Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1 взбивают в пену, которую смешивают с порошком фосфата кальция в массовом соотношении от 1:1 до 1:5. Смесь формуют, сушат при температуре 180-200°С и спекают при температуре 850-1200°С. Способ обеспечивает получение керамического материала, характеризующегося пористостью 40-90 об.%, размером пор 0,01-20 мкм и прочностью при сжатии 8-15 МПа. 1 ил., 4 пр.

 

Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Пористая керамика может быть изготовлена различными способами - методом выгорающих добавок, методом растворимых добавок, методом вспенивающих добавок. В качестве выгорающих добавок используют материалы на основе органических веществ - сажу, опилки, муку. При спекании керамики выгорающая добавка на основе органического вещества сгорает, образуя углекислый газ и пары воды, которые удаляются из образца, формируя в нем систему взаимосвязанных открытых пор. Введением в состав керамической шихты солей, разлагающихся при нагревании, например карбоната или гидрокарбоната аммония, также можно создать систему взаимосвязанных пор в спеченном образце: поры формируются за счет выделения газообразных продуктов разложения (Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure / B. Li, X. Chen, B. Guo et al. // Acta Biomaterialia. 2009. V. 5. P. 134-143).

Известен патент (Патент РФ C1 №2299869. Комлев B.C., Баринов С.М., Кубарев О.Л. Способ изготовления пористых керамических гранул фосфатов кальция (Институт физико-химических проблем керамических материалов РАН)), в котором пористые керамические гранулы формируют в системе несмешивающихся жидкостей вода/масло. В состав водной суспензии входит биополимер (желатин), выполняющий роль выгорающей добавки. Керамические гранулы, полученные таким способом, характеризуются пористостью в интервале 20-80 об.%, поры открытые, взаимосвязанные. Недостатком данного способа является относительно низкий выход гранул и необходимость использования больших объемов масла и этилового спирта, используемых для формирования и последующего промывания гранул.

В патенте США (US patent № 8,871,167 Aizawa, et al. Biocompatible ceramic-polymer hybrids and calcium phosphate porous body) предложено использовать для получения пористой кальцийфосфатной керамики волокна фосфатов кальция (ФК), при этом поры формируются за счет переплетения волокон, которые припекаются друг к другу в процессе спекания. Недостатком данного способа является необходимость использования волокон ФК.

В патенте (Патент РФ C1 №2349373, B01D 71/02. Композиционная пористая подложка для оксидно-керамических мембран и способ ее получения / Зырянов В.В. (Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук) №2007138240/15. Заявл. 15.10.2007) описан способ получения пористой керамической подложки для нанесения мембран. Подложки получают литьем суспензий на основе отобранных беложгущихся каолинов и глин с добавками микрокристаллической целлюлозы. Способ получения включает обжиг подготовленной и сформованной суспензии, микрокристаллическая целлюлоза выполняет роль выгорающей добавки.

Запатентован (US patent № 8,586,166 Ohno et al. Ceramic sintered body and ceramic filter) способ получения пористой керамики, состоящей из пористых керамических частиц и связующего слоя, в качестве которого может использоваться стекло или спекающая добавка. Недостатком этого патента является необходимость использования в качестве исходного материала готовых пористых керамических частиц, что усложняет процесс изготовления пористой керамики, приводя к появлению дополнительной стадии получения пористых гранул.

Наиболее близким к данному изобретению является патент РФ №2475461 «Способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью». Шликером на основе геля полиакриламида, содержащим порошок гидроксиапатита, включающим ионы цинка или меди, или железа, или серебра пропитывают полиуретановые губки с пористостью от 50 до 90 об.%, после чего проводят спекание при температуре 900-1200°С. Недостатком данного способа получения пористой керамики является выделение большого объема вредных газообразных веществ в процессе спекания, а также невозможность получения больших объемных образцов.

Техническим результатом предлагаемого изобретения является получение объемных пористых керамических матриксов из фосфатов кальция с пористостью от 40 до 90 об.% и размером пор от 0,01 мкм до 20 мкм, имеющего прочность при сжатии 8-15 МПа.

Технический результат достигается тем, что в способе получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани, включающем введение выгорающей добавки-порообразователя, формование и спекание, согласно изобретению в качестве выгорающей добавки-порообразователя используют взбитые в пену яичные белки с сахарозой, взятые в соотношении 1:1, которые смешивают с керамическим порошком фосфата кальция в соотношении от 1:1 до 1:5 с последующим формованием, сушкой при 180-200°С и термообработкой в камерной печи в температурном интервале 850-1200°С, полученный керамический материал характеризуется пористостью от 40 до 90 об. % и размером пор от 0,01 до 20 мкм, прочностью при сжатии 8-15 МПа.

При спекании керамических образцов происходит разложение яичных белков с образованием углекислого газа, ядовитые газообразные продукты при разложении не образуются.

При изменении соотношения яичных белков с сахарозой образуется нестойкая пена, которая гасится при добавлении керамических порошков ФК. При уменьшении соотношения белковая пена:керамический порошок ФК менее чем 1:1, образуется неоднородный шликер, который после спекания содержит поры различного размера, неравномерно распределенные в керамическом образце. Керамика при этом имеет пористость ниже 40%. При увеличении соотношения белковая пена:керамический порошок ФК более чем 1:5 в результате спекания органическая составляющая шликера выгорает, между частицами ФК образуется мало контактов, в результате чего прочность образцов снижается до менее чем 1 МПа при сжатии, образцы рассыпаются. При увеличении температуры сушки выше 200°С происходит обугливание и деформация образцов, при температуре сушки ниже 180°С образцы получаются сырыми, а при спекании таких сырых образцов происходит их разрушение из-за большого объема выделяющихся газообразных продуктов (пары воды и углекислый газ). Снижение температуры спекания ниже 850°С приводит к резкому снижению прочности (ниже 1 МПа).

Пример 1.

Яичные белки с сахарозой, взятые в соотношении 1:1, взбивают в пену с помощью лопастной мешалки. Образовавшуюся пену смешивают с керамическим порошком ФК (цинксодержащего гидроксиапатита) в массовом соотношении 1:1. Образовавшуюся массу формуют, помещают в сушильный шкаф при температуре 180°С, сушат в течение 10-15 мин, после чего помещают в камерную печь с силитовыми нагревателями и проводят операцию спекания при температуре 1100°С. После спекания образцы имеют пористость 55-60% и прочность при сжатии 15 МПа. Микроструктура пористой керамики представлена на рис. 1.

Пример 2.

Яичные белки с сахарозой, взятые в соотношении 2:1, взбивают в пену, пена получается жидкой и неустойчивой, гасится при добавлении керамического порошка.

Пример 3.

Яичные белки с сахарозой, взятые в соотношении 1:1, взбивают в пену с помощью лопастной мешалки. Образовавшуюся пену смешивают с керамическим порошком трикальцийфосфата в массовом соотношении 1:10. Получить шликер при таком соотношении компонентов не удалось: много порошка и мало пены.

Пример 4.

Яичные белки с сахарозой, взятые в соотношении 1:1, взбивают в пену с помощью лопастной мешалки. Образовавшуюся пену смешивают с керамическим порошком ФК (нанокристаллического апатита) в массовом соотношении 3:2. Образовавшуюся массу формуют, помещают в сушильный шкаф при температуре 200°С, сушат в течение 10-15 мин, после чего помещают в камерную печь с силитовыми нагревателями и проводят операцию спекания при температуре 900°С. После спекания образцы имеют пористость 850% и прочность при сжатии 8 МПа.

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани, включающий введение выгорающей добавки-порообразователя, формование и спекание, отличающийся тем, что в качестве выгорающей добавки-порообразователя используют взбитые в пену яичные белки с сахарозой, взятые в соотношении 1:1, которые смешивают с керамическим порошком фосфата кальция в соотношении от 1:1 до 1:5 с последующим формованием, сушкой при 180-200°С и термообработкой в камерной печи в температурном интервале 850-1200°С, полученный керамический материал характеризуется пористостью от 40 до 90 об.% и размером пор от 0,01 до 20 мкм, прочностью при сжатии 8-15 МПа.



 

Похожие патенты:

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 91,0-92,4, мылонафт 4,0-6,0, масло машинное 0,2-1,0, соду каустическую 0,7-3,5, измельченную и просеянную через сито №5 резину 0,5-0,7.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 81,7-83,55, мылонафт 0,4-0,6, масло машинное 0,1-0,15, соду каустическую 0,1-0,15, уголь 0,1-0,15, жидкое натриевое стекло 0,4-0,6, пегматит 15,0-17,0.

Изобретение относится к производству искусственных пористых заполнителей бетона, а также теплоизоляционных материалов. Сырьевая смесь для изготовления аглопорита содержит, мас.%: глину огнеупорную 72,0-74,0, сухой торф 2,0-3,0, диаммоний фосфат 4,0-6,0, глинозем технический 2,0-3,0, кварцевый песок 16,0-18,0.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину монтмориллонитовую 85,5-87,0, мылонафт 2,0-2,5, соду каустическую 4,0-4,5, уголь 2,0-2,5, фосфорит 4,0-6,0.

Изобретение относится к производству аглопорита, который может быть использован в качестве теплоизоляционной засыпки, а также в качестве заполнителя в бетоне. Сырьевая смесь для производства аглопорита содержит, мас.%: глину кирпичную 91,3-92,4, мылонафт 2,0-3,0, масло машинное 0,1-0,2, соду каустическую 4,0-4,5, уголь 1,0-1,5.

Изобретение относится к производству искусственных пористых заполнителей для бетонов. Шихта для производства заполнителя содержит, мас.%: глину монтмориллонитовую 90,0-99,5, выгорающую добавку - семена зерновых растений - ржи, или ячменя, или овса, или их смесь, пораженные грибковыми заболеваниями, 0,5-10,0.

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. В керамической смеси для изготовления строительного кирпича, включающей глину, кварцевый песок с модулем крупности 2-2,5, выгорающую добавку, согласно изобретению в качестве выгорающей добавки используют первичные, вторичные или подлежащие утилизации полимерные отходы предприятий по производству и переработке полимеров - поливинилхлорид, полипропилен, полиэтилен, полиэтилентерефталат, полиамид-6, полимерные композиционные материалы на их основе в виде частиц дисперсностью 0,1-2,0 мм при следующем содержании компонентов смеси, мас.%: глина 75,0-85,0; кварцевый песок 13,0-15,0; полимерные отходы 2,0-10,0.

Изобретение относится к производству заполнителей для бетонов. Шихта для производства заполнителя содержит, мас.%: глину монтмориллонитовую 92,6-93,7, волластонит 4,8-5,3, пенообразователь ПБ-2000 0,2-0,3, каолин 1,3-1,8.

Изобретение относится к способам получения блочно-ячеистых фильтров-сорбентов, используемых в адсорбционных процессах. Способ заключается в нанесении на керамическую блочно-ячеистую матрицу путем многократной пропитки активной композицией с последующей термообработкой.

Изобретение относится к производству заполнителей для бетонов. Шихта для производства заполнителя содержит размолотые до прохождения через сетку №063 компоненты, мас.%: глину монтмориллонитовую 84,0-88,0, уголь 1,5-2,5, волластонит 4,5-5,5, бой силикатного кирпича 6,0-8,0.

Изобретение относится к медицине и биотехнологии. Описан способ получения композиционного материала для замещения костных дефектов, включающий: подготовку порошковой смеси, содержащей порошок альфа-Ca3(PO4)2; подготовку пасты при добавлении жидкости затворения в виде водного раствора, содержащего карбонат-ионы; формование образцов или изделий из пасты; гидролитическую обработку образцов или изделий в водном растворе, содержащем карбонат-ион, и сушку.
Изобретение относится к области медицины, а именно к травматологии. Для одномоментного замещения костных дефектов проводят компьютерно-томографическое обследование биологического объекта, создают образ области костных структур определенной плотности, захватывая по краям костного дефекта по 0,2-0,4 см неповрежденной костной ткани.

Изобретение относится к области медицины, в частности к медицинской технике, предназначено для использования, при введении и удалении, углеродных наноструктурных композиционных имплантатов.

Предложенная группа изобретений относится к области медицины. Предложены персонализированный ген-активированный имплантат для замещения костных дефектов у млекопитающего и способ его получения, предусматривающий проведение компьютерной томографии области костной пластики, моделирование костного дефекта, трехмерную печать формы биосовместимого носителя и совмещение биосовместимого носителя с нуклеиновыми кислотами.

Группа изобретений относится к области изготовления керамических материалов для замещения дефектов костных тканей в области ортопедии, стоматологии, челюстно-лицевой хирургии, нейрохирургии, онкологии.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.
Изобретение относится к керамическим материалам, применяемым в качестве имплантатов. Керамический субстрат, содержащий: смешанный керамический материал из оксида циркония и оксида алюминия с гидроксильными группами на поверхности, содержит в качестве покрытий стерильный промотор адгезии, представляющий собой силан, образующий с гидроксильными группами на поверхности субстрата ковалентные связи, и полимерный покрывающий слой.

Изобретенне относится к области медицины, в частности хирургической стоматологии, и может использоваться для замещения неполных костных дефектов челюстей и альвеолярного отростка после удаления доброкачественных опухолей, при остеомиелических процессах, огнестрельных поражениях.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес.

Изобретение относится к медицинской технике, в частности к нейрохирургии и травматологии, и может быть использовано для замещения отсутствующего участка кости в черепе и в большой берцовой кости при дефектах, вызванных дорожно-транспортными происшествиями, огнестрельными, ножевыми ранениями, гнойными процессами, в частности остеомиелитом, и лечебно-диагностической трепанацией черепа.
Группа изобретений относится к медицине. Описан композиционный материал для замещения костных дефектов, содержащий поры размером 100-1000 мкм, который состоит из армирующей основы и матрицы из пироуглерода. Армирующая основа выполнена в виде каркаса из стержней, сформованных из углеродных волокон, ориентированных вдоль оси стержней. Каркас содержит вертикально установленные стержни и горизонтальные слои из стержней. Каждый слой образован параллельно ориентированными стержнями. Стержни каждого слоя ориентированы относительно стержней предыдущего и последующего слоя под углом 60°. Некоторые заранее выбранные стержни, стержни одного, нескольких или всех направлений армирования содержат в своем составе ориентированные вдоль оси стержней одну или несколько проволок из металла и/или карбида металла из группы: титан, ниобий, тантал, вольфрам, молибден или их сплавов, общий объем которых составляет 2-100% от объема стержня. Описан способ изготовления композиционного материала. Материал обладает повышенной рентгеноконтрастностью. 2 н. и 1 з.п. ф-лы, 1 пр.
Наверх