Тройные сополимеры на основе пропилена для труб



Тройные сополимеры на основе пропилена для труб
Тройные сополимеры на основе пропилена для труб
Тройные сополимеры на основе пропилена для труб
Тройные сополимеры на основе пропилена для труб
Тройные сополимеры на основе пропилена для труб
Тройные сополимеры на основе пропилена для труб

 


Владельцы патента RU 2599251:

БАЗЕЛЛЬ ПОЛИОЛЕФИН ИТАЛИЯ С.Р.Л. (IT)

Изобретение относится к тройному сополимеру пропилен/этилен/1-гексен, который предназначен для производства труб, и, в частности, труб малого диаметра. Сополимер пропилена, этилен и 1-гексен содержит производных единиц 1-гексена в диапазоне от 1,5 до 2,6 вес. %, а содержание производных единиц этилена больше 1,4 вес. % и соответствует следующему соотношению (1):

где C2 - содержание производных единиц этилена в вес. % и C6 - содержание производных единиц 1-гексена в вес. %. Тройной сополимер имеет температуру плавления от 130°C до 138° C, скорость течения расплава (MFR, ISO 1133 230°C, 5 кг) в диапазоне от 0,1 до 3,9 г/10 мин и скорость течения расплава (MFR, ISO 1133 230°C, 2,16 кг) в диапазоне от 0,5 до 1,9 г/10 мин. Тройной сополимер по изобретению характеризуется высокой ударопрочностью, особенно при низкой температуре, что подходит для труб со стенками любой конфигурации, помимо труб с гладкой внутренней и внешней поверхностями.. 3 н. и 1 з.п. ф-лы, 3 табл., 2 пр.

 

Настоящее изобретение относится к тройному сополимеру пропилен/этилен/1-гексен, который особенно подходит для производства труб, и, в частности, труб малого диаметра.

Тройные пропилен/этилен/1-гексеновые сополимеры уже известны в индустрии производства труб. Например, WO 2006/002778 относится к системе труб, содержащей тройной сополимер пропилена/этилена и альфа-олефина, где содержание этилена составляет от 0 до 9% в молях, предпочтительно от 1 до 7% моль, а содержание 1-гексена находится в диапазоне от 0,2 до 5 вес. %. Для труб малого диаметра важна ограниченная толщина стенки трубы. Это позволяет получить трубы, содержащие меньше материала, улучшить характеристики трубы с точки зрения пропускной способности большего внутреннего диаметра. Однако при небольшой толщине стенки труба может быть хрупкой, поэтому возникает необходимость в использовании материала, характеризующегося высокой ударопрочностью, особенно при низкой температуре. Заявитель обнаружил, что среди представленных диапазонов можно выбрать композицию с улучшенными свойствами, в частности, с лучшими ударными свойствами, которую можно использовать для труб малого диаметра. Таким образом, предметом настоящего изобретения является тройной сополимер, содержащий пропилен, этилен и 1-гексен, в котором

(i) содержание производных единиц 1-гексена от 1 вес. % до 3,2 вес. %; предпочтительно от 1,5 вес. % до 3,0 вес. %, еще предпочтительней от 1,5 вес. % до 2,8 вес. %; и еще предпочтительней от 1,8 вес. % до 2,6 вес. %; например, 1,8-2,4 вес. %;

(ii) содержание производных единиц этилена выше 1,4 вес. %, предпочтительно выше 1,5 вес. %, еще предпочтительней выше 1,6 вес. % и соответствует следующему соотношению (1):

где C2 - это содержание производных единиц этилена в вес. %, и C6 - это содержание производных единиц 1-гексена в вес. %; предпочтительное соотношение (1) -C2<С6-0,3; более предпочтительное - C2<С6-0,5;

(iii) скорость течения расплава (MFR) (ISO 1133 230°C, 5 кг) составляет от 0,1 до 3,9 г/10 мин; предпочтительно от 0,5 до 1,9 г/10 мин;

(iv) температура плавления колеблется от 130°C до 138°C; предпочтительно от 132°C до 136°C.

Тройные сополимеры в данном изобретении имеет стереорегулярность изотактического типа в отношении пропиленовых последовательностей; это видно по низкому значению ксилоловых экстрагируемых веществ, которое ниже 10 вес. %; предпочтительно ниже 8 вес. %, более предпочтительно - менее 7 вес. %.

Предпочтительно тройной сополимер в данном изобретении имеет коэффициент полидисперсности (КП) в диапазоне от 2,0 до 7,0, предпочтительно от 3,0 до 6,5, еще предпочтительней от 3,5 до 6,0.

Температура кристаллизации предпочтительно варьируется от 70°C до 100°C, предпочтительно от 80°C до 97°C; еще предпочтительней от 85°C до 97°C.

Используя тройной сополимер согласно настоящему изобретению, можно производить трубы, в частности трубы малого диаметра с небольшой толщиной стенок, пригодные для использования даже под давлением. Результаты динамических испытаний при 0°C (ISO 9854) показали, что из 10 труб лопнуло 0 труб.

Предпочтительно сопротивление гидравлическому давлению трубы согласно настоящему изобретению (по методу ISO 1167-1) имеет значение, измеренное при 95°C и давлении 4,8 МПа, более 500 часов; предпочтительнее более 550 часов, еще предпочтительнее - более 580 часов, еще предпочтительнее - более 600 часов.

Таким образом, другим предметом настоящего изобретения является труба, выполненная из тройного сополимера.

Термин «труба», используемый в данном документе, также включает в себя фитинги, клапаны и все детали, которые обычно необходимы, например, для трубопроводов горячей воды. Также в определение входят одно- и многослойные трубы, где, например, один или несколько слоев выполнены из металла и могут включать клеевой слой.

Такие изделия могут быть изготовлены с помощью различных производственных процессов, хорошо известных в данной области, таких как литье, экструзия и т.д.

Еще в одном варианте изобретения сополимер, являющийся предметом настоящего изобретения, дополнительно содержит неорганический наполнитель в количестве от 0,5 до 60 весовых частей из расчета на 100 весовых частей указанной гетерофазной полипропиленовой композиции. Типичными примерами таких наполнителей являются карбонат кальция, сульфат бария, биоксид титана и тальк. Предпочтительными являются тальк и карбонат кальция. Некоторые наполнители также могут также иметь нуклеирующий эффект, включая тальк, который также имеет нуклеирующий эффект. Количество нуклеирующего агента обычно варьируется от 0,2 до 5 вес. % по отношению к количеству полимера.

Тройной сополимер изобретения также подходит для труб со стенками любой конфигурации, помимо труб с гладкой внутренней и внешней поверхностью. Примерами могут служить слоистые стенки труб, пустотелые трубы с продольно вытянутыми пустотами, пустотелые трубы со спиральными пустотами, трубы с гладкой внутренней поверхностью, и компактной или пустой, спиралеобразной или кольцеобразной ребристой наружной поверхностью независимо от конфигурации соответствующих концов труб.

Детали, напорные трубы и соответствующие фитинги согласно настоящему изобретению производятся известными способами, например, соэкструзией или литьем.

Экструзия деталей может выполняться различными типами экструдеров для полиолефинов, например одно- или двухшнековыми экструдерами.

Еще один вариант осуществления настоящего изобретения представляет собой способ, в котором указанную гетерофазную полипропиленовую композицию формуют в указанные изделия.

В многослойных трубах по меньшей мере один слой выполнен из описанного выше тройного сополимера. Другие слои предпочтительно выполнены из аморфного или кристаллического полимера (например, гомополимера и со- или тройного сополимера) R-CH=CH2 олефинов, где R представляет собой атом водорода или С1-С6 алкильный радикал. Особо предпочтительными являются следующие полимеры:

1) изотактические или в основном изотактические пропиленовые гомополимеры;

2) случайные сополимеры и тройные сополимеры пропилена с этиленом и/или С48 α-олефин, например, 1-бутен, 1-гексен, 1-октен, 4-метил-1-пентен, в которых общее содержание сополимера варьируется от 0,05% до 20% по весу, или комбинация указанных полимеров с изотактическими или в основном изотактическими пропиленовыми гомополимерами;

3) комбинация гетерофазных полимеров, состоящих из (а) гомополимера пропилена и/или одного из сополимеров и тройных сополимеров из пункта (2), и эластомерной части (b), включающей сополимеры и тройные полимеры этилена с пропиленом и/или С48 α-олефина, по выбору содержащего небольшие количества диена; то же относится к полимеру (2)(а); и

4) аморфные полимеры, такие как фторированные полимеры, например, поливинилдифторид (ПВДФ).

В многослойных трубах слои трубы могут иметь одинаковую или разную толщину.

Тройной сополимер, используемый в настоящем изобретении, может быть получен путем одноэтапной или многоэтапной полимеризации. Такая полимеризация может выполняться в присутствии катализаторов Циглера-Натта. Важным компонентом указанных катализаторов является твердый катализатор, включающий соединение титана, имеющее по меньшей мере одну связь титан-галоген, и электронодонорное соединение, нанесенные на галогенид магния в активной форме. Другим существенным компонентом (сокатализатором) является алюминийорганическое соединение, такое, как соединение алкилалюминия.

По желанию добавляется внешний донор.

Катализаторы, обычно используемые в процессе, представленном в изобретении, позволяют производить полипропилен со значением нерастворимости в ксилоле при температуре окружающей среды более 90%, предпочтительно более 95%.

Катализаторы, имеющие вышеуказанные характеристики, хорошо известны в патентной литературе; особенно предпочтительными являются катализаторы, описанные в патенте США 4,399,054 и европейском патенте 45977. Другие примеры можно найти в патенте США 4,472,524.

Твердые компоненты катализатора, используемые в указанных катализаторах, содержат в качестве доноров электронов (внутренних доноров) соединения из группы, состоящей из эфиров, кетонов, лактонов, соединений, содержащих атомы N, Р и/или S атомы, и эфиров моно- и дикарбоновой кислоты.

Особенно пригодные электронодонорные соединения - это эфиры фталевой кислоты и 1,3-диэфиры, имеющие формулу:

в которой R

RI и RII одинаковы или различны и являются C1-C18 алкильными, С318 циклоалкильными или С718 арильными радикалами; RIII и RIV одинаковы или различны и являются С14 алкильными радикалами; или являются 1,3-диэфирами, в которых атом углерода в положении 2 принадлежит к циклической или полициклической структуре, состоящей из 5, 6 или 7 атомов углерода, или 5-n или 6-n′ атомов углерода и, соответственно, n атомов азота и n′ гетероатомов из группы, состоящей из N, О, S и Si, где n равно 1 или 2 и n′ обозначает 1, 2 или 3; указанная структура содержит две или три ненасыщенности (циклополиеновая структура) и дополнительно может конденсироваться другой циклической структурой или заменяться одним или несколькими заместителями из группы, состоящей из линейных или разветвленных алкильных радикалов; циклоалкильных, арильных, аралкильных, алкарильных радикалов и галогенов или конденсироваться другими циклическими структурами и замещаться одним или несколькими вышеупомянутыми заместителями, которые также могут быть связаны с конденсированными циклическими структурами; один или несколько указанных выше алкильных, циклоалкильных, арильных, аралкильных, алкарильных радикалов и конденсированные циклические структуры, дополнительно содержащие один или более гетероатомов в качестве заменителей атомов углерода или водорода или веществ.

Эфиры этого типа описаны в опубликованных европейских патентных заявках 361493 и 728769.

Типичными примерами указанных диэфиров являются 2-метил-2-изопропил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан, 2-изопропил-2-циклопентил-1,3-диметоксипропан, 2-изопропил-2-изоамил-1,3-диметоксипропан, 9,9-бис (метоксиметил)флуорен.

Другие подходящие электронодонорные соединения - это сложные эфиры фталевой кислоты, такие как диизобутил, диоктил, дифенил и бензилбутил фталат.

Вышеупомянутый компонент катализатора изготавливается различными способами.

Например, аддукт MgCl2·nROH (в частности, в виде сфероидальных частиц), где n обычно равно 1-3 и ROH представляет собой этанол, бутанол или изобутанол, взаимодействует с избытком TiCl4, содержащим электронодонорное соединение. Температура реакции составляет от 80 до 120°C. Твердое вещество выделяется и реагирует еще раз с ТiCl4 в присутствии или в отсутствие электронодонорного соединения, после чего оно отделяются и промывается аликвотами углеводорода до тех пор, пока не исчезнут все ионы хлора.

В твердом каталитическом компоненте титановое соединение, выраженное как Ti, обычно присутствует в количестве от 0,5 до 10% по весу. Количество электронодонорного соединения, которое остается на твердом компоненте катализатора, обычно составляет от 5 до 20% по молям по отношению к дигалогениду магния.

Соединения титана, которые могут быть использованы для получения твердого компонента катализатора, являются галогенидами и галогеналкоголятами титана.

Тетрахлорид титана является предпочтительным соединением.

Описанные выше реакции приводят к образованию галогенида магния в активной форме. В литературе представлены другие реакции, которые вызывают образование галогенида магния в активной форме, начиная с соединений магния, отличных от галогенидов, таких как карбоксилаты магния.

Al-алкильные соединения, используемые в качестве сокатализаторов, включают Al-триалкилы, такие как Al-триэтил, Al-триизобутил, Al-три-н-бутил, и линейные или циклические Al-алкильные соединения, содержащие два или более атомов Al, соединенных друг с другом посредством атомов О или N атомов, или группы SO4 или SO3.

Al-алкильное соединение обычно используют в таком количестве, чтобы соотношение Al/Ti находилось в диапазоне от 1 до 1000.

Электронодонорные соединения, которые могут быть использованы в качестве внешних доноров, включают эфиры ароматических кислот, такие как алкил бензоаты, и, в частности, соединения кремния, содержащие по меньшей мере одну связь Si-OR, где R представляет собой углеводородный радикал.

Примерами соединений кремния являются (трет-бутил)2Si(ОСН3)2, (циклогексил)(метил)Si (OCH3)2, (циклопентил)2Si(OCH3)2 и (фенил)2Si(OCH3)2 и (1,1,2-триметилпропил)81(OCH3)3.

Также могут использоваться 1,3-диэфиры, имеющие формулы, описанные выше. Если внутренним донором является один из этих диэфиров, внешние доноры могут быть опущены.

В частности, даже если многие другие комбинации ранее указанных компонентов катализатора позволяют получать пропиленовые полимерные композиции в соответствии с настоящим изобретением, тройные сополимеры предпочтительно изготавливаются с использованием катализаторов, содержащих фталат в качестве внутреннего донора и (циклопентил)2Si(OCH3)2 в качестве внешнего донора, или указанные 1,3-диэфиры в качестве внутренних доноров.

Указанные полимеры пропилен-этилен-гексен-1 производится путем процесса полимеризации, показанного в заявке EP 1012195.

В частности, указанный процесс включает подачу мономеров в упомянутые зоны полимеризации в присутствии катализатора в условиях реакции и отбор полимерного продукта из указанных зон полимеризации. В указанном процессе растущие полимерные частицы движутся вверх через одну (первую) из указанных зон полимеризации (трубу с восходящим потоком) в условиях быстрого псевдоожижения, выходят из указанной трубы с восходящим потоком и попадают в другую (вторую) зону полимеризации (трубу с нисходящим потоком), через которую они движутся вниз в уплотненной форме под действием силы тяжести, выходят из указанной трубы с нисходящим потоком и попадают в трубу с восходящим потоком, таким образом обеспечивая циркуляцию полимера между трубой с восходящим потоком и трубой с нисходящим потоком.

В трубе с нисходящим потоком достигаются высокие значения плотности твердого вещества, приближающиеся к объемной плотности полимера. Увеличение положительного давления таким образом может быть получено по направлению потока, благодаря чему становится возможным повторный ввод полимера в трубу с восходящим потоком без помощи специальных механических средств. Таким образом получается циркуляционный контур, определяемый балансом давлений между двумя зонами полимеризации и потерей давления в системе.

Как правило, условия для быстрого псевдоожижения в трубе с восходящим потоком достигаются путем подачи газовой смеси, содержащей соответствующие мономеры, в указанную трубу. Желательно, чтобы подача газовой смеси осуществлялась ниже точки повторного ввода полимера в указанную трубу с восходящим потоком путем использования необходимых газораспределительных средств. Скорость переноса газа в трубу с восходящим потоком выше, чем переносная скорость в рабочих условиях, и предпочтительно составляет от 2 до 15 м/с.

Как правило, полимер и газовая смесь, выходящая из трубы с восходящим потоком, поступают в зону сепарации твердых веществ и газа. Разделение твердых веществ и газа может выполняться обычными методами сепарации. Из зоны сепарации полимер поступает в трубу с нисходящим потоком. Газовую смесь, выходящую из зоны сепарации, сжимают, охлаждают и передают при необходимости в трубу с восходящим потоком с добавлением соответствующих мономеров и/или регуляторов молекулярной массы. Передача может осуществляться посредством рециркуляционного трубопровода для газовой смеси.

Управление полимером, циркулирующим между двумя зонами полимеризации, может осуществляться путем дозировки количества полимера, выходящего из трубы с нисходящим потоком, используя подходящие средства для регулирования потока твердых веществ, таких как механические клапаны.

Рабочие параметры, такие как температура, соответствуют тем, которые обычно используются в процессе полимеризации олефинов, например, от 50 до 120°C. Этот первый этап процесса может осуществляться при рабочем давлении от 0,5 до 10 МПа, предпочтительно от 1,5 до 6 МПа.

Преимущественно один или несколько инертных газов сохраняются в зонах полимеризации в таких количествах, при которых сумма парциального давления инертных газов предпочтительно составляет от 5 до 80% от общего давления газов. В качестве инертного газа можно использовать азот или пропан. Различные катализаторы подаются в трубу с восходящим потоком в любой точке данной трубы. Однако их можно также подавать в любой точке трубы с нисходящим потоком. Катализатор может быть в любом физическом состоянии, поэтому можно использовать катализаторы в твердом или жидком состоянии.

Ниже представлены примеры для иллюстрации настоящего изобретения без ограничения его целей.

Примеры

Характеристика методов

- Температура плавления и температура кристаллизации: Определяется методом дифференциальной сканирующей калориметрии (ДСК); 6±1 мг нагревается до 220±1°C при скорости 20°C/мин и поддерживается при 220±1°C в течение 2 минут в потоке азота, затем охлаждается при скорости 20°C/мин до 40±2°C, затем выдерживается в течение 2 минут при этой температуре для кристаллизации образца. Затем образец снова расплавляется при скорости повышения температуры 20°C/мин до 220°C±1. Процесс плавления записывается, получается термограмма, на основании которой определяются значения температуры плавления и кристаллизации.

- Скорость течения расплава: Определяется по методу ISO 1133 (230°C, 5 кг).

- Растворимость в ксилоле: Определяется следующим образом.

2,5 г полимера и 250 мл ксилола помещаются в стеклянную колбу с холодильником и магнитной мешалкой. Температуру повышают в течение 30 минут до температуры кипения растворителя. Полученный прозрачный раствор затем выдерживают в колбе с обратным холодильником и перемешивают в течение еще 30 минут. Затем закрытая колба выдерживается в течение 30 минут в бане со льдом и водой и в термостатической водяной бане при 25°C в течение 30 минут. Образовавшееся твердое вещество отфильтровывают на бумаге быстрой фильтрации. 100 мл отфильтрованной жидкости выливают в предварительно взвешенный алюминиевый контейнер, который нагревают на нагревательной плитке в потоке азота, чтобы удалить растворитель выпариванием. Контейнер выдерживают в печи при 80°C под вакуумом до получения постоянного веса. Затем вычисляется массовый процент полимера, растворимого в ксилоле при комнатной температуре.

- Содержание 1-гексена и этилена: Определяется методом 13С-ЯМР-спектроскопии в тройных сополимерах:

ЯМР-анализ. Спектры 13C ЯМР получают на спектрометре AV-600, работающем при 150,91 МГц в режиме преобразования Фурье при 120°C. Пик пропилена СН используется в качестве внутреннего стандарта при 28,83. Спектр 13C ЯМР получается при следующих параметрах:

Ширина спектра (ШС) 60 частей на млн
Центр спектра (O1) 30 частей на млн
Последовательность развязки WALTZ 65_64pl
Программа импульса(1) ZGPG
Длина импульса (P1)(2) для 90°
Общее количество точек (TD) 32К
Задержка затухания(2) 15 c
Количество импульсных помех(3) 1500

Общий объем 1-гексена и этилена в виде молярных процентов рассчитывают из диады на основе следующих соотношений:

[P]=РР+0,5РН+0,5РЕ

[Н]=НН+0,5РН

[Е]=ЕЕ+0,5РЕ

Значения спектра 13C ЯМР сополимеров пропилена/1-гексена/этилена рассчитаны согласно следующей таблице:

Удлинение при пределе текучести: измерено согласно ISO 527.

Удлинение при разрыве: измерено согласно ISO 527.

Напряжение при разрыве: измерено согласно ISO 527.

Динамическое испытание: ISO 9854.

Сопротивление гидродинамическому давлению: измерено в соответствии с методом ISO 1167-1.

Образцы для механического анализа

Образцы были получены в соответствии с ISO 294-2.

Модуль упругости при изгибе

Определяется в соответствии с ISO 178.

Модуль упругости при растяжении

Определяется в соответствии с ISO 527.

Пример 1 и сравнительный пример 2

Сополимеры изготавливаются путем полимеризации пропилена, этилена и гексена-1 в присутствии катализатора в непрерывном режиме в установке, состоящий из полимеризационного аппарата, описанного в EP 1012195.

Катализатор направляется в полимеризационное устройство, содержащее два взаимосвязанных цилиндрических реактора, трубу с восходящим потоком и трубу с нисходящим потоком. В трубе с восходящим потоком создаются условия для быстрого псевдоожижения посредством рециркулирующего газа из сепаратора газа/твердых веществ. В примерах 1-5 потоки, служащие в качестве затвора, не использовались.

В используемом катализаторе присутствует компонент, произведенный по аналогии с примером 5 ЕР-А-728 769, но с использованием микросферического MgCl2·1.7C2H5OH вместо MgCl2·2.1C2H5OH. Такой компонент катализатора используют с дициклопентилдиметоксисиланом (ДЦПМС) в качестве внешнего донора и с триэтилалюминием (ТЭА).

Частицы полимера, выходящие из реактора, подвергаются обработке паром для удаления реакционно-способных мономеров и летучих веществ, а затем сушатся. Основные эксплуатационные условия и характеристики полученных полимеров указаны в Таблице 1.

Свойства полученного материала представлены в Таблице 2:

Экструдированные трубы с наружным диаметром 22 мм года и толщиной стенки 2,8 мм изготовлены и прошли динамические испытания и испытания на сопротивление внутреннему давлению. Результаты представлены в Таблице 3.

Динамические испытания труб, изготовленных из материалов, являющихся предметом настоящего изобретения, демонстрируют улучшенные результаты по отношению к сравнительному примеру.

1. Тройной сополимер, содержащий пропилен, этилен и 1-гексен, в котором:
(i) содержание производных единиц 1-гексена колеблется от 1,5 до 2,6 вес.%;
(ii) содержание производных единиц этилена выше 1,4 вес.% и соответствует следующему соотношению (1):

где С2 - содержание производных единиц этилена в вес.%,
C6 - содержание производных единиц 1-гексена в вес. %;
(iii) скорость течения расплава (MFR) (ISO 1133 230°C, 5 кг) составляет от 0,1 до 3,9 г/10 мин;
(iv) температура плавления колеблется от 130 до 138°C; предпочтительно от 132 до 136°C, причем скорость течения расплава (MFR) (ISO 1133 230°C, 2,16 кг) составляет от 0,5 до 1,9 г/10 мин.

2. Тройной сополимер по п. 1, в котором содержание производных единиц 1-гексена колеблется от 1,5 до 2,6 вес.% и содержание производных единиц этилена выше 1,5 вес. %.

3. Трубопроводные системы, выполненные из полиолефиновой композиции в соответствии с пп. 1, 2.

4. Однослойные или многослойные трубы, в которых, по меньшей мере, один слой выполнен из полиолефиновой композиции по п. 1.



 

Похожие патенты:

Изобретение относится к области трубопроводной транспортировки нефтепродуктов. Гибкая труба содержит в направлении изнутри наружу следующие слои: внутреннюю обкладку и по меньшей мере один армирующий слой, причем между двумя слоями дополнительно находится другой слой в виде намотанной ленты, причем лента содержит следующие слои: a) первый наружный слой из неэлектропроводящей полимерной формовочной массы, b) промежуточный слой из электропроводящей полимерной формовочной массы, удельное объемное сопротивление которой согласно IEC 60093 составляет от 10-3 до 1010 Ом, причем вдоль ленты в промежуточный слой внедрены по меньшей мере два металлических проводника таким образом, что они не контактируют друг с другом по всей длине, а также c) второй наружный слой из неэлектропроводящей полимерной формовочной массы, причем указанная труба может эффективно обогреваться, в связи с чем ее можно использовать при добыче нефти в холодных регионах.
Изобретение относится к армированной волокнами пластмассовой структуре (композиционным материалам), изделиям, изготовленным из армированной волокнами пластмассовой структуры, описанной в данном изобретении, и использованию таких изделий.

Изобретение относится к производству экструзионных труб из термопластичных материалов и может быть использовано для изготовления кислородонепроницаемых полипропиленовых труб.

Изобретение относится к полиолефиновой композиции, которая особенно подходит для производства труб, и в частности, труб малого диаметра. Полиолефиновая композиция имеет скорость течения расплава (230°C/5 кг, ISO 1133) от 0,2 г/10 мин до 4,0 г/10 мин и содержит от 85,0 до 99,5 мас.% тройного сополимера пропилена, этилена и 1-гексена и от 0,5 до 10,0 мас.% композиции на основе сополимера пропилена и этилена.

Изобретение относится к слоистым изделиям из полимерных материалов и может быть использовано в качестве оболочек, например оболочек акустических антенн, способных функционировать в агрессивных средах.
Изобретение относится к гетерофазной композиции на основе полипропилена и к использованию указанной композиции для изготовления труб, работающих под давлением. Композиция содержит A) от 80 до 97 мас.% статистического сополимера пропилена, содержащего от 0,1 до 4 мас.% полученных из 1-гексена звеньев и B) от 3 до 20 мас.% сополимера пропилена и этилена, имеющего содержание полученных из этилена звеньев, составляющее от 50 до 55 мас.%, за исключением предельных значений.
Изобретение относится к полиолефиновой композиции, предназначенной для изготовления систем для труб и листов. Композиция имеет индекс текучести расплава от 0,05 до 10 дг/мин и содержит от 1 мас.% до 9,5 мас.% сополимера пропилена и 1-гексена и от 80,5 мас.% до 99 мас.% гетерофазной полипропиленовой композиции.

Изобретение относится к области машиностроения для использования в конструкциях авиационной, ракетной и космической техники и касается оболочки из композиционных материалов.

Изобретение относится к β-нуклеированным полипропиленовым смесям. Описана полипропиленовая смесь для получения труб.

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите.

Группа изобретений относится к области медицины, а именно к пленке для повязок на рану или масок для лица, содержащей поглощающую жидкость пленку-носитель и гидрогелевую альгинатную мембрану, которая имеет сетчатую структуру, образованную посредством реакции поперечного сшивания, и сформирована либо на поверхности пленки-носителя с проникновением в нее для получения альгинатной мембраны, не отделяемой от пленки-носителя, либо только на поверхности пленки-носителя для получения альгинатной мембраны, отделяемой от пленки-носителя, а также к способам получения таких пленок.

Изобретение относится к полимерным нанокомпозициям, предназначенным для получения пленочных материалов, защищающих от УФ-излучения и фотохимического старения. Композиция содержит полиолефин или сополимер олефина и УФ-абсорбер.

Изобретение относится к получению синтетических формованных изделий, например, для изготовления снижающих трение лент, используемых в качестве промежуточного слоя гибких жидкостных трубопроводов, например, для транспортирования нефти.

Изобретение относится к концентрату и способу его получения для производства не пропускающей влагу воздухопроницаемой пленки. Концентрат получают путем смешивания в определенных пропорциях полиэтилена или полипропилена и водорастворимого органического вещества, в качестве которого используют этиленгликоль, глицерин или молочную кислоту, при скорости вращения 200-500 об/мин и температуре 150-170°C в устройстве Бенбери.

Изобретение относится к полиэтиленовым смолам. Описан сополимер, содержащий этилен и 0,5-25,0 мол.% С3-С20-олефинового сомономера.

Изобретение относится к области переработки полимеров и биомедицины, в частности к созданию на основе хитозана нерастворимых, но набухающих в воде материалов, обладающих низкой токсичностью и контролируемым выделением лекарственных соединений.

Изобретение относится к одинарным пленкам и слоистым изделиям из них, содержащим по меньшей мере первый и второй сегменты пленки, находящиеся рядом друг с другом и прочно соединенные вместе.

В настоящем изобретении предложен элемент формирования изображения, включающий: подложку, генерирующий заряд слой, содержащий фотопроводящий пигмент, переносящий заряд слой, содержащий соединение, имеющее сегмент, содержащий полициклическое ароматическое кольцо или азотсодержащее гетерокольцо, необязательно покровный слой и наружный слой, который представляет собой поверхность для формирования изображения, которая включает структурированную органическую пленку, включающую множество сегментов, содержащих, по меньшей мере, один атом элемента, который не является углеродом, и множество линкеров, представляющих собой ковалентные связи, единичные атомы или группы ковалентно связанных атомов, включающих первый фторированный сегмент выбранный из группы, состоящей из: , и второй электроактивный сегмент, выбранный из группы, состоящей из N,N,N′,N′-тетра-(п-толил)бифенил-4,4′-диамина: и N4,N4′-бис(3,4-диметилфенил)-N4,N4′-ди-п-толил-[1,1′-бифенил]-4,4′-диамина: . Также описано ксерографическое устройство, включающее: указанный выше элемент формирования изображения, зарядное устройство, переносящее электростатический заряд на элементе формирования изображения, экспонирующее устройство для формирования скрытого электростатического изображения на элементе формирования изображения; проявочное устройство для формирования изображения на элементе формирования изображения; устройство переноса для переноса изображения с элемента формирования изображения; и необязательно очистительное устройство.
Изделие относится к экструдированным изделиям, изготовленным из полиэтилена. Описана полимерная пленка, содержащая полиэтилен.

Изобретение относится к пленке, которую применяют в составе разнообразных одноразовых изделий, например подгузников, гигиенических салфеток, одежды для взрослых, страдающих недержанием, перевязочного материала и т.д.

Изобретение относится к способу получения эластомерного полимера этилена. Способ включает полимеризацию смеси мономеров, содержащей этилен, по меньшей мере, один α-олефин с С3-12 атомов углерода, возможно, по меньшей мере, один несопряженный диен с С4-20 атомов углерода в суспензии в присутствии каталитической системы.
Наверх