Способ количественного определения лекарственных средств производных индандиона-1,3

Изобретение относится к области аналитической химии и касается способа определения лекарственных средств производных инандиона-1,3 в порошках фениндион, омефин, метиндион. Сущность способа заключается в том, что точные навески порошков фениндиона, омефина и метиндиона растворяют в мерной колбе емкостью 100 мл сначала в 20-30 мл метанола, выдерживают при комнатной температуре до полного растворения и перемешивании, затем доводят тем же растворителем до метки объемы растворов. С помощью пипетки отбирают точные объемы приготовленных растворов фениндиона и метиндиона, объемы растворов омефина, подкисляют 2,5 мл 0,1 н раствора соляной кислоты и обрабатывают 3,5 мл 0,1%-ного метанольного раствора антрона в соляной кислоте в течение 5-6 минут. Далее измеряют оптическую плотность окрашенных растворов с помощью фотоэлектроколориметра при длине волны 590 нм. 5 ил., 4 табл., 1 пр.

 

Изобретение относится к фармацевтической промышленности, а именно к фармацевтическому анализу, и может быть использовано для количественного определения лекарственных средств производных индандиона-1,3, а именно фениндиона, омефина и метиндиона в субстанциях.

Исследуемые производные индандиона-1,3 представляют собой кристаллические вещества, растворимые в метаноле [1].

Известен способ количественного определения производных индандиона-1,3, заключающийся в растворении анализируемой пробы в метаноле, выдерживании до полного растворения при комнатной температуре и перемешивании и прибавлении того же растворителя до метки. Затем аликвотную часть приготовленного раствора обрабатывают 0,1%-ным метанольным раствором химического реактива в соляной кислоте при слабом нагревании. Появляется окрашивание, которое фотоэлектроколориметрируют [1].

Недостатками известного способа являются малая чувствительность и неспецифичность.

Известен способ количественного определения фениндиона, который проводят с использованием реакции бромирования (10%-ный спиртовый раствор брома). Избыток брома определяют йодометрически, т.е. добавлением смеси йодистого калия и β-нафтона. Одна часть брома связывается с β-нафтоном, другая - выделяет йод, который титруется 0,1%-ным раствором тиосульфата натрия в присутствии крахмала [3].

Недостатками известного способа являются малая чувствительность и неспецифичность.

Задачей настоящего изобретения является устранение недостатков ранее известных способов.

Технический результат изобретения заключается в увеличении точности, специфичности и чувствительности количественного определения лекарственных средств производных индандиона-1,3, а также в снижении токсичности способа за счет использования лишь нетоксичных реактивов.

Технический результат достигается тем, что точные навески порошков фениндиона (около 0.030 г), омефина (около 0.050 г) и метиндиона (около 0.030 г) растворяют в мерной колбе емкостью 100 мл сначала в 20-30 мл метанола, выдерживают при комнатной температуре до полного растворения и перемешивании, затем доводят тем же растворителем до метки объемы растворов. С помощью пипетки отбирают точные объемы приготовленных растворов фениндиона и метиндиона [2,0, 3,0, 4,0, 5,0 и 6,0 мл], объемы растворов омефина (II) [0,5, 0,6, 0,7, 0,8 и 0,9 мл], подкисляют 2,5 мл 0,1 н раствора соляной кислоты и обрабатывают 3,5 мл 0,1%-ного метанольного раствора антрона в соляной кислоте, приготовленного по примеру 1, в течение 5-6 минут. Проявляется зеленое окрашивание, переходящее сразу в сине-зеленое, устойчивое в течение 2 часов. Предполагаемые результаты реакции представлены на фиг. 1. Оптическую плотность окрашенных растворов измеряют с помощью фотоэлектроколориметра КФК-2 при длине волны 590 нм и толщине поглощающего слоя 10,0 мм. Раствор сравнения - метанол. Строятся калибровочные графики. Количественное определение исследуемых производных индандиона-1,3 проводят методом наименьших квадратов после статической отработки калибровочных графиков. Подчинения интенсивности окрашивания растворов закону Бугера-Лаберта-Бера находятся в пределах концентраций фениндиона и метиндиона от 0,6 мг до 1,8 мг, для субстанции омефина от 0,25 мг до 0,45 мг. Коэффициенты а и b исследуемых производных индандиона-1,3 вычислены после статической обработки калибровочных графиков методом наименьших квадратов и представлены в фиг. 2-4.

Пример 1. Приготовление 0,1%-ного метанольного раствора химического реактива. В конической колбе емкостью 200 мл растворяют 0,2 г антрона - 1 в 100 мл метанола, добавляют 25 мл конц. соляной кислоты и перемешивают. Доводят объем раствора до 200 мл тем же растворителем. Приготовленный раствор сохраняют в склянке из темного стекла в течение 2-х суток.

Сравнительные данные, подтверждающие преимущества предлагаемого способа количественного определения лекарственных средств производных индандиона-1,3 перед прототипом, приведены в фиг. 5.

Относительная ошибка определения производных индандиона-1,3 в субстанциях не более ±0,79%. Разработанный способ количественного определения лекарственных средств производных индандиона-1,3 является простым в выполнении и дает воспроизводимые результаты.

Литература

1. Химический энциклопедический словарь. - М.: Сов. Энциклопедия, 1983. - 792 с.

2. Туркевич M.М. Фармацевтическая химия / M.М. Туркевич. - Киев: Высшая школа, 1973. - 495 с.

3. Беликов В.Г. Фармацевтическая химия: В 2 ч. Ч. 1: Общая фармацевтическая химия. Ч. 2: Специальная фармацевтическая химия: Учебник по фармацевт. химии для студ. фармацевт. вузов и фак. / В.Г. Беликов. - 3-е изд., перераб. и доп. - Пятигорск: Пятигорская гос. фармацевт. акад., 2003. - 713 с.

Способ количественного определения лекарственных средств производных индандиона-1,3 в порошках фениндион, омефин, метиндион, включающий растворение точных навесок порошков в метаноле при комнатной температуре, обработку приготовленного раствора метанольным раствором антрона в соляной кислоте при слабом нагревании и последующее фотоколориметрирование появившегося окрашивания, отличающийся тем, что точные навески порошков фениндиона (0.030 г), омефина (0.050 г) и метиндиона (0.030 г) растворяют в мерной колбе емкостью 100 мл сначала в 20-30 мл метанола, выдерживают при комнатной температуре до полного растворения, затем доводят тем же растворителем до метки объемы растворов, с помощью пипетки отбирают точные объемы приготовленных растворов фениндиона и метиндиона [2,0, 3,0, 4,0, 5,0 и 6,0 мл], объемы растворов омефина (II) [0,5, 0,6, 0,7, 0,8 и 0,9 мл], подкисляют 2,5 мл 0,1 н раствора соляной кислоты, обрабатывают 3,5 мл 0,1%-ного метанольного раствора антрона в соляной кислоте, оптическую плотность окрашенных растворов измеряют с помощью фотоэлектроколориметра при длине волны 590 нм и толщине поглощающего слоя 10,0 мм.



 

Похожие патенты:

Изобретение относится к области аналитической химии и касается способа количественного определения лекарственных средств дистигмина дибромида, демекастигмина дибромида и флупиртина.

Изобретение относится к области аналитической химии и касается способа количественного определения группы стигминов в субстанциях. Сущность способа заключается в том, что в исследуемую пробу прибавляют 20-30 мл очищенной воды для аминостигмина, ривастигмина, пиридостигмина бромида или спирта этилового 95% для неостигмина метилсульфата и физостигмина салицилата.

Изобретение относится к аналитической химии и касается способа измерения размера и количества жировых капель в препаратах для парентерального введения. Сущность способа заключается в том, что подготавливают пробу посредством введения эмульсии лекарственного препарата в профильтрованный через мембранный фильтр раствор натрия хлорида, перемешивания полученной суспензии и последующего забора части полученной суспензии и введения ее в профильтрованный через мембранный фильтр раствор натрия хлорида и перемешивания полученной суспензии.

Изобретение относится к способам определения размеров частиц, в частности к способам определения невидимых механических включений в окрашенных лекарственных препаратах для парентерального применения.

Изобретение относится к фармацевтическому анализу. Способ осуществляют путем растворения анализируемой пробы, обработки раствора химическим реактивом с последующим фотоэлектроколориметрированием - измерением оптической плотности окрашенных растворов, причем растворение проводят в воде очищенной, выдерживают на нагретой водяной бане до полного растворения при перемешивании, охлаждают и в дальнейшем аликвотную часть приготовленного раствора объемом от 1,0 до 5,0 мл последовательно обрабатывают при перемешивании каплями 3,5 мл 0,1 Н спиртового раствора KОН, выдерживают и перемешивают 5 минут, далее обрабатывают каплями 2,5 мл 0,5% раствора вератрового альдегида в серной кислоте и 1,5 мл 0,1 Н раствора серной кислоты, выдерживают еще 3 минуты и после этого фотоэлектроколориметрируют окрашенные растворы.

Изобретение относится к фармацевтическому анализу. Способ характеризуется растворением анализируемой пробы, обработкой раствора химическим реактивом с последующим фотоэлектроколориметрированием окрашенных растворов, при этом растворение проводят в воде очищенной, выдерживают на нагретой водяной бане до полного растворения, охлаждают и разбавляют тем же растворителем до 100 мл; аликвотную часть приготовленного раствора объемом от 1,0 до 5 мл последовательно обрабатывают 2,0-2,3 мл щелочного 1% раствора нитропруссида натрия и 0,1 мл 3% раствора водорода перекиси, выдерживают в течение 1 мин, после чего прибавляют 0,1 М раствор калия гидроксида до рН 10 и фотоэлектроколориметрируют окрашенные растворы.

Группа изобретений относится к способам для определения того, будет ли субъект, страдающий раковым заболеванием, положительный по мутациям ALK, отвечать на лечение ингибитором ALK, и/или вероятно ли, что у пациента, страдающего таким раковым заболеванием, заболевание будет прогрессировать медленнее, а также к набору.

Изобретение относится к медицине, а именно к фармакологии и клинической фармакологии, и предназначено для оценки функциональной активности гликопротеина-Р (Pgp) в эксперименте и клинике для осуществления эффективной и безопасной фармакотерапии субстратами данного белка-транспортера.

Группа изобретений раскрывает съедобные композиции, содержащие модификаторы хемосенсорных рецепторов и их лигандов. Конкретнее группа изобретений включает проглатываемые композиции, содержащие соединение структурной формулы (IIc) Композиции заявленной группы изобретений обеспечивают возможность получения и улучшения сладкого вкуса.

Изобретение относится к области медицины, а именно к экспериментальной фармакологии, и может быть использовано для количественного определения карнозина в тканях и физиологических жидкостях.

Изобретение относится к области фармацевтики, в частности к способам количественного анализа лекарственных средств. Способ касается определения рифабутина в образце с неизвестным содержанием рифабутина и, необязательно, других компонентов (анализируемом образце), в котором используют: (а) прибор для проведения капиллярного зонного электрофореза, оснащенный термостатируемой камерой для капилляра, капилляром, оптическим детектором, средствами записи результатов измерений, средствами ввода образца; (б) электролит; в котором капилляр заполняют электролитом (б), вводят анализируемый образец в капилляр с помощью средств ввода образца, измеряют и записывают электрофореграмму (величину или изменение поглощения в зависимости от времени осуществления электрофореза) посредством оптического детектора, характеризующийся тем, что в нем содержание рифабутина и, необязательно, других компонентов в анализируемом образце определяют по зависимости площади пиков рифабутина и, необязательно, других компонентов на электрофореграммах, полученных в тех же условиях, с применением растворов с заранее известными концентрациями рифабутина и, необязательно, других компонентов в качестве анализируемых образцов. Метод капиллярного зонного электрофореза позволяет одновременно количественно определять и рифабутин, и компоненты, подобные альбумину и аминокислотам, в широком диапазоне концентраций последних, при этом диапазон линейности градуировочного графика намного выше, чем у ранее применявшихся методов, основанных на ВЭЖХ, что позволяет сократить количество измерений стандартных растворов при построении градуировочного графика, избежать применения сложных математических моделей при обработке результатов измерений, исключить необходимость в сильном разбавлении пробы. 9 з.п. ф-лы, 3 ил., 2 табл., 5 пр.

Изобретение относится к способу измерения количества пищеварительных ферментов, высвобождаемых из твердой композиции в среде растворения, посредством флуоресцентной спектроскопии. Сущность способа заключается в том, что твердую композицию панкрелипазы добавляют в первую среду растворения, обладающую рН от примерно 1 до примерно 4,5, затем переносят суспензии во вторую среду растворения, обладающую рН от примерно 5 до примерно 6,8. Далее обеспечивают высвобождение пищеварительных ферментов, производят отбор аликвот среды растворения и снятие показания флуоресценции, рассчитывают количество высвобожденных пищеварительных ферментов. 18 з.п. ф-лы, 5 ил., 6 табл., 12 пр.

Изобретение относится к косметической промышленности и представляет собой способ оценки косметических средств с целью выявления эффекта приведения рогового слоя во влажное состояние, обеспечивающее достаточное набухание для дестабилизации кератиновой структуры и ламеллярной структуры, а затем высушивания рогового слоя кожи для восстановления кератиновой структуры и ламеллярной структуры, в котором изменение толщины рогового слоя во время увлажнения и последующей сушки рогового слоя используется в качестве индекса и является уровнем изменения толщины рогового слоя, который включает следующие этапы: измерение толщины (А) клеток или клеточного пласта рогового слоя, выбранного из группы, состоящей из рогового слоя кожи, изолированного рогового слоя и культивируемого пласта рогового слоя перед нанесением косметики; измерение толщины (В) клеток или пласта клеток во влажном состоянии; измерение толщины (С) клеток или пласта клеток в сухом состоянии и расчет уровня изменения толщины рогового слоя в процессе увлажнения с последующей сушкой рогового слоя на основе формулы 1: Формула (1) Уровень изменения толщины рогового слоя = (В-А)×100/А-(С-В)×100/С Изобретение обеспечивает способ, позволяющий разработать косметику, способствующую достижению красивой здоровой кожи, на основе полученных знаний. 4 з.п. ф-лы. 8 пр., 1 табл., 9 ил.

Изобретение относится к области аналитической химии и касается способа количественного определения метоклопрамида в лекарственных формах, воде и биологических жидкостях. Сущность способа заключается в том, что добавляют в анализируемую пробу 20 г льда, 1 см3 0,1% водного раствора нитрита натрия и 1 капли 36% раствора соляной кислоты. Вносят раствор хромотроповой кислоты, полученный путем растворения 0,04 г хромотроповой кислоты в 20 см3 воды с добавлением 1-2 кристаллика карбоната натрия и 20 г льда. Далее добавляют 2 см3 0,5% водного раствора гидроксида натрия, доводят объем азосоединения до 100 см3, фотометрируют при длине волны 520 нм. В случае определения метоклопрамида в таблетках, таблетку препарата диспергируют в воде, в случае определения метоклопрамида в моче в 50 см3 мочи добавляют 0,1 см3 10% раствора трихлоруксусной кислоты и центрифугируют. Использование способа позволяет с высокой точностью определять метоклопрамид в различных субстанциях. 3 табл., 2 ил., 3 пр.

Изобретение относится к аналитической химии и касается способа количественного определения кальция и магния в лекарственном растительном сырье. Сущность способа заключается в том, что проводят озоление сырья в муфельной печи при температуре 500оС, прокаливают до постоянной массы, растворяют полученную золу в 10% растворе соляной кислоты, фильтруют полученный солянокислый раствор золы. Далее проводят комплексонометрическое титрование Трилоном Б для кальция в присутствии кислотного хрома темно-синего при рН 11-12, а для магния в присутствии пирокатехинового фиолетового при рН 9-10. Использование способа позволяет провести полное количественное определение микроэлементов, как в свободном, так и связанном виде при их совместном присутствии. 1 табл., 3 пр.

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения. Способ определения молочной кислоты включает перевод молочной кислоты из пробы в раствор с последующим титрованием раствора щелочью (0.01-0,1М KOH) и одновременной регистрацией предельного тока восстановления молочной кислоты, построением кривой амперометрического титрования, из которой находят объем щелочи в точке эквивалентности, затраченный на титрование молочной кислоты. Использование способа позволяет определять молочную кислоту в диапазоне концентраций 3,0⋅10-5-1⋅10-1 моль/дм3. 6 ил., 3 табл., 3 пр.

Изобретение относится к фармацевтической промышленности и может быть использовано для количественного определения производных дибензазепинов (группы ипраминов) в субстанциях. Навески порошков имипрамина гидрохлорида, кломипрамина гидрохлорида, тримипрамина гидрохлорида и дезипрамина 0,025 г помещают в мерные колбы емкостью 50 мл, растворяют сначала в 30 мл метанола, выдерживают при комнатной температуре до полного растворения, а затем доводят метанолом до метки объемы колб, в мерные колбы емкостью 20 мл точно отмеривают 2,0, 3,0, 4,0, 5,0, 6,0 мл приготовленных растворов имипрамина гидрохлорида, кломипрамина гидрохлорида, тримипрамина гидрохлорида и дезипрамина, прибавляют каплями в течение 5-6 минут 5,5 мл метанольного раствора сульфата никеля (II) в аммиаке, через 2-3 минуты выпадает голубой осадок комплексной соли, колбы доводят до метки метанолом, содержимое мерных колб переносят в делительные воронки, прибавляют 10 мл хлороформа и встряхивают, хлороформный слой окрашивается в синий цвет, его отделяют и сушат над безводным сульфатом натрия, к водному раствору трижды по 3 мл прибавляют хлороформ, вытяжки просушивают над безводным сульфатом натрия, объединяют с хлороформным раствором, полученные окрашенные растворы фотоэлектроколориметрируют при длине волны 590 нм и толщине поглощающего слоя 10 мм. 6 ил., 1 пр.

Способ относится к области химической промышленности и позволяет определить содержание коэнзима Q10 в кремах косметических методом катодной дифференциально-импульсной вольтамперометрии. Сущность способа заключается в том, что вольтамперометрическое определение проводят в фоновом электролите - метанол: раствор Бриттона-Робинсона в соотношении 9:1 при скорости развертки потенциала 0.1 В/с с использованием индикаторного диамантового электрода. Катодный пик регистрируют в диапазоне потенциалов от -0.5 В до 0 В. Расчет концентрации коэнзима Q10 в кремах косметических проводят методом градуировочного графика по стандартному раствору коэнзима Q10 при потенциале -0.40 В. Использование способа позволяет с высокой точностью определять количество коэнзима Q в кремах для контроля качества на всех стадиях производства. 1 табл., 2 ил., 1 пр.

Изобретение относится к области аналитической химии и касается способа определения содержания воды в субстанции ампициллина тригидрата. Сущность способа заключается в том, что проводят растворение навески указанной субстанции в фоновом электролите «Аква М®-Кулон AG», далее в ячейку вносят аликвоту раствора субстанции ампициллина тригидрата массой 0,5г, проводят электрогенерацию йода при постоянной силе тока 50мА в фоновом электролите «Аква М® -Кулон AG» в анодной камере, «Аква М® -Кулон СG» в катодной камере на платиновом электроде, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле X=I×t×M/Fгде I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в субстанции ампициллина тригидрата. Использование способа с высокой точностью позволяет определять содержание воды в субстанции ампициллина тригидрата. 2 табл., 1 пр.

Изобретение относится к области аналитической химии и касается способа определения содержания воды в лекарственной форме мазь. Сущность способа заключается в том, что проводят растворение навески лекарственной формы мазь в растворителе толуол:метанол в соотношении 7:3, проводят электрогенерацию йода при постоянной силе тока 50мА в фоновом электролите «Аква М®-Кулон AG» в анодной камере, «Аква М®-Кулон СG» в катодной камере на платиновом электроде, далее в ячейку вносят аликвоту раствора эритромицина мази глазной массой 3 г, измеряют время достижения конечной точки титрования, рассчитывают содержание воды в аликвоте по формуле X=I×t×M/F, где I - сила тока, 0,05 A; t - время достижения конечной точки титрования, с; M - молярная масса эквивалента воды, 9,008 г/моль; F - постоянная Фарадея, 96485 Кл/моль, параллельно проводят определение воды в растворителе и по известным формулам рассчитывают содержание воды в мази. Использование способа позволяет с высокой точностью определять содержание воды в лекарственной форме мазь. 2 табл., 1 пр.

Изобретение относится к области аналитической химии и касается способа определения лекарственных средств производных инандиона-1,3 в порошках фениндион, омефин, метиндион. Сущность способа заключается в том, что точные навески порошков фениндиона, омефина и метиндиона растворяют в мерной колбе емкостью 100 мл сначала в 20-30 мл метанола, выдерживают при комнатной температуре до полного растворения и перемешивании, затем доводят тем же растворителем до метки объемы растворов. С помощью пипетки отбирают точные объемы приготовленных растворов фениндиона и метиндиона, объемы растворов омефина, подкисляют 2,5 мл 0,1 н раствора соляной кислоты и обрабатывают 3,5 мл 0,1-ного метанольного раствора антрона в соляной кислоте в течение 5-6 минут. Далее измеряют оптическую плотность окрашенных растворов с помощью фотоэлектроколориметра при длине волны 590 нм. 5 ил., 4 табл., 1 пр.

Наверх