания их внутренней поверхности к наружной поверхности трубопровода, при этом толщина маркерной накладки составляет ≥0,5 толщины стенки трубопровода.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано при эксплуатации оборудования тепловых электростанций для мониторинга прочности ответственного оборудования.

Изобретение относится к области очистки внутренней полости и внутритрубного диагностирования технологических трубопроводов перекачивающих станций жидких углеводородов и нефтеперерабатывающих предприятий.

Изобретение относится к системам мониторинга состояния основного и вспомогательного оборудования. Технический результат заключается в повышении эффективности и безопасности эксплуатации промышленного оборудования.

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов).

Группа изобретений относится к трубопроводному транспорту. Для защиты от коррозии в трубопроводе используется катодная защитная система, которая содержит множество расположенных в почве стержней заземления, которые электрически соединены каждый с почвой и электрически связаны с находящимся в соединении с почвой трубопроводом.

Изобретение относится к области инженерной геодезии и может быть использовано для контроля положения трубопроводов надземной прокладки. На сваи опор трубопровода устанавливают деформационные марки.

Способ предназначен для обеспечения промышленной безопасности технологического оборудования установок. Способ включает анализ требований нормативных документов на технические устройства и занесение сведений об их характеристиках в информационную базу данных, оценку технического состояния технических устройств в разные периоды эксплуатации их с учетом их технического состояния до начала эксплуатации, формирование общей информационной базы данных о фактическом техническом состоянии устройств в разные периоды времени и динамики развития технического состояния в будущем на основе сведений, полученных при оценке технического состояния на предыдущих стадиях.

Изобретение относится к области автоматизированных систем мониторинга и диагностики технического состояния металлических подземных сооружений. Технический результат - повышение качества комплексного дистанционного мониторинга и анализа уровня коррозионной защиты подземных сооружений для определения причин возникновения коррозии и принятие своевременных мер по ее предотвращению.

Новое техническое решение обеспечивает расширение функциональных возможностей, повышение удобства и снижение трудоемкости обслуживания, а также создание компактной конструкции контрольно-измерительного пункта, благодаря тому, что стойка контрольно-измерительного пункта выполнена из отрезка трубы прямоугольного поперечного сечения, на верхнем торце которой размещен клеммный терминал, содержащий опорно-соединительное кольцо, на внутренней поверхности которого выполнены держатели в виде вертикальных направляющих с пазами, в которых установлены взаимозаменяемые клеммные панели; на каждой клеммной панели выполнена сетка монтажных отверстий, при этом соседние отверстия расположены на одинаковом расстоянии друг от друга, крышка выполнена в виде съемного колпака, представляющего собой четырехгранную призму, установленную с возможностью взаимодействия с опорно-соединительным кольцом, километровый знак выполнен сборно-разборным и состоит из двух указательных пластин и двух соединительных кронштейнов.

Изобретение относится к обеспечению безопасности эксплуатируемых подземных трубопроводов и предназначено для предотвращения врезок в трубу, установке боеприпасов для ее подрыва, имитаторов утечек перекачиваемого продукта для дезинформации службы безопасности, а также для обнаружения утечек перекачиваемого продукта.

Изобретение относится к защите трубопроводного транспорта, предназначено для наблюдения, обнаружения и локализации утечек, в т.ч. от несанкционированных врезок, а также гидратных или парафиновых пробок, и может быть использовано в различных отраслях народного хозяйства. Технический результат заключается в повышении точности и оперативности локации несанкционированных импульсов давления, сокращении времени обнаружения и точности определения места утечки, а также гидратной или парафиновой пробки, в автоматическом отсечении вышедшего из строя участка трубопровода, не дожидаясь команды диспетчера. Система контроля состояния трубопровода включает аналого-цифровой преобразователь, к которому подключены персональный компьютер, генератор гидравлических импульсов в качестве источника возбуждения импульса, размещенный в начале контролируемого участка трубопровода, и интеллектуальные преобразователи давления в виде тензометрических преобразователей давления с встроенным преобразователем температуры, в которых данные с датчиков в аналого-цифровом преобразователе преобразуются в цифровую форму с разрешением до 0,001 МПа и частотой опроса до 1024 Гц. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области трубопроводного транспорта нефти и нефтепродуктов и предназначено для оперативного обнаружения утечек транспортируемой жидкости из трубопроводов. Способ обнаружения утечек нефти и нефтепродуктов, включающий измерение давления по трассе трубопровода, по результатам замеров строят прогноз давления в момент времени следующего замера, вычисляют разности между прогнозируемым и измеренным значением давления, принимают решение о факте возникновения или отсутствия утечки по значению решающей функции непараметрического метода скорейшего обнаружения разладки. Технический результат - повышение скорости обнаружения утечек. 4 ил.

Изобретение относится к области магистрального транспорта нефти и нефтепродуктов, а именно к способу контроля технологических режимов в процессе эксплуатации трубопровода на основе обработки данных системы диспетчерского контроля управления по фактической цикличности рабочего давления перекачиваемой среды. Технический результат - повышение надежности эксплуатации трубопровода за счет прогнозирования и выявления моментов перехода работы трубопровода в опасный режим эксплуатации с точки зрения накопления циклических повреждений, приводящих к росту усталостных дефектов до определенного состояния.

Изобретение относится к области непрерывного мониторинга технического состояния магистрального трубопровода, предназначенного для транспортировки газообразных и жидких веществ, и позволяет максимально использовать имеющуюся в эксплуатирующих организациях инфраструктуру для управления технологическими процессами трубопровода. Технический результат состоит в обеспечении отказоустойчивости и ремонтопригодности общей магистрали, передающей информацию о состоянии всех участков трубопровода за счет введения программируемого маршрутизатора дистанционной магистрали, что позволяет диагностировать вид и место неисправности дистанционной магистрали, а также управлять подключением датчиков поврежденной магистрали к соседним магистралям Система включает набор датчиков для измерения параметров текущего состояния трубопровода, систему сбора данных, систему обработки измеренных параметров состояния трубопровода, секции датчиков подключены через общую магистраль, передающую информацию о состоянии всех участков трубопровода. 3 ил.

Изобретение относится к области маркировки и последующей идентификации трубных изделий. Технический результат - обеспечение возможности идентификации завода-изготовителя трубных секций как во время строительства и реконструкции трубопровода, так и в процессе эксплуатации трубопровода подземной прокладки при проведении плановой и внеплановой инспекции с использованием внутритрубного инспекционного прибора. Способ маркировки трубных изделий характеризуется тем, что осуществляют кодирование идентификационной информации путем ее преобразования из десятичной системы счисления в шестнадцатеричную систему счисления, рассчитывают геометрические размеры элементов маркировки, соответствующие полученным значениям идентификационной информации в шестнадцатеричной системе счисления, после чего в соответствии с рассчитанными геометрическими размерами наносят элементы маркировки путем наплавления металла на наружную поверхность трубного изделия. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к устройству и способу контроля технического состояния магистральных нефтепроводов и нефтепродуктопроводов, а также газопроводов путем пропуска внутри трубопровода ультразвукового дефектоскопа с установленными на нем носителями датчиков. Заявленный носитель датчиков ультразвукового дефектоскопа используется при ультразвуковой диагностике трубопроводов и может быть установлен как на ультразвуковом дефектоскопе, так и на комбинированном магнито-ультразвуковом дефектоскопе. Носитель датчиков ультразвукового дефектоскопа оснащен блоками датчиков, которые шарнирно установлены на упруго деформирующихся полиуретановых кольцах, что повышает гибкость носителя датчиков во всех плоскостях и позволяет дефектоскопу с установленным на нем носителе датчиков ультразвукового дефектоскопа при движении в трубопроводе преодолевать повороты трубопровода без потери диагностической информации, так как шарнирное крепление блоков датчиков обеспечивает постоянное с заданным зазором прилегание датчиков к внутренней поверхности трубопровода при движении дефектоскопа как по прямым участкам трубопровода, так и в поворотах. 5 ил.
Изобретение относится к методам неразрушающего контроля трубопроводов и может быть использовано для обработки диагностических данных внутритрубных обследований магистральных трубопроводов. Диагностические данные, полученные при внутритрубном обследовании магистральных трубопроводов, работающих реверсном режиме, преобразуют в вид, позволяющий проводить интерпретацию с использованием данных предыдущих инспекций, проведенных при работе нефтепровода в прямом режиме. Для преобразования используют предложенный алгоритм. Заявленный способ улучшает качество интерпретации.
Изобретение относится к способу обработки данных внутритрубных дефектоскопов. Для осуществления способа загружают диагностические данные внутритрубного инспекционного прибора определения положения трубопровода (ВИП ОПТ) через интерфейс передачи входных данных. Затем выполняют предварительную фильтрацию с целью убрать шум от механического движения ВИП ОПТ. После вычисления списка критериев для определения порога, превышение которого является признаком наличия поперечного сварного шва на трубопроводе, производят поиск областей превышения порога и запись результатов в базу данных. Технический результат заявленного способа состоит в создании раскладки трубных секций для ее дальнейшего использования в процессе обработки диагностических данных.

Группа изобретений относится к трубопроводному транспорту и может быть использована в области управления эксплуатационными рисками технических объектов. Способ управления эксплуатационными рисками трубопровода включает мониторинг технического состояния трубопровода посредством измерения магнитного, электрического, теплового и акустического полей в качестве параметров текущего состояния трубопровода. Измерения осуществляют при помощи распределенных или квазираспределенных волоконно-оптических датчиков, расположенных непрерывно по всей длине трубопровода в виде секций. В результате анализа отклонения измеренных полей от нормы, включенной в модель состояния трубопровода, выявляют на трубопроводе участки проявления отклонений. В указанных участках осуществляют местную диагностику состояния трубопровода. В случае обнаружения дефекта трубопровода при местной диагностике включают описание дефекта в модель состояния трубопровода для обнаружения указанного или аналогичного дефекта в дальнейшем или для предупреждения его возникновения. Также изобретение касается системы управления эксплуатационными рисками трубопровода для реализации вышеуказанного способа. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи природного газа и, в частности, к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени. Техническим результатом является повышение точности определения правильности выбора режима работ ГСШ с общим коллектором в реальном масштабе времени. Способ включает назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин. При этом в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ), а также расход газа каждого куста скважин, и, используя измеренные данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки и строят синхронизированные во времени графики пар давлений: измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен, а также измеренного давления в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ, и, как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин, а также рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке, и, используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы. 2 ил.
Наверх