Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов



Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов
Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов
Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов
Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов
Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов
Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов

 


Владельцы патента RU 2599284:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (RU)

Изобретение относится к области исследований, в которых оценивается работоспособность изделий, герметизированных полимерными компаундами, а также армированных изделий из полимерных компаундов, подвергающихся воздействию температурных напряжений при их проектировании, а также в процессе эксплуатации. Сущность: определяется вероятность безотказной работы при нормальном распределении температурных напряжений и прочности по формуле

где - среднее значение прочности при растяжении; - среднее значение температурного напряжения; S σ P - среднее квадратическое отклонение прочности при растяжении; S σ T - среднее квадратическое отклонение температурного напряжения, а нижнюю температурную границу механической работоспособности определяют как температуру, при которой достигнута требуемая вероятность безотказной работы. Технический результат: повышение достоверности оценки нижней температурной границы механической работоспособности изделий, герметизированных полимерными компаундами, а также армированных изделий из полимерных компаундов, подвергающихся воздействию температурных напряжений. 2 ил.

 

Изобретение относится к области исследований, в которых оценивается работоспособность изделий, герметизированных полимерными компаундами, а также армированных изделий из полимерных компаундов, подвергающихся воздействию температурных напряжений при их проектировании, а также в процессе эксплуатации.

Металлические детали в сочетании с полимерными компаундами нашли широкое применение технологической оснастке, при восстановлении изношенных деталей, в защитных покрытиях, в корпусных деталях, для герметизации радиотехнических изделий. Полимерные компаунды представляют собой многокомпонентные отверждающиеся системы, включающие смолу, отвердитель, наполнитель и т.д.

Эти материалы отличаются простой технологией формообразования. Одной из особенностей отверждающихся систем является наличие усадки в процессе отверждения и изменения температуры. При охлаждении, при отрицательных температурах в полимерном элементе детали при стесненных деформациях возникают температурные напряжения. Эти напряжения достигают больших значений и могут вызвать растрескивание, отслаивание, нарушение герметичности.

В связи с этим является важным определение нижней температурной границы механической работоспособности изделий из полимерных компаундов.

Известен способ определения нижней границы рабочих температур силиконовых эластомеров для производства изделий электроники, при котором оценка пригодности силиконового эластомера для изделия, эксплуатирующегося при низких температурах, связана с измерением двух параметров: ТКЛР и твердости материала. Графики зависимости данных параметров от температуры, а также от скорости изменения температуры свидетельствуют о поведении силиконовых эластомеров в реальных условиях эксплуатации [1].

Этот метод определения нижней границы рабочих температур эластомеров не учитывает температурные напряжения и прочность материала, а также рассеяние этих характеристик.

Температурные напряжения могут быть определены расчетным или экспериментальным методами.

Для оценки склонности полимерных компаундов к образованию температурных напряжений используется терморелаксационная характеристика. Терморелаксационной характеристикой (ТРХ) называется температурная зависимость напряжения, возникающего в компаунде при совместной тепловой деформации системы «компаунд - залитый элемент». Экспериментальным методом определение ТРХ проводится при одноосном растяжении. Прибор для снятия ТРХ называется терморелаксометром [2, 3]. При определении ТРХ ряда образцов одного компаунда получают статистические характеристики температурных напряжений. ТРХ может быть определена и расчетным путем.

Прочностные свойства полимерных компаундов оцениваются разрушающим напряжением при растяжении σр в зависимости от температуры.

Механическая работоспособность материалов представляет собой способность не разрушаться под действием механических нагрузок при различных температурах.

Предложено производить оценку нижней температурной границы механической работоспособности изделий из полимерных компаундов путем анализа перекрытии плотностей распределения температурных напряжений и прочности. При этом указанная оценка изделия заключается в том, что понижение температуры вызывает рост температурных напряжений в изделии или его элементе и при достижении прочности наступает потеря его работоспособности - разрушение.

Факторы, определяющие прочность элементов изделия, являются случайными переменными, а, следовательно, и прочность будет случайной переменной. Температурные напряжения, возникающие в элементе изделия, также зависят от многих переменных (упругих, деформационных, дилатометрических характеристик и др.), обладающих изменчивостью или рассеиванием. Причинами рассеяния являются различия в структуре материала образца, степень его дефектности, различие в размерах, точность определения измеряемых характеристик, стабильность условий испытания и т.д. Это приводит к тому, что температурные напряжения также становятся случайными переменными. Нормальное распределение случайных величин применяется в тех случаях, когда они зависят от большого числа независимых воздействий.

Типичная терморелаксационная характеристика σTT(T°C) и температурная зависимость прочности σPP(T°C) полимерных компаундов представлена на фиг. 1.

ТРХ представляет собой кривую, состоящую из двух участков. Участок при Т>Tc соответствует высокоэластичному состоянию. На этой стадии рост напряжения сопровождается его быстрой релаксацией, поэтому значение напряжения на этом участке невелики. При достижении температуры стеклования при Т<Tc релаксационные процессы резко замедляются и происходит интенсивный рост напряжений.

На фиг. 2 показано перекрытие распределений температурных напряжений в изделии ƒσT) со средним значением σT(Т) и средним квадратическим отклонением S σ T ( T ) , а также прочности ƒσP) со средним значением и средним квадратическим отклонением S σ P ( T ) .

При температуре, близкой к точке пересечения ТРХ и температурной кривой прочности полимерных компаундов в зависимости от рассеяния этих характеристик, происходит потеря работоспособности - разрушение.

Нормальное распределение является наиболее часто используемой статистической моделью.

Вероятность безотказной работы определяется при нормальном распределении температурных напряжений и прочности [4, 5].

Выражая вероятность безотказной работы R через нормированную функцию нормального распределения, имеем

где - среднее значение прочности при растяжении;

- среднее значение температурного напряжения;

S σ P - среднее квадратическое отклонение прочности при растяжении;

S σ T - среднее квадратическое отклонение температурного напряжения.

Изделия различного назначения требуют разного уровня безотказности, показателем которой является вероятность безотказной работы. Проводится ряд вычислений вероятности безотказной работы при температурах, близких к точке пересечения ТРХ и температурной кривой прочности полимерных компаундов. Температура, при которой достигнута требуемая вероятность безотказной работы, является нижней температурной границей механической работоспособности изделий из полимерных компаундов.

Источники информации

1. Кондратюк Р. Определение нижней границы рабочих температур силиконовых эластомеров для производства изделий электроники /Р. Кондратюк // Вектор высоких технологий. - 2013. - №4(4). - С. 52-57.

2. Кан К.Н., Николаевич А.Ф., Шанников В.М. Механическая прочность эпоксидной изоляции. - Л.: Энергия, 1973, 152 с.

3. Кан К.Н., Николаевич А.Ф., Славянинова Е.Л. Проектирование и технология герметизирующей изоляции элементов электротехнической и электронной аппаратуры. - Л.: Энергоиздат, 1983, 128 с.

4. Капур К., Ламберсон Л. Надежность и проектирование систем. Пер. с англ. / Под ред. И.А. Ушакова. - М.: Мир, 1980. - 604 с.

5. Реутов А.И. Прогнозирование надежности строительных изделий из полимерных материалов: монография / А.И. Реутов. - М.: ООО РИФ «Стройматериалы», 2007. - 184 с.

Способ оценки нижней температурной границы механической работоспособности изделий из полимерных компаундов, отличающийся тем, что определяется вероятность безотказной работы при нормальном распределении температурных напряжений и прочности по формуле

где - среднее значение прочности при растяжении;
- среднее значение температурного напряжения;
S σ P - среднее квадратическое отклонение прочности при растяжении;
S σ T - среднее квадратическое отклонение температурного напряжения,
а нижнюю температурную границу механической работоспособности определяют как температуру, при которой достигнута требуемая вероятность безотказной работы.



 

Похожие патенты:

Изобретение относится к области вычислительной техники, применяемой в нефтяной промышленности, а именно, к информационным системам автоматизации управления нефтедобывающего предприятия.

Группа изобретений относится к области вычислительной техники и может быть использована для определения потребления электроэнергии. Техническим результатом является повышение точности расчета потребления электроэнергии каждым электрическим бытовым прибором.

Изобретение относится к средствам анализа данных. Техническим результатом является увеличение точности прогнозирования событий в скважине.

Изобретение относится к информационной безопасности. Технический результат заключается в снижении нагрузки на вычислительные ресурсы при определении категории сетевого ресурса.

Группа изобретений относится к области полигонных испытаний и может быть использована для определения характеристик пролета снарядов относительно центра мишени.

Изобретение относится к области исследований, в ходе которых оценивается работоспособность армированных и подвергающихся воздействию нагрузки изделий при их проектировании, а также в процессе эксплуатации.

Изобретение относится к области медицины. Техническим результатом является повышение точности эпидемиологического районирования.

Изобретение относится к вычислительной технике и может быть использовано для управления равновесным случайным процессом (РСП). Техническим результатом является оптимизация режима управления.

Изобретение относится к области вычислительной техники и может быть использовано для оценки надежности и качества функционирования сложных автоматизированных и гибких производственных и телекоммуникационных систем произвольной структуры, в которых используется циклический характер производства, предоставления телекоммуникационных услуг и временное резервирование.

Изобретение относится к устройству для моделирования каталога разведки разнотипных подвижных объектов. Технический результат заключается в расширении функциональных возможностей путем обеспечения моделирования каталога разведки разнотипных подвижных объектов.
Изобретение относится к устройству для повышения точности измерений. Технический результат заключается в повышении точности измерения величин. Устройство состоит из блоков памяти, блока деления, тестового блока и блока умножения, характеризующееся тем, что в устройство дополнительно введен пульт оператора, состоящий из блока индикации информации, вход которого является входом устройства, и блока управления, один выход тестового блока подключен на вход блока индикации информации, выход которого подключен на вход блока управления, выходы которого через первый и второй блок памяти подключены на вход блока деления, выход которого подключен на вход третьего блока памяти, выход которого и второй выход тестового блока подключены на входы блока умножения, выход которого является выходом устройства. 3 ил.
Наверх