Магнитоиндукционный генератор напряжения

Изобретение относится к электротехнике, к устройствам, вырабатывающим электроэнергию с использованием магнитных средств. Технический результат заключается в повышении к.п.д. и расширении арсенала технических средств. Устройство содержит корпус, внутри которого подвешена пружина, а также ферромагнитный стержень, вокруг которого расположена индуктивная обмотка. Ферромагнитный стержень состоит из набора магнитов, расположенных с немагнитным зазором и обратной полярностью относительно друг друга, и подвешен к пружине. Вокруг магнитов расположен полый цилиндр, один из торцов которого прикреплен к внутренней стороне верхней стенки корпуса. Вокруг цилиндра в месте расположения ферромагнитного стержня расположено несколько встречных индуктивных обмоток. Ферромагнитный стержень и/или пружина связаны с источником энергии колебаний. 7 з.п. ф-лы, 5 ил.

 

Изобретение относится к области энергетики, а именно к устройствам, вырабатывающим электроэнергию с использованием магнитных средств [МПК H02N 11/00].

Известно УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ В МЕХАНИЧЕСКУЮ [патент РФ №116287], которое может быть использовано для преобразования механической работы в электрическую энергию. Для этих целей прототип выполнен в виде стержня с грузом и магнитами, расположенными в верхней и нижней частях стержня, механизма преобразования возвратно-вращательного движения во вращательное.

Недостатком является низкая эффективность, обусловленная низкой электродвижущей силой, возникающей в устройстве под воздействием магнитного поля.

Наиболее близким по технической сущности является ДАТЧИК СЕЙСМОАКУСТИЧЕСКИХ КОЛЕБАНИЙ [патент РФ №14682] содержащий корпус, внутри которого подвешена пружина, а также ферромагнитный стержень, вокруг которого расположена индуктивная обмотка.

Недостатком прототипа является отсутствие внешнего источника колебаний.

Технический результат заключается в расширении арсенала технических средств, повышении КПД.

Технический результат достигается за счет того, что прототип, содержащий корпус, внутри которого подвешена пружина, а также ферромагнитный стержень, вокруг которого расположена индуктивная обмотка, отличается тем, что ферромагнитный стержень состоит из набора магнитов, расположенных с немагнитным зазором и обратной полярностью относительно друг друга; ферромагнитный стержень подвешен к пружине, вокруг которых расположен полый цилиндр, один из торцов которого прикреплен к внутренней стороне верхней стенки корпуса; вокруг цилиндра, в месте расположения ферромагнитного стержня, расположено несколько встречных индуктивных обмоток, при этом ферромагнитный стержень и/или пружина связаны с источником энергии колебаний.

В частности, источник энергии колебаний выполнен в виде пистонной ленты с лентопротяжным механизмом, который установлен внутри корпуса, при этом пистонная лента размещена под стержнем, на конце которого выполнен боек.

В частности, источник энергии колебаний выполнен в виде пластины, закрепленной с внешней стороны корпуса на одном из концов рычага, с другой стороны к рычагу через отверстие в верхней части корпуса подвешена пружина с ферромагнитным стержнем, при этом в месте расположения пластины между рычагом и корпусом расположена пружина.

В частности, источник принудительных колебаний выполнен в виде дополнительной обмотки из медной проволоки поверх встречных индуктивных обмоток, замкнутой на дополнительном источнике тока через ключ.

В частности, пластина выполнена из тонкого и легкого материала, а также обладает большой парусностью.

В частности, источник энергии колебаний выполнен в виде дополнительной индуктивной обмотки, распложенной вокруг встречных индуктивных обмоток, при этом она замкнута на дополнительный источник питания через ключ.

В частности, цилиндр выполнен из диэлектрика.

В частности, встречные катушки замкнуты на потребителя электрической энергии.

В частности, корпус установлен на регулируемые ножки.

Краткое описание чертежей

На фиг. 1 представлен вариант реализации магнитоиндукционного генератора напряжения с пистонной лентой.

На фиг. 2 представлен вариант реализации магнитоиндукционного генератора напряжения с пластиной.

На фиг. 3 представлен вариант реализации магнитоиндукционного генератора напряжения с дополнительной обмоткой.

На фиг. 4 представлено расположение магнитов на стержне магнитоиндукционного генератора напряжения.

На фиг. 5 представлена схема коммутации встречных индуктивных обмоток магнитоиндукционного генератора напряжения.

Осуществление изобретения

Магнитоиндукционный генератор напряжения содержит корпус 1, внутри которого к верхней стенке подвешена пружина 2 с ферромагнитным стержнем 3. Вокруг пружины 2 и ферромагнитного стержня 3 расположен полый цилиндр 4. Вокруг цилиндра 4 в месте расположения стержня 3 установлены встречные индукционные обмотки 5.

В одном из вариантов реализации магнитоиндукционного генератора напряжения (см. фиг. 1) на конце стержня 3 установлен боек 6, под которым расположен лентопротяжный механизм 7 с пистонной лентой 8.

В другом варианте реализации магнитоиндукционного генератора напряжения (см. фиг. 2) сверху корпуса на опоре 9 установлен рычаг 10, на одном из концов которого расположена пластинка 11, а к другому концу подвешена пружина 2 со стержнем 3. Между рычагом 10 и корпусом 1 в месте установки пластины 11 установлена пружина 12.

В другом варианте реализации магнитоиндукционного генератора напряжения (см. фиг. 3) в нижней части магнитного стержня расположена дополнительная обмотка возбуждения, которая через ключ замкнута на источник тока и приводится в действие при подъеме магнитного стержня вверх, тем самым увеличивая амплитуду путем перемещения масс. Металлический стержень 13 линейного двигателя вставлен в магнитный стержень 14, а на конце стержня 13 установлен ограничитель хода 15 (стопор).

При подаче напряжения на обмотку 18 линейного двигателя, состоящую из нескольких катушек, создается магнитное поле, которое дает возможность подтянутся дополнительному грузу 17 к магнитному стержню 14, тем самым увеличивая колебания магнитного стержня на пружине. Дополнительный груз 17 представляет собой гравилятор и имеет 1/5-1/7 общей массы груза, подвешенного на пружине. По достижении магнитного стержня верхней точки происходит переключение ключа, магнитное поле в катушках 18 создает отталкивающее направление линейного двигателя, тем самым направляя дополнительный груз 17 вниз, опять же увеличивая колебания стержня 14.

Этот вариант хорош тем, что он увеличивает время работы устройства в несколько раз.

Ферромагнитный стержень 3 (см. фиг. 4) состоит из набора магнитов 14, которые установлены на основании 14 с немагнитным промежутком и обратной полярностью относительно друг друга.

Встречные индукционные обмотки 5 (см. фиг. 5) замкнуты на потребителя 15.

Корпус 1 установлен на регулируемые ножки 16.

Цилиндр 4 выполнен из тонкостенного диэлектрика.

Магниты 14 могут быть выполнены из неодимовых магнитов.

Пластинка 11 имеет большую площадь, маленький вес и высокую парусность.

Устройство используется следующим образом.

Магнитоиндукционный генератор напряжения размещают на ровной поверхности и с помощью регулируемых ножек 16 выравнивают в его горизонтальной плоскости. В варианте реализации с пистонной лентой 8 боек 6 стержня 3 ударяет в пистон пистонной ленты 8 и вызывает его взрыв, при этом энергия пороховых газов толкает стержень 3 вверх, при достижении верхней точки за счет собственной массы стержень 3 осуществляет движение вниз и натягивает пружину 2, которая в свою очередь стремится принять свое исходное положение и тем самым создает затухающие возвратно-поступательные движения стержня 3. Движения стержня 3 изменяют положение магнитов 14 и их магнитного поля относительно обмоток 5, в которых возникает электродвижущая сила, которая передается потребителю 15. В момент времени, когда движения стержня 3 затухают до критически малой величины, лентопротяжный механизм 8 протягивает очередной пистон под стержень 3, боек 6 которого производит взрыв пистона.

В случае использования варианта реализации изобретения с пластиной 11 источником колебаний стержня 3 является сила ветра, которая приводит в движение пластину 11, при этом пластина 11 через рычаг 10 передает энергию колебательной системе, состоящей из пружины 2 и стержня 3.

В случае использования в качестве источника принудительных колебаний дополнительной возбуждающей обмотки колебательную систему приводит в действие магнитное поле обмотки при ее кратковременном замыкании на источник тока.

Положительный технический эффект от использования устройства состоит в расширении номенклатуры устройств, предназначенных для преобразования механической энергии колебаний в электрическую энергию.

С учетом того, что для раскачивания требуется небольшое усилие, устройство может работать от раскачивания хоть рукой, хоть ногой. Так, например, для раскачивания магнитного стержня весом в одну тонну, достаточно усилия в 10 ньютонов, для работы устройства в течение 30 минут. Также устройство имеет минимум трения. Таким образом, результатом данных преимуществ является повышение КПД.

1. Магнитоиндукционный генератор напряжения, содержащий корпус, внутри которого подвешена пружина, а также ферромагнитный стержень, вокруг которого расположена индуктивная обмотка, отличающийся тем, что ферромагнитный стержень состоит из набора магнитов, расположенных с немагнитным зазором и обратной полярностью относительно друг друга; ферромагнитный стержень подвешен к пружине, вокруг которых расположен полый цилиндр, один из торцов которого прикреплен к внутренней стороне верхней стенки корпуса; вокруг цилиндра, в месте расположения ферромагнитного стержня, расположено несколько встречных индуктивных обмоток, при этом ферромагнитный стержень и/или пружина связаны с источником энергии колебаний.

2. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что источник энергии колебаний выполнен в виде пистонной ленты с лентопротяжным механизмом, который установлен внутри корпуса, при этом пистонная лента размещена под стержнем, на конце которого выполнен боек.

3. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что источник энергии колебаний выполнен в виде пластины, закрепленной с внешней стороны корпуса на одном из концов рычага, с другой стороны к рычагу через отверстие в верхней части корпуса подвешена пружина с ферромагнитным стержнем, при этом в месте расположения пластины между рычагом и корпусом расположена пружина.

4. Магнитоиндукционный генератор напряжения по п. 3, отличающийся тем, что пластина выполнена из тонкого и легкого материала, а также обладает большой парусностью.

5. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что источник энергии колебаний выполнен в виде дополнительной индуктивной обмотки, распложенной вокруг встречных индуктивных обмоток, при этом она замкнута на дополнительный источник питания через ключ.

6. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что цилиндр выполнен из диэлектрика.

7. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что встречные катушки замкнуты на потребителя электрической энергии.

8. Магнитоиндукционный генератор напряжения по п. 1, отличающийся тем, что корпус установлен на регулируемые ножки.



 

Похожие патенты:

Использование: в области связи. Технический результат - повышение надежности и ресурса средства связи за счет предотвращения быстрого разрушения постоянных магнитов электрогенератора.

Изобретение относится к электротехнике, к производству электрической энергии и может быть использовано в устройствах с автономным питанием, размещаемых на движущихся объектах.

Изобретение относится к области производства электрической энергии и может быть использовано в устройствах с автономным питанием, размещаемых на движущихся объектах.

Изобретение относится к электротехнике, и может быть использовано в автономных системах электроснабжения. Технический результат состоит в повышении к.п.д.

Изобретение относится к электротехнике, к получению электрической энергии при колебании различных механических устройств и может быть использовано, в частности, для генерирования переменного тока при колебании некоторых узлов транспортных средств, в частности рессор или других элементов подвески, например амортизаторов.

Изобретение относится к электротехнике, к получению электрической энергии при колебании различных механических деталей относительно друг друга и может быть использовано для генерирования переменного тока при колебании некоторых узлов транспортных средств, в частности рессор или других элементов подвески, например амортизаторов.

Изобретение относится к линейному генератору мощности. Технический результат заключается в обеспечении стабильности работы генератора и плавности хода поршня.

Изобретение относится к электротехнике и может быть использовано для получения электроэнергии на железнодорожном транспорте. Технический результат состоит в получении электроэнергии при прохождении поезда по рельсам, когда рельсы приходят в колебательное состояние.

Изобретение относится к электротехнике и предназначено для преобразования энергии малых возвратно-поступательных перемещений в электрическую энергию. Технический результат состоит в повышении эффективности преобразования энергии.

Изобретение относится к электротехнике, к устройствам для подзарядки штатных аккумуляторов малоэнергоемких систем и может также использоваться для самостоятельного питания навигаторов, приборов ночного видения, маломощных связных устройств фарватерных бакенов, автономных осветительных устройств на судах и наземном транспорте, в сигнальных и аварийных приборах, как устройство для продления времени полета беспилотных летательных аппаратов и т.п.

Изобретение относится к электротехнике, а именно к системам двигатель-генератор, и может быть использовано при проектировании и производстве источников переменного электрического тока. Технический результат состоит в повышении надежности. В цилиндрах 1 попарно установлены поршни 2, опирающиеся штоками 3 на направляющие шайбы 4. Последние закреплены на валу 5, кинематически связанном через маховик 7 с другими системами двигателя. Электрические обмотки 8 расположены по краям внутренней части цилиндров 1. На штоках 3 закреплен ряд кольцевых магнитов 9, обращенных друг к другу разноименными полюсами. При движении поршней 2 от верхней мертвой точки к нижней мертвой точке магнитные потоки кольцевых магнитов 9 генерируют э.д.с. в электрических обмотках 8. 1 ил.

Изобретение относится к области электромашиностроения, в частности к индукторам линейных магнитоэлектрических генераторов с возбуждением от постоянных магнитов. Технический результат - повышение магнитной индукции, общего магнитного потока и КПД индуктора, а также повышение надежности его эксплуатации. Индуктор содержит смонтированный на опорном узле кольцевой магнитный вкладыш, выполненный из группы отдельных кольцевых монолитных магнитных секций с радиальной намагниченностью и с чередующейся попарно полярностью (NN - SS) по окружности. Опорный узел включает расположенную коаксиально кольцевому магнитному вкладышу цилиндрическую металлическую обойму магнитопровода из ферромагнитного материала. Внутренняя боковая стенка каждой из отдельных кольцевых монолитных магнитных секций кольцевого магнитного вкладыша образована из N-пар расположенных диаметрально противоположно друг другу равномерно по дуге окружности и симметрично относительно центральной оси кольцевого магнитного вкладыша цилиндрических поверхностей вращения, пересекающихся между собой и образующих на участках пересечения клювообразные. 2 з.п. ф-лы, 7 ил.

Способ уменьшения сопротивления магнитного потока воздушного зазора между якорями линейного электрогенератора свободнопоршневого энергомодуля с внешней камерой сгорания достигается следующим образом. Якоря линейного электрогенератора выполнены с возможностью возвратно-поступательного движения таким образом, что два и более выступа одного якоря входят-выходят в ответные пазы другого якоря линейного электрогенератора. За счет увеличения площади зазора между якорями достигается уменьшение сопротивления магнитного потока воздушного зазора между якорями линейного электрогенератора свободнопоршневого энергомодуля с внешней камерой сгорания. Изобретение обеспечивает уменьшение сопротивления магнитного потока зазора между якорями линейного электрогенератора свободнопоршневого энергомодуля с внешней камерой сгорания и удельную мощность линейного электрогенератора. 2 ил.

Изобретение относится к области электротехники. Технический результат – повышение надёжности конструкции, снижение её массы. Электрогенератор включает подвижный и неподвижный магниты 1 и 2 соответственно, обращенные одноименными полюсами друг к другу, а также элементы 3 индуктивности. Подвижный магнит 1 выполнен в виде кольца со сквозным отверстием в его центральной части, кольцо охватывает цилиндрическую направляющую 4, в которой выполнены отверстия 5. Кольцо и цилиндрическая направляющая 4 расположены внутри полости 6, ограниченной цилиндрической стенкой 7, вокруг которой размещены элементы 3 индуктивности. В нижней части полости 6 закреплен неподвижный магнит 2. Устройство разработано, преимущественно, для применения в конструкциях маяков и радиобуев для безопасности судоходства на море, а также озерах и реках. 12 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано для преобразования энергии магнитного поля постоянных магнитов в электроэнергию. Технический результат состоит в увеличении мощности линейного электрогенератора при использовании его с ручным приводом. Линейный электрогенератор содержит диамагнитный корпус, в котором расположены три каркаса из немагнитного материала с расположенными в них в ряд кольцевыми индуктивными катушками. На немагнитных осях трех генерирующих магнитных сердечников закреплены два кольцевых постоянных магнита с осевой намагниченностью, установленные одноименными полюсами навстречу друг другу с возможностью челночного перемещения сердечников внутри каркасов с кольцевыми индуктивными катушками между опорными элементами. В качестве общего для всех генерирующих магнитных сердечников кривошипно-шатунного механизма использовано массивное толкатель-колесо, закрепленное на штанге, которая, в свою очередь, закреплена на вертикальной оси с использованием подшипникового узла, дающего штанге степень свободы в вертикальной плоскости. На штанге с использованием опор, с установленными в них подшипниковыми узлами, закреплен маховик, который взаимодействует с толкателем- колесом с использованием первого повышающего редуктора. Приводная шестерня редуктора закреплена непосредственно на боковой поверхности толкателя-колеса, а вертикальная ось установлена в корпусе с использованием подшипниковых узлов и связана с ручным приводом кинематически. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области теплоэлектроэнергетики и предназначено для обеспечения потребностей в тепле и электроэнергии в производственных и жилых помещениях при отсутствии электропитания от сети. Техническим результатом является повышение надежности и эффективности установки путем улучшения динамической устойчивости системы при переходных режимах, возникающих при скачках электрической или тепловой нагрузок, а также повышение КПД. Сущность изобретения заключается в том, что устройство включает модуль электрогенерирующего устройства (18), в состав которого входит двигатель Стирлинга (1), основная газовая горелка (2) для подвода тепловой энергии к головке двигателя (1), синхронный линейный генератор с постоянными магнитами (3), интегрированный в корпус двигателя (1), настроечная резонансная емкость (11) на выходе линейного генератора (3) и система охлаждения (10) двигателя (1); модуль преобразовательной силовой электроники (19), в состав которого входит инвертор (5), выпрямитель (7), накопитель электрической энергии (4) и общая шина переменного тока (6), к которой подключена настроечная емкость (11) модуля электрогенерирующего устройства (18); модуль теплогенерирующего устройства (20), в состав которого входит теплогенератор (12), дополнительная газовая горелка (13) и аварийный охладитель (14); модуль регулируемой балластной нагрузки (9), подключенный к общей шине переменного тока (6) модуля преобразовательной силовой электроники (19); систему автоматического управления (17), сигналы которой обеспечивают управление вышеуказанными модулями (18), (19), (20), (9), выполненную с возможностью контроля тока и напряжения линейного генератора (3), температуры тепловой головки двигателя Стирлинга (1) и управления включением линейного генератора (3) в функции температурного режима тепловой головки двигателя Стирлинга (1). 3 з.п. ф-лы, 1 ил.
Наверх